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Modifications to the net knee 
moments lead to the greatest 
improvements in accelerative 
sprinting performance: a predictive 
simulation study
Nicos Haralabidis1,2,3*, Steffi L. Colyer1,2, Gil Serrancolí4, Aki I. T. Salo5,1,2 & Dario Cazzola1,2

The current body of sprinting biomechanics literature together with the front-side mechanics 
coaching framework provide various technique recommendations for improving performance. 
However, few studies have attempted to systematically explore technique modifications from a 
performance enhancement perspective. The aims of this investigation were therefore to explore 
how hypothetical technique modifications affect accelerative sprinting performance and assess 
whether the hypothetical modifications support the front-side mechanics coaching framework. 
A three-dimensional musculoskeletal model scaled to an international male sprinter was used 
in combination with direct collocation optimal control to perform (data-tracking and predictive) 
simulations of the preliminary steps of accelerative sprinting. The predictive simulations differed 
in the net joint moments that were left ‘free’ to change. It was found that the ‘knee-free’ and 
‘knee-hip-free’ simulations resulted in the greatest performance improvements (13.8% and 21.9%, 
respectively), due to a greater knee flexor moment around touchdown (e.g., 141.2 vs. 70.5 Nm) and 
a delayed and greater knee extensor moment during stance (e.g., 188.5 vs. 137.5 Nm). Lastly, the 
predictive simulations which led to the greatest improvements were also found to not exhibit clear 
and noticeable front-side mechanics technique, thus the underpinning principles of the coaching 
framework may not be the only key aspect governing accelerative sprinting.

Accelerative sprinting has attracted substantial research interest from a biomechanical perspective given its broad 
significance towards success within sporting contexts1–7. The studies carried out to date have predominantly 
focused their efforts on understanding ground reaction force and impulse production, as an athlete’s change 
in linear horizontal momentum is mainly governed by the net horizontal impulse they are able to generate 
during the stance phase. Thus, to improve accelerative sprinting performance, an athlete must generate greater 
horizontal net impulse, either through increasing the propulsive impulse, reducing the braking impulse, or by 
doing both. The generation of such forces is also dependent on the athlete’s technique prior to and during the 
stance phase, and therefore the relationship between the causes and consequences of sprinting motion needs to 
be thoroughly investigated.

One strategy, supported by current literature, is to reduce the braking impulse by generating high hip exten-
sion and knee flexion angular velocities during the terminal swing phase, through net hip extensor and knee 
flexor moments8,9. This is believed to reduce the horizontal foot velocity and centre of mass (CoM)-foot touch-
down distance, and in turn reduce the braking impulse3,8,10. It is worthwhile noting that the complete removal 
of the braking phase may not be optimal, as this would potentially remove the benefits of the stretch–shorten-
ing cycle linked with the major ankle-spanning muscles11,12. Nevertheless, to date, no intervention studies have 
been carried out to ascertain whether this or alternative recommendations in general lead to performance 
enhancements. The lack of intervention studies is perhaps due to the unwillingness of athletes and their coaches 
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to participate in such a study given its time consuming nature, and the potential negative impact it may have 
on their performance. A predictive computer simulation and modelling approach is instead very well-suited to 
performing such research, as this type of approach permits hypothetical ‘what if ’ scenarios to be explored without 
the fear of jeopardising an athlete’s performance level13,14.

Another strategy is to maximise the propulsive impulse by ensuring that the thigh segment of the stance 
limb extends at a high velocity10,15. This is also linked to the strategy to minimise the braking impulse, as Mann 
and Murphy16 suggest that the net hip extensor moment generated during the beginning of the stance phase is 
crucial for this strategy. The work by Schache et al.6 provides evidence to support the claim made by Mann and 
Murphy16, as they found that there was a strong association between the angular impulse of the net hip exten-
sor moment and forward acceleration whilst sprinting. Furthermore, the same study also identified a strong 
association between the angular impulse of the net ankle plantarflexor moment and forward acceleration. In a 
separate study, Bezodis et al.2 identified that amongst a group of three international calibre sprinters, the most 
distinguishing feature separating their performance levels during the first stance phase of accelerative sprinting 
was the magnitude and timing of the net knee extensor moment, which was greater and earlier in the highest 
performing sprinter. Furthermore, in accelerated sprinting the trunk is forwardly inclined, in comparison to 
maximum velocity17, and in such a configuration it is possible that the net knee extensor moment is favoured. 
It is interesting to note that the hip generates a net extensor moment for the portion of the stance phase which 
mainly involves braking, while the ankle and knee produce net plantarflexor and extensor moments, respectively, 
that span the braking portion and large parts of the propulsive portion. It is therefore possible that in accelerative 
sprinting, the net extensor and plantarflexor moments produced by the knee and ankle, respectively, may be of 
greater benefit to propulsive impulse generation than the hip.

Many sport specific skills have techniques and movement patterns that coaches aim for their athletes to 
achieve based upon a coaching framework. The skill of sprinting is no different, and arguably the most well-
known sprinting coaching framework is known as front-side mechanics, as proposed by Mann and Murphy16. 
The front-side mechanics coaching framework is based on the notion that the thigh segment should not extend 
past an imaginary line drawn parallel to the trunk when viewed from the sagittal plane (Fig. 1), and this is recom-
mended from the onset of sprinting (independent of sprinting phase). In fact, when the thigh segment extends 
past this line, Mann and Murphy16 state that athletes sprint with back-side mechanics, which they deem as inef-
ficient because an ineffective magnitude of ground reaction force can be produced during back-side mechanics 
and it subsequently leads to a longer stance phase duration. To achieve front-side mechanics, or prevent back-side 
mechanics, Mann and Murphy16 recommend that athletes should produce a net hip flexor moment during the 
latter 75% of the stance phase. A further potential benefit of executing this technique is that it should permit a 
greater ‘high knee’ position to be achieved during the swing phase, which would subsequently enable the thigh 
segment to be accelerated through a greater range of motion in preparation for the next stance phase and lead 
to greater ground reaction force production.

