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Exopolysaccharide is a key part of the extracellular matrix that contributes to important mechanisms of
bacterial pathogenicity, most notably biofilm formation and immune evasion. In the human pathogens
Staphylococcus aureus and S. epidermidis, as well as in many other staphylococcal species, the only
exopolysaccharide is polysaccharide intercellular adhesin (PIA), a cationic, partially deacetylated
homopolymer of N-acetylglucosamine, whose biosynthetic machinery is encoded in the ica locus. PIA
production is strongly dependent on environmental conditions and controlled by many regulatory sys-
tems. PIA contributes significantly to staphylococcal biofilm formation and immune evasion mechanisms,
such as resistance to antimicrobial peptides and ingestion and killing by phagocytes, and presence of the
ica genes is associated with infectivity. Due to its role in pathogenesis, PIA has raised considerable inter-
est as a potential vaccine component or target.
Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-

nd/4.0/).
Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3325
2. Distribution and genetic encoding of PIA in staphylococci . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3325
3. Structure of PIA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3325
4. PIA biosynthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3326
5. Regulation of PIA biosynthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3326
6. Role of PIA in biofilm formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3327
7. Contribution to host colonization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3328
8. PIA in infection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3328
9. PIA and the host immune system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3329
10. PIA and antimicrobial resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3329
11. PIA as an immunotherapeutic target . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3330
12. Summary and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3330

Declaration of Competing Interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3330
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3330
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3330
resistant

http://crossmark.crossref.org/dialog/?doi=10.1016/j.csbj.2020.10.027&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.csbj.2020.10.027
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:motto@niaid.nih.gov
https://doi.org/10.1016/j.csbj.2020.10.027
http://www.elsevier.com/locate/csbj


Hoai T.T. Nguyen, T.H. Nguyen and M. Otto Computational and Structural Biotechnology Journal 18 (2020) 3324–3334
1. Introduction

The genus Staphylococcus comprises more than 40 species [1], of
which at least 10 are found in the human skin microbiome [2]. Sev-
eral species are among the most frequently isolated bacteria from
the human skin and mucous membranes [3]. While many
coagulase-negative staphylococci (CoNS), such as S. epidermidis,
are skin colonizers in virtually all humans [3], the coagulase-
positive species S. aureus persistently colonizes only ~20%, and
intermittently about another 30% of the human population [4].
Many staphylococci are opportunistic pathogens with the ability
to cause numerous infections. CoNS and S. aureus are both involved
in subacute and chronic infections, particularly device-associated
infections [5], while S. aureus can also cause severe lung, blood,
and bone infections [6]. The success of the staphylococci in human
colonization and infection is due to a plethora of factors. Similar to
many other pathogenic bacteria [7], staphylococci produce extra-
cellular polysaccharide (EPS), which has multiple functions in
pathogenesis, including biofilm formation and immune evasion.
The term EPS is used to differentiate from other bacterial polysac-
charides, such as internal polysaccharides that have storage func-
tion, and capsular polysaccharides, which are also external but
more closely related to the surface and usually covalently
surface-linked [8].

Unlike some other bacteria, such as Pseudomonas aeruginosa,
which have several types of EPS [9], staphylococci only produce
one dominant EPS molecule [7]. This EPS has been named polysac-
charide intercellular adhesin (PIA) based on function [10], or poly-
b-1-6-N-acetylglucosamine (PNAG) based on its chemical nature
[11]. We will use the original term PIA in this review. The genes
necessary for PIA biosynthesis are encoded in the ica (intercellular
adhesion) locus [12]. Like all Gram-positive bacteria, staphylococci
also produce teichoic acids, which are polymers of sugars and alco-
hol phosphates and which – similar to EPS - have been implicated
in colonization and biofilm formation [13]. However, due to their
ubiquitous presence and covalent surface linkage, teichoic acids
are generally not considered EPS.

PIA is also found in many other, phylogenetically diverse bacte-
ria. In Escherichia coli, PIA is called PGA and the ica locus, pgaABCD
[14]. In Yersinia pestis, Pseudomonas fluorescens, Bordetella bron-
chiseptica, B. pertussis, and B. parapertussis, homologues of pgawere
discovered, named hmsHFRS for Y. pestis and bpsABCD for Bordetella
[15–19]. PIA homologues were shown to be directedly related to
biofilm formation in these species [15,16,18,19]. Similar findings
were obtained in Acinetobacter baumannii [20], Actinobacillus acti-
nomycetemcomitans and A. pleuropneumoniae [21,22], Burkholderia
ambifaria, B. cenocepacia, B. cepacia, B. multivorans and B. viet-
namiensis [23], K. pneumoniae [24,25] and Bacillus subtilis [26].