To date, however, the coaching framework proposed by Mann and Murphy16 has received limited attention 
from the scientific community, with only a limited number of studies focusing on it18,19. The recent study by Clark 
et al.19 provided evidence to support the claims of the framework, as they identified a moderate positive relation-
ship between thigh angular range of motion and sprinting performance. Conversely, the findings in the study 
by Haugen et al.18 contradicted the proposed coaching framework, as they identified greater thigh extension at 
take-off to be associated with greater accelerative sprinting performance (i.e., sprinting with back-side mechan-
ics was associated with greater performance). The findings from both studies should be interpreted with care 
based upon the athletes which participated in each study. In the study by Clark et al.19, the participants were from 
nonhomogeneous sporting backgrounds with markedly different sprinting abilities which could have potentially 
over inflated the relationship found. Whilst the participants in the study by Haugen et al.18 were sub-elite male 
sprinters (mean ± standard deviation 100 m PB: 10.86 ± 0.22 s), and Mann and Murphy16 suggest that back-side 
mechanics is only avoided by elite level sprinters, which is what sets them apart from the rest of their competi-
tors. It is therefore still plausible that the front-side mechanics coaching framework is correct, however, further 
studies are needed to address this. Furthermore, there is the possibility that a different technical framework, yet 

Figure 1.   Front-side (a) and back-side (b) mechanics schematic during the second step stance phase of a 
maximal effort sprint. The solid red line drawn parallel to the torso indicates when the thigh segment is in front 
of the body and performing front-side mechanics or behind the body and performing back-side mechanics. 
Images generated using OpenSim 3.3 software (https://​opens​im.​stanf​ord.​edu).

https://opensim.stanford.edu


3

Vol.:(0123456789)

Scientific Reports |        (2022) 12:15908  | https://doi.org/10.1038/s41598-022-20023-y

www.nature.com/scientificreports/

to be uncovered, enables improved performance. For example, consider the high jump techniques prior to the 
advent of the Fosbury flop technique.

Predictive computer simulation and modelling approaches provide the platform for which to optimise the 
technique of a sporting movement, such as accelerative sprinting, and the usage of such an approach may help 
to provide further insights into the benefits of the front-side mechanics framework and demonstrate its merits 
from a scientific standpoint, which are currently lacking within the scientific literature. Nevertheless, despite the 
opportunities offered by such approaches, they have scarcely been applied to investigate sprinting, particularly 
from a technique and performance enhancement perspective. This was mainly due to the challenges in creating 
both a valid model and a robust simulation framework to realistically investigate such a demanding activity. In 
this study we tackled this challenge and performed predictive simulations of accelerative sprinting to investigate 
how modifications in technique affected performance, using a previously validated framework20. The second-
ary aim of this investigation was to provide insights into the front-side mechanics coaching framework, and to 
investigate whether the technique modifications coincided with improvements in performance as explained by 
the front-side mechanics coaching framework.

Methods
Musculoskeletal model.  The three-dimensional full-body musculoskeletal model described in Harala-
bidis et al.20 was used to perform the simulations in this study (Fig. 2). The human skeleton was modelled with 
20 rigid segments and 37 degrees-of-freedom (DOFs). The lower-limb and trunk DOFs were actuated by 92 
muscle–tendon units (MTUs) together with 17 reserve actuators. Each MTU was modelled as a three-element 
Hill-type model, with the contraction and activation dynamics of De Groote et al.21 and Zajac22, respectively. The 
lengths, velocities, and moment arms of the MTUs were described using differentiable and continuous polyno-
mial functions23. The upper-limb DOFs were actuated by 14 joint actuators. The passive properties of sprinting 
spikes and the structures surrounding the forefoot were modelled by including a linear rotational spring at each 
of the metatarsophalangeal (MTP) DOFs. Foot–ground interaction was modelled by attaching four and two 
smooth Hunt–Crossley contact spheres24 to both of the model’s lower rearfoot and forefoot segments, respec-
tively. The position of each contact sphere, and the stiffness and damping coefficients common to all the contact 
spheres were set to the values determined from a previous data-tracking simulation that tracked multiple trials 
simultaneously20. The aerodynamic drag force was also modelled by using the approach outlined by Samozino 
et al.25, and it was applied at the model’s CoM expressed in the local reference frame of the pelvis segment.

Optimal control problem formulation and discretisation.  The simulations were formulated as 
optimal control problems. Each optimal control problem was converted to a discrete nonlinear programming 
problem (NLP) by using direct collocation, which involves parameterising both the state and control variables. 
Specifically, the time horizon of the simulations was discretised across 150 equally spaced mesh intervals, with 
each mesh interval been further discretised with 4 points, by using a flipped Legendre–Gauss–Radau (LGR) 
direct collocation method27. The number of mesh intervals used in this study was greater than we had used in 
our previous data-tracking simulations of sprinting study20 due to simulating multiple stance phases. The state 
variables within each mesh interval were parameterised with third-order Lagrange polynomials. The control 
variables were parameterised at the beginning of a mesh interval and assumed to be piecewise constant through-
out a mesh interval. In the following subsections, the model’s state and control variables are defined together 
with a description of how the musculoskeletal model’s dynamics were handled within the simulations, and these 

Figure 2.   The three-dimensional musculoskeletal model used in this study (adapted from Hamner, et al.26). The 
human skeleton was modelled with 20 rigid segments: a pelvis, trunk (torso plus head), right and left lower-
limbs (thigh, shank, upper rearfoot, lower rearfoot and forefoot) and upper-limbs (upper-arm, lateral forearm, 
medial forearm and hand). The DOFs of model were as follows: × 6 pelvis-to-ground, × 7 per lower-limb (× 3 
hip, × 1 knee, × 1 ankle, × 1 subtalar and × 1 MTP), × 3 back, and × 7 per upper-limb (× 3 shoulder, × 2 elbow 
and × 2 wrist). The virtual model markers and smooth Hunt–Crossley contact spheres are denoted by pink and 
turquoise spheres, respectively. This same model was also used to perform the inverse kinematics and dynamics 
analyses to determine the kinematics and kinetics experimental tracking data. Imaged generated using OpenSim 
3.3 software (https://​opens​im.​stanf​ord.​edu).

https://opensim.stanford.edu
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were common amongst all the simulations. The unique aspects (e.g., performance criterion and additional con-
straints) to the data-tracking and predictive simulations are also outlined.

Dynamics formulation.  The generalised coordinates q and velocities v of the musculoskeletal model, and 
the normalised tendon forces F̃T and activations a of the MTUs were selected as the state variables 
( x =

[
q v F̃T a

]T
 ). The upper-limb joint actuators uUL , reserve actuators uRES , time derivatives of the general-

ised velocities uv̇ , normalised tendon forces u ˙̃
FT

 and activations uȧ , and ground reaction forces uGRF were 

selected as the control variables ( u =

[
uUL uRES uv̇ u ˙̃

FT
uȧ uGRF

]T
 ). The chosen state and control variables ena-

bled the differential equations underpinning the dynamics of the musculoskeletal model (skeletal, contraction 
and activation) to be represented in an implicit, as opposed to explicit, first-order state-space formulation28,29. 
The implicit dynamics formulation resulted in enforcing the musculoskeletal model’s first-order dynamics with 
simple differential constraints, and algebraic path constraints were included to enforce the underlying differen-
tial equations of the musculoskeletal model (Table 1). The first-order dynamics constraints were enforced at the 
LGR points within a mesh interval, whilst all the algebraic path constraints were enforced at the beginning of 
each mesh interval. Continuity constraints for the state variables between the ending and beginning of the mesh 
intervals were also included. Equality path constraints were included to ensure the ground reaction forces from 
both the control variable and the foot–ground contact model matched at an optimal solution.

Data‑tracking simulation.  To perform the data-tracking simulation it was first necessary to perform an 
empirical data collection. A thorough overview of the data collection procedures can be found in Haralabidis 
et al.20, and thus only a summary is given here. Three-dimensional marker trajectories (250 Hz, Qualisys AB, 
Sweden) and ground reaction forces (2000 Hz, Kistler, Switzerland) were collected from an international-level 
male sprinter (age: 24 years; height: 1.79 m; mass: 72.2 kg; 100 m PB: 10.33 s; 200 m PB: 20.27 s) as he performed 
two successful maximal effort sprints over three distances (0–10, 0–30 and 0–60 m). The participant provided 
written informed consent to take part in the data collection. The data collection protocol was approved by the 
University of Bath’s Research Ethics Approval Committee for Health (EP 17/18 238). All methods were carried 
out in accordance with relevant guidelines and regulations. For the purposes of this study, the data collected 
from between the touchdown of the second step (right foot) to the take-off of the third step (left foot) during 
the first 0–10 m trial (early acceleration phase) was extracted for further use. The extracted data together with 
the model described above were then used to perform inverse kinematics (global pelvis and relative joint angles) 
and dynamics (net joint moments) analyses within OpenSim (version 3.3, Stanford University, CA, USA)31. 
The kinematics and ground reaction forces were filtered using a fourth-order low-pass Butterworth filter with 
a 20 Hz cut-off frequency prior to performing the inverse dynamics analysis. B-splines were also fitted to the 
filtered kinematics data to enable velocities and accelerations to be determined. The splined kinematics, filtered 
ground reaction forces and net joint moments served as the experimental data to be tracked within the data-
tracking simulation.

Table 1.   Overview of the musculoskeletal model’s constraints. Skeletal dynamics were enforced as per 
equation (1.5) , where M

(
q
)
 is the mass matrix, C

(
q, v

)
 is the vector of centrifugal forces, G

(
q
)
 is the vector of 

gravitational forces, JExtT is the transpose of the external forces Jacobian matrix, Ext
(
uGRF ,AirDrag

)
 is the 

vector of external ground reaction and air drag forces and τ is the vector of net joint moments (consisting of 
the moments generated by the MTUs, upper-limb and reserve actuators, and springs attached to the MTP 
DOFs). Contraction dynamics were imposed using the Hill model equilibrium condition (1.6) , where the 
normalised tendon force must equal the projected sum of the normalised contractile FCE

(
q, v, F̃T , a

)
 and 

passive FPE

(
q, F̃T

)
 muscle forces. Activation dynamics were enforced using the inequality constraint 

equations (1.7− 1.8) , and they were derived from the original differential equation describing activation 
dynamics30. Equation (1.9) was imposed to ensure consistency between the ground reaction forces calculated 
from the contact model H − CGRF

(
q, v

)
 and the controls uGRF.

Dynamics constraints

dq
dt

= v (1.1)
dv
dt

= uv̇ (1.2)

dF̃T
dt

= u ˙̃
FT

(1.3)

da
dt

= uȧ (1.4)

Path constraints

M
(
q
)
· uv̇ + C

(
q, v

)
+ G

(
q
)
− JExt

T · Ext
(
uGRF ,AirDrag

)
−

[
0

τ

]
= 0 (1.5)

F̃T − cos

(
θ

(
q, F̃T

))
·

(
FCE

(
q, v, F̃T , a

)
+ FPE

(
q, F̃T

))
= 0 (1.6)

0 ≤ uȧ +
a
τd
; τd = 60ms (1.7)

uȧ +
a
τa

≤ 1
τa
; τa = 15ms (1.8)

H − CGRF

(
q, v

)
− uGRF = 0 (1.9)

Continuity constraints xEND
i

− x1
i+1 = 0 (1.10)
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For the data-tracking simulation, the objective function JTrackSim consisted of three terms: a tracking term 
JTracking that minimised the errors between experimental and simulated kinematics, ground reaction forces and 
net joint moments (excluding the net MTP moments), an effort term JEffort that minimised the activations, and 
a control variables term JControl that minimised the reserve actuators control variables and those control variables 
introduced to permit the use of an implicit dynamics formulation ( uv̇ u ˙̃

FT
uȧ):

where the superscripts EXP and SIM denote the experimental and simulated variables, respectively, tf  (0.436 s) 
denotes the duration of the extracted data from the trial being tracked, τk are the net joint moments, Fmax

i  are 
the MTU maximal isometric force parameters, and wi are the weights of the tracking and minimisation terms. 
The values of the weights were set using a heuristic approach based on the importance placed on the term being 
tracked or minimised ( w =[0.1 0.05 0.01 0.01 0.001 0.0001 0.1]), as currently there is no unanimous agreement 
within the relevant biomechanical literature for how they should be selected. The net MTP moments from the 
inverse dynamics analysis were not tracked due to experimental challenges related to the centre of pressure. The 
calculated differences between the experimental and simulated variables within JTracking (excluding the ante-
rior–posterior pelvis translation difference), and the time derivatives of the generalised velocities control variables 
were normalised by 10% of each variables experimental range (determined from the trial being tracked). The 
anterior–posterior pelvis translation difference was normalised by 0.01 m to ensure it was tracked accurately. 
The remainder of the variables within JControl were normalised by their respective upper bounds.

The initial guess alongside the lower and upper bounds of the state and control variables were set using the 
experimental data of the trial being tracked where possible. The splined experimental kinematics were used to 
initialise q , v and uv̇ , and their bounds were set to be 25% more than and less than the maximum and minimum 
of the values, respectively, obtained from the splined kinematics. The initial guess for the uUL was set using the 
results from the inverse dynamics analysis. The uRES and uGRF were initialised as zero, with bounds of ± 10 Nm 
(40 Nm MTP DOFs) and ± 2500 N, respectively. The same initial guess and bounds as Falisse et al.28 were used 
for F̃T , a , u ˙̃

FT
 and uȧ.