The wide distribution of PIA and its frequently established
importance in infection has resulted in considerable interest in this
molecule in recent years. While there are many reviews on biofilm
formation, there is no comprehensive review on this specific key
biofilm molecule. Here, we present a review of PIA in staphylo-
cocci, including its structure, biosynthesis and regulation, role in
biofilm formation, colonization, and infection, and finish with a
discussion of the potential of PIA-targeting therapeutics.
2. Distribution and genetic encoding of PIA in staphylococci

The production of PIA is mediated by the ica locus, which con-
sists of a regulatory gene, icaR, and the biosynthetic operon
icaADBC [12]. PIA and the ica locus were first described in S. epider-
midis [12,27] but then also found in S. aureus and other staphylo-
coccal species with significant conservation [28–30]. Presence
and expression of the icaADBC operon can vary significantly among
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the many staphylococcal species in which ica genes have been
detected. For example, while most S. aureus strains have the ica
genes [31], only some appear to rely on PIA expression for biofilm
formation in vitro and in vivo [32–34]. In S. epidermidis, which has
been in the focus of PIA research, recent findings indicate that pres-
ence of the ica genes is linked to a specific genetic cluster. Namely,
ica genes are present in the S. epidermidis A/B cluster at ~37%, as
opposed to only 4% in cluster B [35,36]. Furthermore, the ica genes
are virtually the only genes of S. epidermidis whose presence has
been found to be significantly higher in isolates from device infec-
tion, or device-associated blood infection, versus colonization iso-
lates [37–42]. However, this association has been doubted
[43,44]. So far, other staphylococcal species have rarely been inves-
tigated for a correlation of ica gene presence, PIA production, and
source from infection. In the species where this was analyzed,
presence of the ica genes generally was highly strain-specific and
associations with infection were similar to those found for S. epi-
dermidis [45–49]. Altogether, it has been difficult to attribute roles
in infection and colonization to the ica genes and their biosynthetic
product solely based on epidemiological data, which is why func-
tional research on this EPS molecule has focused on investigation
of deletion strains and in some cases, purified PIA.
3. Structure of PIA

PIA was discovered when what was previously called slime
underwent in-depth chemical analysis. In 1996, PIA from S. epider-
midis was identified to be a linear, positively charged, partially
(~15–20%) deacetylated polymer of b-1–6-N-acetylglucosamine
[27], whose expression was highly correlated with biofilm
formation [50]. Beside N-acetylation, around 10% of
N-acetylglucosamine residues of PIA have been reported to be
O-succinylated in S. epidermidis and S. aureus [27,51,52]. Before
the chemical description of PIA by Mack et al. [27], preliminary
studies had identified slime-associated staphylococcal polysaccha-
rides that were given different names (SAA or PS/A) [53,54]. Mack
et al. described PIA to contain about 130 residues of
N-acetylglucosamine (NAG) with some degree of deacetylation
corresponding to an estimated molecular weight of ~30 kDa [27].
Subsequently, McKenney et al. identified PS/A from S. epidermidis
and S. aureus as a >250 kDa molecule with considerable
N-succinylation (65–100%) that is synthesized from the same locus
as PIA (ica), ultimately calling it poly-N-succinyl-b-(1–6)-glucosa
mine (PNSG) [55,56]. Later, the same group reported PS/A to have
a size of 21 kDa, 100 kDa and 460 kDa but no degree
of N-succinylation, henceforth calling the molecule PNAG
[poly-N-acetyl-b-(1–6)-glucosamine] [11]. It was confirmed by
detailed NMR analyses that N-succinylation was indeed an analyt-
ical artifact in a study that referred to S. aureus exopolysaccharide
as SAE, a PIA-related molecule of high molecular weight (>300 kDa)
having about 45–60% N-acetylation and 10% O-succinylation [51].
Notably, when using the same strain and growth condition as well
as a similar purification strategy as used by Maira-Litran et al. [11],
Sadovskaya et al. showed that PIA, PS/A, SAA and SAE are all of the
same chemical entity [52]. Furthermore, all these molecules were
shown to be synthesized by the ica locus [55]. Therefore, variable
reports on the size and slightly different characteristics of PIA are
likely due to differences in the degree of polymerization as well
as variation in experimental approaches used in different studies
(Fig. 1).