Predictive simulations.  In previous predictive simulation studies of sporting tasks, for instance jumping32 
and sprinting33, the objective has been to predict novel movements without considering technique changes. 
However, the primary objective of the predictive simulations carried out in this investigation was to explore how 
modifications in sprinting technique can lead to improvements in performance during the early acceleration 
phase. We explored modifications to sprinting technique from a net joint moments paradigm as they are the 
drivers for movement, as described previously, and we focused on the net ankle, knee, and hip flexor–extensor 
moments. Specifically, the predictive simulations were performed by enabling either individual or combina-
tions of the listed net joint moments to freely vary whilst the remaining net joint moments within the pre-
dictive simulations aimed to coincide with those determined from the data-tracking simulation. The net joint 
moments which we were not attempting to modify were tracked to permit subsequent inferences to changes in 
performance to be attributed to the net joint moments which we gave the freedom to change. Seven predictive 
simulations were performed in total. Three of the predictive simulations enabled the net ankle, knee, and hip 
flexor–extensor moments to independently vary freely (A-free, K-free and H-free), another three predictive 
simulations enabled combinations of two of the net joint moments to independently vary freely (A-K-free, A-H-
free and K-H-free) and the final simulation enabled all three of the net joint moments to independently vary 
freely (A-K-H-free). The time horizon duration was also treated as a variable to be determined from each of the 
predictive simulations. The following constraints were imposed for each predictive simulation:

(1)JTrackSim = JTracking + JEffort + JControl

(2)

JTracking = w1

37�

j=1

� tf

0


 qEXPj − qSIMj
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�
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the first constraint (5) was imposed to ensure the state variables of the musculoskeletal model’s multibody dynam-
ics at the beginning of the simulation matched with those determined from the data-tracking simulation; the 
second constraint (6) ensured that the anterior–posterior displacement of the musculoskeletal model’s pelvis 
segment at the end of the simulation matched with the value obtained from the data-tracking simulation; and 
the third constraint (7) was imposed to ensure that the relative joint angles of the musculoskeletal model at the 
end of the simulation fell within ± 10° of those obtained from the data-tracking simulation.

For each of the predictive simulations, the cost function JPredSim consisted of four terms: a duration of time 
horizon minimisation term JTime , a tracking term JTracking that minimised the differences between certain data-
tracking simulation and predictive simulation net joint moments, an effort term JEffort that minimised the activa-
tions, and a control variables term JControl that minimised the reserve actuators control variables and those control 
variables introduced to permit the implicit dynamics formulation ( uv̇ u ˙̃

FT
uȧ):

where tPredf  represents the duration of the time horizon to be determined, τTracka  and τPreda  denote the a’th tracking 
(obtained from the tracking simulation) and predictive simulation net joint moment, Wi are the weights of the 
cost function terms being minimised or tracked ( W =[50 0.1 0.01 1 0.0001 0.1]), and wτ is a binary vector with 
ones at the indices of the net joint moments that were tracked and zeros at the other indices (those given the 
freedom to vary). The data-tracking simulation and predictive simulation variable differences within JTracking 
were normalised by 2% of their respective range as determined from the data-tracking simulation. This was 
done to ensure that the net joint moments which we did not want to freely change were still tracked reasonably 
accurately. For example, the threshold selected coincided with a permissible error of 5 Nm assuming a 250 Nm 
range. The variables within JControl were normalised as per the data-tracking simulation.

The initial guess for the state and control variables for each simulation were set to the values determined from 
the data-tracking simulation. The lower and upper bounds of the state and control variables were identical to 
those used in the data-tracking simulation. The lower bound of tPredf  was set to 5% less than the original value 
of tf  used in the data-tracking simulation (0.414 s), whilst the upper bound was kept at the original value of tf .

Optimal control problem solution approach.  The data-tracking and predictive simulations were for-
mulated in MATLAB (2017b; MathWorks Inc., Natick, MA, USA) using CasADi34, and solved using IPOPT35 
with an adaptive barrier parameter strategy and NLP convergence tolerance of 10–3. The variables for each NLP 
were scaled to lay on the interval [− 1, 1] and the constraints were scaled to improve the convergence rate and 
numerical conditioning as per recommendations of Betts36.

Outcome measures.  The data-tracking simulation was evaluated by calculating the root mean squared 
difference (RMSD) between the tracked experimental data and simulated data. The performance of the data-
tracking and predictive simulations was quantified using average horizontal external power37 and was calculated 
as the rate of change in kinetic energy between the start and end of each simulation. The horizontal CoM velocity 
at the end of each simulation and the time horizon were also extracted as performance outcomes. The horizontal 
impulses (net, propulsive and braking) were calculated across each stance phase using trapezoidal quadrature. 
We also extracted touchdown and take-off kinematics-based technique variables based on existing literature 
(horizontal foot touchdown velocity and horizontal CoM-foot touchdown distance) and front-side mechanics 
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�
�2

dt



7

Vol.:(0123456789)

Scientific Reports |        (2022) 12:15908  | https://doi.org/10.1038/s41598-022-20023-y

www.nature.com/scientificreports/

principles (take-off hip extension, knee flexion, thigh extension and trunk orientation). Lastly, to further foster 
comparison between the data-tracking and predictive simulations from a net joint moments perspective, the 
peak flexor and extensor net joint moments during stance were extracted.

Results
Data‑tracking simulation.  The kinematics and kinetics from the data-tracking simulation were found to 
closely match the corresponding experimental data (Supplementary material Figs. S1 to S4). The average RMSDs 
were less than 1° and 0.3 cm for the global pelvis angles and translations, respectively, and less than 1° for the rel-
ative joint angles. The right and left stance phase ground reaction force components were tracked with an RMSD 
of 0.050 and 0.054 BW (anterior–posterior), 0.034 and 0.033 BW (vertical) and 0.003 and 0.009 BW (medial–
lateral). The average RMSDs of the tracked net joint moments and the net lower-limb joint moments were 16.3 
and 17.5 Nm, respectively. These results demonstrate that the modelling and simulation framework used was 
a sufficient representation of reality and therefore suitable for performing the proposed predictive simulations.

Predictive simulations.  Performance outcomes.  Each of the predictive simulations performed resulted in 
improvements to overall performance as indicated by the average horizontal external power (Fig. 3). The greatest 
improvement in performance was found for A-K-H-free (22.0%; 1401.2 vs. 1148.7 W), and this simulation also 
led to the greatest improvements in terminal horizontal CoM velocity (3.2%; 6.05 vs. 5.86 m/s) and time horizon 
duration (− 4.4%; 0.417 vs. 0. 436 s).

Horizontal impulses.  All the predictive simulations were found to generate greater net horizontal impulse dur-
ing the right foot stance phase compared to the data-tracking simulation (average of 68.4 vs. 58.8 Ns). For the 
left foot stance phase, the net horizontal impulse generated was lower in several of the predictive simulations 
(A-free, H-free, A-K-free, H-A-free) compared to the data-tracking simulation (Fig. 4), but not for the predic-
tive simulation that led to the largest performance improvements (A-K-H-free). Despite the lower net horizontal 
impulse of those simulations, the net horizontal impulse surplus they generated during the right foot stance 
phase was still sufficient to produce an overall improvement in terminal horizontal CoM velocity (Fig. 3).

Similar to the above, the predictive simulations were found to generate greater propulsive impulse during the 
right foot stance phase compared to the data-tracking simulation (average of 69.4 vs. 59.9 Ns). However, all the 
predictive simulations were found to produce less propulsive impulse during the left foot stance phase (average of 
43.0 vs. 45.7 Ns) (Fig. 4). There was not a clear trend in the simulation results for the braking impulse, although 
the predictive simulations which led to the greatest improvements in performance (A-K-H-free and H-K-free) 
produced lower braking impulses (average of left: − 0.5, average of right: − 0.6 Ns). Time histories of the ground 
reaction force components can be found within the supplementary material for completeness (Fig. S5).

Timings.  Very minor differences in the duration of the right foot stance phases were observed between the 
data-tracking and predictive simulations (average of 0.185 vs. 0.189 s), however, potentially more meaningful 
reductions were found for the left foot stance phases (average of 0.159 vs. 0.169 s) (Fig. 5).

Kinematics.  The horizontal foot touchdown velocity (0.98 m/s) and the horizontal CoM-foot touchdown dis-
tance (0.09 m) of the right foot stance phase were identical for all simulations performed, as the state variables of 

Figure 3.   Metrics to quantify the sprint performance in the data-tracking (T) and predictive simulations 
(A-free, K-free, H-free, A-K-free, H-K-free, H-A-free, A-K-H-free).
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the musculoskeletal model’s multibody dynamics for the predictive simulations were constrained to match those 
determined from the data-tracking simulation. A trend was observed for the horizontal foot touchdown velocity 
of the left foot stance phase to be lower as performance was found to increase (Fig. 5). The lowest horizontal foot 
touchdown velocity of the left foot stance phase was found to be 1.21 m/s for the A-K-H-free predictive simu-
lation. There was no noticeable trend for the horizontal CoM-foot touchdown distance of the left foot stance 
phase, with values ranging between 0.054 and 0.095 m.

The ‘knee-free’ predictive simulations showed lower hip extension (− 1° to − 4°) and higher knee flexion (− 27° 
to − 31°) angles at take-off for the right foot stance phase compared to the data-tracking simulation (Fig. 6). 
For the left foot stance phase, all simulations were found to exhibit a hip extension take-off angle of -7°, whilst 
showing a greater knee flexion angle at take-off compared to the data-tracking simulation (− 31° vs. − 21°).

Front‑side vs back‑side mechanics.  Overall, at take-off for the right foot stance phase, both the data-tracking 
and the predictive simulations showed an absolute trunk to thigh angle greater than 180°, which is, theoretically, 
indicative of the adoption of front-side mechanics. In the ‘knee-free’ simulations this angle slightly increased 
(from 1° to 3°) with respect to the data-tracking simulation, as the thigh orientation decreased whilst the trunk 
position remained almost unaltered (Fig. 6). However, during the left foot stance phase, although the data-track-
ing simulation still showed front-side mechanics features (trunk to thigh angle = 184°), all predictive simulations 
showed a decrease at least greater than 3° from that value. This is due to the thigh and trunk orientation take-off 
angles concomitantly decreasing (Fig. 6), which leads to cancelling out the front-side mechanics pattern. This 
can be seen in the take-off configurations presented in Fig. 7, where the trunk is always in a more upright posi-
tion with respect to the data-tracking simulation.

For the swing phase following the right foot stance phase, all the predictive simulations were found to exhibit 
reduced left hip flexion compared to the data-tracking simulation (82° vs. 86°) (Fig. 8). For the ‘knee-free’ predic-
tive simulations, we also identified a knee flexion reduction for the right limb during the swing phase (− 109° 
vs. − 122°). The interested reader can find the time histories of the global pelvis translations and angles in the 
supplementary material (Fig. S6).

Net joint moments.  The most discernible differences in the peak net flexor and extensor moments were 
observed for the knee and hip (Fig. 9). The ‘knee-free’ simulations were found to generate a greater peak net 
flexor (average 100.3%; 141.2 vs. 70.5 Nm) and extensor moment (average 37.1%; 188.5 vs. 137.5 Nm) across 
both right and left foot stance phases compared to the data-tracking simulation. In addition, the stance phase 
peak net knee flexor moment was found to occur at the beginning of stance for all simulations, whilst the peak 

Figure 4.   Right (R) and left (L) stance phase anterior–posterior impulses for the data-tracking (T) and 
predictive simulations (A-free, K-free, H-free, A-K-free, H-K-free, H-A-free, A-K-H-free).
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net knee extensor moment occurred ~ 40% later in stance for the ‘knee-free’ predictive simulations compared to 
the data-tracking simulation (Fig. 10). Furthermore, for the same set of predictive simulations we also observed 
a substantial net knee flexor moment for the limb in the swing phase in comparison to the data-tracking simula-
tion (greatest difference: − 115.3 vs. 39.9 Nm), which occurred at ~ 50% of the stance limb’s stance phase.

The H-K-free and A-K-H-free predictive simulations were found to generate greater peak net flexor (average 
23.6%; 194.5 vs. 157.3 Nm) and extensor (average 20.2%; 266.9 vs. 222.9 Nm) moments across both stance phases 
in comparison to the data-tracking simulation. The reversal from net hip extensor moment to net hip flexor 
moment was also identified as occurring earlier in the stance phase in these predictive simulations compared to 
the data-tracking simulation (~ 30% vs. ~ 35%), together with an increased rate of change (Fig. 10). Lastly, the 
peak net hip flexor moment for this subset of predictive simulations was greater than the data-tracking simula-
tion during both the right (greatest difference: 242.1 vs. 194.6 Nm) and left (greatest difference: 168.8 vs. 115.0 
Nm) lower-limb flight phases.

Discussion
The primary purpose of this investigation was to identify how modifications in technique influence performance 
during the preliminary steps of accelerative sprinting. This was achieved by using a predictive simulation and 
modelling approach where the lower-limb (ankle, knee, and hip) flexor–extensor net joint moments were given 
the freedom to be modified both individually and in combination. We found that the predictive simulations 
which enabled the net knee moments to vary (K-free) resulted in the greatest improvements in performance. 
More specifically, the K-free and K-H-free simulations resulted in a 13.8% and 21.9% increase of average hori-
zontal external power, and the A-K-H-free simulation, was found to generate the highest average horizontal 
external power (22.0%). Videos of the kinematics from the data-tracking and predictive simulations, in addition 
to the data files, can be accessed online at https://​doi.​org/​10.​6084/​m9.​figsh​are.​14988​051.

The secondary aim of this study was to evaluate whether the improvements in performance shown by the 
predictive simulations were in line with the front-side mechanics coaching framework, for which there is cur-
rently a limited amount of peer-reviewed scientific literature. The subset of ‘hip-free’ simulations showed partial 
evidence of the recommended front-side mechanics technique, but only from a joint kinetics perspective. These 
simulations, during the late stance and swing phases, were characterised by an earlier and greater generation of 
net hip flexor moments. Surprisingly, however, these changes in net hip flexor moments translated into a reduced, 
rather than increased, hip flexion angle during the swing phase, which is not what the front-side mechanics 

Figure 5.   Right (R) and left (L) touchdown kinematics and stance phase durations for the data-tracking (T) and 
predictive simulations (A-free, K-free, H-free, A-K-free, H-K-free, H-A-free, A-K-H-free). A positive horizontal 
CoM-foot touchdown distance indicates that the foot was ahead of the CoM.

https://doi.org/10.6084/m9.figshare.14988051
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framework advocates. Furthermore, considering the combined trunk and thigh orientation in the sagittal plane 
at take-off as the main criterion to assess the adoption of front side mechanics, all predictive simulations showed 
a reduction in this angle at take-off of the left foot stance phase and tended towards more neutral values (~ 180°) 
(Figs. 6, 7). Such results, therefore, suggest that the underpinning principles of front-side mechanics might not 
be the only key aspects governing accelerating sprinting, and it is perhaps more beneficial to avoid back-side 
mechanics, than fully embrace a front-side mechanics technique. This hypothesis is also reinforced by the fact 
that the predictive simulations which led to the greatest improvements in performance (i.e., ‘knee-free’) did not 
show clear evidences of front-side mechanics technique.

The changes in net joint moments timings and magnitude, which are linked to the greatest performance 
enhancement, were generated by the subset of simulations where the knee net moments were left free to vary. 
Amongst these simulations, a greater and earlier net knee flexor moment, prior to the initiation of the left foot 
stance phase, was generated (Fig. 10). The potential benefit of this aspect of technique is to reduce the magnitude 
of the braking impulse by driving the lower-limb backwards at touchdown and therefore reducing the horizontal 
touchdown velocity of the foot3,10. Indeed, especially for the subset of ‘knee-free’ simulations (A-K free, H-K 
free, and A-H-K free), the magnitude of the braking impulse decreased (Fig. 4), together with a reduction in the 
horizontal touchdown velocity of the foot (Fig. 5). The net hip extensor moment during the late swing phase has 
been suggested to perform a similar role as the net knee flexor moment3,10, and we observed this phenomenon in 

Figure 6.   Right (R) and left (L) hip extension, knee flexion, thigh extension and trunk orientation angles at 
take-off for the data-tracking (T) and predictive simulations (A-free, K-free, H-free, A-K-free, H-K-free, H-A-
free, A-K-H-free). Full knee extension = 0° and knee flexion is negative; thigh aligned vertically with pelvis 
corresponds to hip flexion–extension = 0°, and hip flexion is positive and hip extension is negative. Thigh and 
trunk segment angles are defined relative to the vertical axis of the global coordinate system. Negative thigh and 
trunk segment angles (clockwise rotations) correspond to extension and forward inclination, respectively. These 
are consistent with the model’s definitions.
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the H-free and H-K-free predictive simulations (Fig. 10). Greater reductions in the horizontal foot touchdown 
velocity (left foot stance phase) and the braking impulses were observed in the H-K-free predictive simulation, 
thus demonstrating the combined benefits of the actions of those net joint moments. The technique improve-
ments from those net joint moments are potentially due to an enhanced coordination (from a timing and mag-
nitude perspective) of the hamstring muscles, as they are responsible for both knee flexion and hip extension. 
Furthermore, Morin, et al.38 identified the significance of the hamstring muscles in the late swing phase in relation 
to ground reaction force production based on electromyography measurements. The computational modelling 
and simulation approach utilised in this study permitted exploring the behaviour of the hamstring muscles more 
thoroughly, however, it was deemed beyond the scope of this study. In further work we will perform a detailed 
analysis of the results at a muscle level to explore potential changes in the coordination of the hamstring muscles.

Figure 7.   Right and left foot take-off configurations for the data-tracking (blue model) and predictive 
simulations (red model). The angles included are between the trunk and thigh segments for the predictive 
simulations, with angles greater than 180° reflecting front-side mechanics. Images generated using OpenSim 3.3 
software (https://​opens​im.​stanf​ord.​edu).

https://opensim.stanford.edu
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The above findings demonstrate that a key feature of improving acceleration performance is by minimising the 
braking impulses via the generation of greater net knee flexor and net hip extensor moments. However, previous 
experimental studies1,5,7 have found that improved early accelerative sprinting is based on an individual’s ability 
to generate greater propulsive impulses as opposed to reduced braking impulses, which tends to differentiate 

Figure 8.   Right and left ankle dorsiflexion-plantarflexion angles, and knee and hip flexion–extension angles 
from right foot touchdown to left foot take-off for the data-tracking (T) and predictive simulations (A-free, 
K-free, H-free, A-K-free, H-K-free, H-A-free, A-K-H-free). The horizontal bars at the top of the figure indicate 
periods of right (R) and left (L) stance. The outputs from the simulations were not plotted on the same set of 
axes to avoid interpretability and visualisation issues.
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sprinters more in the latter stages of accelerative sprinting. A potential explanation for this discrepancy is due 
to the different study designs embraced. The studies by Colyer et al.1, Morin et al.7 and Nagahara et al.5 used a 
cross-sectional study approach, whilst the predictive simulations carried out in this study can almost be viewed as 
enabling a highly controlled intervention study, where individualised enhancement in performance was achieved 
via reducing the braking impulses. However, the results in this study are also dependent on the characteristics 
of the musculoskeletal model used, as the strategy for improving performance may have been different (i.e., 
increase propulsive impulses) due to differing organismic constraints (e.g., inertial or MTUs parameters)39,40, and 
similarly the conclusions with regards to front-side mechanics may also have been different as a consequence. 
Nevertheless, we believe that this is a particular strength of the approach adopted, as individualised technique 
recommendations to improve performance can be administered instead of group level recommendations which 
may or may not be beneficial for a particular athlete.

The ‘knee-free’ predictive simulations were found to increase the magnitude of the peak net knee extensor 
moment during the late stance phase in comparison to the data-tracking simulation. This finding is in line with a 
previous study2, which focused on the lower-limb net joint kinetics of three international calibre athletes during 
the first stance phase of accelerative sprinting. Specifically, Bezodis et al.2 identified that the most distinguishing 
feature of technique in relation to performance was the net knee extensor moment, as the highest performing 
athlete was found to generate a greater and earlier net knee extensor moment. The results from our simulations 
therefore provide further evidence to support the existing notion of the link between the behaviour of the net 
knee extensor moment and early accelerative sprinting performance. Interestingly, Schache et al.6 found that there 
was a strong association between the angular impulses of the net hip extensor and ankle plantarflexor moments 
and forward acceleration during accelerative sprinting. Interpreting our findings together with the work of Sch-
ache et al.6 and Bezodis et al.2 suggest that the net knee joint moments have a major performance benefitting role 
in early accelerative sprinting. However, the net ankle and hip joint moments are also fundamental to continue 
enabling an athlete to accelerate their CoM whilst sprinting.

A further important aspect of technique that we identified was the increase in magnitude and timing of the 
net hip flexor moment, particularly for the second stance phase, in the ‘hip-free’ simulations. This technique 
aspect has been suggested to be imperative for reversing the rotation of the hip (extension to flexion), and 
Mann and Murphy16 have stipulated that the highest calibre athletes generate a net hip flexor moment for the 
latter ~ 75% of the stance phase. More specifically, it is thought to prevent unnecessary extension at the hip and 
permits front-side mechanics dominance (e.g., greater hip flexion and higher knee lift). In the ‘hip-free’ predic-
tive simulations we see the transition to earlier and greater net hip flexor moments when compared to the data-
tracking simulation, with a net hip flexor moment for ~ 65% of the stance phase. Despite the changes in the hip 
joint moments coinciding with the front-side mechanics recommendation, we did not also observe increases 
in hip flexion during swing, instead reductions. This was a surprising result, as the work by Clark et al.19 found 
a positive linear relationship between hip flexion and sprinting velocity, thus, providing evidence in favour of 
this aspect of front-side mechanics. Further work is needed to clarify the significance of this aspect of front-side 
mechanics given the discrepancy in findings. Nevertheless, given that the greatest improvements in performance 
from our simulations were identified from the ‘knee-free’ simulations, it is possible that technique-based factors 
not covered by front-side mechanics were more influential to the modelled athlete’s sprinting performance.

It is possible that the kinematics-based criteria of front-side mechanics during the swing phase (i.e., increased 
hip flexion) did not emerge from the predictive simulations due to the margins of improvement in performance. 
For instance, the eight male finalists competing at the 2018 60 m World Athletics Championships achieved second 

Figure 9.   Right (R) and left (L) peak ankle dorsiflexor and plantarflexor net moments, and peak knee and hip 
net flexor and extensor moments during the right and left stance phases for the data-tracking (T) and predictive 
simulations (A-free, K-free, H-free, A-K-free, H-K-free, H-A-free, A-K-H-free).
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and third stance phase durations between 0.153–0.193 and 0.120–153 s, respectively41. Meanwhile the lowest 
second and third stance phase durations for the predictive simulations were 0.183 and 0.153 s, respectively, and 
a previous study has reported a strong association between stance phase duration and accelerative sprinting 

Figure 10.   Right and left net ankle dorsiflexor-plantarflexor moments, and knee and hip flexor–extensor 
moments from right foot touchdown to left foot take-off for the data-tracking (T) and predictive simulations 
(A-free, K-free, H-free, A-K-free, H-K-free, H-A-free, A-K-H-free). The horizontal bars at the top of the figure 
indicate the periods of right (R) and left (L) stance. The outputs from the simulations were not plotted on the 
same set of axes to avoid interpretability and visualisation issues.
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performance42. Whilst these stance phase durations give credibility to the predictive simulation results, the lack 
of increased hip flexion may explain why they are higher than the upper bounds achieved by the finalists. This 
also coincides with the beliefs held by Mann and Murphy16, in which only the highest calibre athletes are able to 
perform with front-side mechanics. The lack of clear front-side mechanics dominance emerging from our predic-
tive simulations may also be due to insufficient strength within the musculoskeletal model or the properties and 
geometry of the MTUs not been representative of an elite sprinter. For instance, the moment arms of the major 
knee extensor muscles have been shown to be greater in sprinters compared to non-sprinters43. Future work 
should therefore aim to disentangle the ability to perform front-side mechanics by potentially using a predic-
tive computational modelling and simulation approach, as per this study, together with a subject-specific model 
informed by medical imaging (e.g., magnetic resonance imaging) to explore the confounding factors described.

At the instant of take-off, the data-tracking simulation already showed trunk to thigh angles (right take-off: 
190°; left take-off: 184°), which reflected the adoption of front-side mechanics technique. The predictive simula-
tions showed small and inconsistent changes in the trunk to thigh angle (± 3°) during the right foot take-off, and 
a consistent reduction in the trunk to thigh angle during the left foot take-off (Fig. 7). The changes in trunk and 
thigh angles are cancelling each other out from a front- (or back-) side mechanics perspective, and the net effect 
results in a neutral position (180° ± 1) where the thigh is in line with the theoretical trunk line showed in Fig. 1. 
Thus, we believe that this might be seen as a mechanism to prevent back-side mechanics from occurring at take-
off. It is worthwhile to acknowledge that these results may have been obtained due to the modelling choices taken 
to actuate the trunk segment, which is actuated by a small subset of muscles together with reserve actuators and 
is thus a simplified representation of reality. Consequently, the trunk behaviour in the current study arguably 
represents the best-case scenario, and with a more detailed representation of the muscles spanning the pelvis-
trunk joint perhaps it would not have been possible for the trunk to attain the changes in inclination necessary 
to prevent back-side mechanics. To date, one of the rare studies18 to explore the recommendations proposed 
by front-side mechanics at take-off found that the directions of the relationships between key variables did not 
coincide (e.g., greater thigh extension and running velocity). Nevertheless, the avoidance of back-side mechanics 
relies on the combined effect of the thigh and trunk segments, which Haugen et al.18 did not consider, and isolated 
analyses of each of the variables does not suffice. Furthermore, the cohort of athletes analysed within the same 
study did not feature elite sprinters, which may again potentially explain the discrepancies in the relationships 
between the technique variables and performance they obtained.

An interesting finding from the predictive simulations was that they tended to show a trend of increasing the 
net and propulsive impulses in the first stance phase compared to the data-tracking simulation, whilst the net and 
propulsive impulses of the second stance phase were less than those obtained in the data-tracking simulation. 
Considering that all the predictive simulations improved performance compared to the data-tracking simulation, 
a greater surplus of net impulse from the first stance phase had to be produced by the predictive simulations such 
that overall performance was still enhanced. We believe that this result can be attributed to the inequality con-
straint enforcing that the relative joint angles at the end of the predictive simulations were within ± 10° of those 
obtained at the end of the data-tracking simulation. This may have restricted the possibility of achieving optimal 
solutions featuring greater net and propulsive impulses for the second stance phase. We imposed the inequality 
constraint to ensure that the musculoskeletal model was posed such that it had the possibility of performing a 
subsequent step. Without imposing this type of constraint, the final solution obtained by the algorithm more 
closely resembled jumping/hopping/diving as opposed to accelerative sprinting, as we found in our previous 
work44. In the future, it would be interesting to simulate more than two stance phases to explore whether the 
imposed inequality constraint was the cause of this result.

In this study, we used a cost function that included a tracking element, which in our case was a subset of the 
entire set of net joint moments. This simulation approach was similar to the ones utilised by Meyer et al.45 and 
van den Bogert et al.46 for performing predictive simulations of walking and running, respectively. We opted 
to embrace such an approach to ensure we were subsequently able to infer changes in performance through 
systematic modifications to the net ankle, knee and hip flexor–extensor moments, and to ensure the predicted 
outputs were still representative of sprinting. However, we recognise this is a limitation of our study as assigning 
different weightings to the tracking (subset of the entire set of net joint moments) and performance (minimisation 
of the time horizon duration) terms would have led to different results. Interestingly, the weighting assigned to 
the minimisation of time horizon duration meant that it never reached its lower bound, and we believe that this 
ensured a balancing of the two terms in the cost function such that neither was too heavily minimised.

Previous studies have performed predictive simulations of sprinting to address a variety of research 
purposes33,47,48. However, to the authors’ knowledge this is the first study to perform predictive simulations 
of sprinting whilst using state-of-the-art computational modelling and simulation approaches (e.g., three-
dimensional musculoskeletal model) for the purposes of exploring the interactions between technique and 
performance. In previous studies, model complexity and simulation duration were sacrificed likely due to the 
large computational cost incurred to solve an OCP together with the inefficient means of discretising the OCP. 
In this study we performed predictive simulations of sprinting by transcribing the OCP using direct collection, 
formulated the musculoskeletal dynamics implicitly and used algorithmic differentiation, and together they have 
been shown to increase computational efficiency and the ability of obtaining an optimal solution21,32. Further-
more, previous studies which have performed predictive simulations of walking, running, or sprinting23,47 have 
imposed a symmetry constraint at the end of their simulations to improve computational tractability. However, 
this is not appropriate in circumstances in which asymmetry between steps is likely, such as accelerative sprinting 
which was the form of locomotion studied in this investigation.

The findings from the current investigation are purely theoretical as they are based on the outputs from a 
predictive modelling and simulation framework, which must be acknowledged when drawing conclusions from 
our results. The framework used in this study was found to be a sufficient representation of reality, and it has 
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also been previously shown in a separate study20, which provides confidence in the outputs. Arguably the biggest 
criticism of this study is the potential for an athlete to implement the key technique-based findings, as coaching 
instructions are typically provided from a kinematics perspective. However, we took a different approach, based 
on net joint moments modifications, as ultimately the net joint moments produced by the muscles are responsible 
for motion. Recently, Richards et al.49 utilised real-time feedback featuring targeted net joint moments patterns 
together with kinematics cues to successfully modify walking gait. Such developments in real-time feedback 
and biofeedback are promising solutions to explore the effectiveness of the recommendations proposed in the 
current study in the real world.

Conclusion
The results from the predictive simulations highlighted that modifications in technique due to the timing and 
magnitude of the net knee flexor–extensor moments resulted in the greatest improvements to overall perfor-
mance. The ‘hip-free’ predictive simulations led to an earlier net hip flexor moment during the stance phase, 
although this did not translate to greater hip flexion during the swing phase which the front-side mechanics 
coaching framework advocates. Interestingly, in all the predictive simulations we observed the tendency to avoid 
back-side mechanics at take-off. Taken together, the results from the current study suggest that the front-side 
mechanics recommendations during the swing phase are not necessarily the limiting aspect of improving perfor-
mance, as the predictive simulations converged to differing techniques than proposed by front-side mechanics. 
It is worthwhile noting that the improvements in accelerative sprinting performance we found can be viewed as 
short-term technique modifications, instead of long-term adaptations via strength and conditioning programmes, 
as the properties of the model were kept constant between predictive simulations. Lastly, for coaches and sport 
scientists, the results suggest that cueing the actions of the knee and hip flexors and extensors as identified by 
the predictive simulations, particularly during the late swing (knee flexors and hip extensors) and stance (knee 
extensors and hip flexors) phases, could improve performance.

Data availability
The datasets generated and/or analysed during the current study are available at the publicly available Figshare 
repository titled: modifications to the net knee moments lead to the greatest improvements in accelerative 
sprinting performance: a predictive simulation study, with the following link: https://​doi.​org/​10.​6084/​m9.​figsh​
are.​14988​051.
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