There are reports on a similar glucosamine-containing EPS
molecule in S. epidermidis of only 20 kDa, whose biosynthesis is
not mediated by the ica locus [57]. This 20-kDa partially sulfated
acidic polysaccharide was claimed to be both a major slime com-
ponent and a distinct antigen with potential to induce specific



Fig. 1. Structure of PIA. PIA is a homopolymer of N-acetylglucosamine (GlcNAc)
residues with b-1–6 linkage. About 15 to 20% of the GlcNAc residues are de-
acetylated. In the figure, acetyl groups are in green and the free amino group that
results from IcaB-catalyzed deacetylation, which is positively charged at neutral or
basic pH, is in red. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Fig. 2. Genetic encoding and biosynthesis of PIA. PIA is synthesized by the products
of the icaADBC operon. The icaADBC operon is under control of the product of the
icaR gene, which is encoded upstream. IcaR, which is itself subject to control by
manifold regulators and environmental conditions, binds in two dimers to the
icaADBC promoter region, repressing icaADBC transcription. IcaA and IcaD, two
membrane proteins, synthesize a growing poly-GlcNAc chain from activated
precursor GlcNAc units. This chain is likely exported by the membrane protein
IcaC, although IcaC has also, alternatively, been speculated to be involved in PIA O-
succinylation. IcaB is an enzyme that is attached to the bacterial outer surface and
introduces positive charges in the otherwise neutral PIA molecule by de-acetylation
of some GlcNAc residues. The cationic character is vital for surface attachment and
functionality of PIA.
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and protective antibody in S. epidermidis [58,59]. Later this mole-
cule was reported to be a partially sulfated polymer of N-
acetylglucosamine and glucose, expressed exclusively in S. epider-
midis but not in other CoNS species [60]. It was stressed not to be
synthesized from the ica locus [60], but in the absence of a defined
biosynthetic locus, these reports on a second EPS molecule in
staphylococci that is different from PIA have to be regarded as pre-
liminary and in need of verification.

4. PIA biosynthesis

The icaADBC locus contains four different genes, icaA, icaD, icaB
and icaC, which are arranged in an operon. The ica operon was first
described in S. epidermidis in 1996 and reported to comprise three
genes that are co-transcribed from one promoter [12]. Later, it was
found that the locus also contains a small fourth gene, icaD, which
is located between icaA and icaB [61]. Expression of all four genes is
required for the synthesis of fully functional PIA [61] (Fig. 2).

The major PIA-synthesizing enzyme is encoded by icaA [61].
IcaA is an N-acetylglucosaminyltransferase that synthesizes PIA
oligomers from UDP-N-acetylglucosamine. However, the trans-
ferase activity of IcaA is low and only reaches high efficacy in the
presence of IcaD. IcaA and IcaD are located in the plasma mem-
brane [61]. IcaA is a 412 amino-acid polypeptide having four pre-
dicted transmembrane domains, while IcaD is much smaller,
having only 101 amino acids with two potential transmembrane
domains [61]. IcaAD was shown to produce PIA with a maximal
length of only 20 residues, while further elongation of PIA required
assistance of IcaC [61]. Together with the predicted transmem-
brane structure of IcaC, these findings led to the assumption that
IcaC exports the growing PIA chain and possibly forms a complex
with IcaA and IcaD [61]. However, it has been proposed - based
on comparison of ica homologues in different bacteria but without
experimental evidence - that IcaAD may also export PIA, while IcaC
may be responsible for modifications of PIA, such as O-
succinylation, that appear to be limited to staphylococci [62]. IcaB,
a 259 amino-acid polypeptide with a potential signal sequence, is a
cell surface-attached enzyme that has PIA deacetylase activity [63].
Via deacetylation, IcaB introduces a positive net charge into PIA,
which makes the polymer attach stably to the bacterial surface
and which is crucial for PIA-mediated phenotypes [63]. IcaB enzy-
matic activity is metal-dependent and preferentially targets the
second or third sugar residues from the reducing terminal of pen-
tamer or hexamer PIA [64] (Fig. 2).

5. Regulation of PIA biosynthesis

PIA can be produced in large amounts in a presumably highly
energy-consuming process [27]. This requires tight regulation of
ica expression. PIA production and ica expression have been found
to be dependent on environmental conditions, such as anaerobio-
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sis, salt, glucose and alcohol concentration, and antibiotics
[65–68]. Over the years, a large number of regulatory genes and
proteins have been found to regulate ica expression, which likely
underlies the strongly differential expression of PIA in different
staphylococcal strains [69]. It is believed that ica expression is
more variant and dependent on environmental conditions in S. aur-
eus than in S. epidermidis [70].

The ica locus contains a dedicated regulator, IcaR, which is
encoded upstream of the icaADBC operon [66]. IcaR, whose crystal
structure has been obtained, is a member of the TetR family of
transcriptional regulators [71]. It binds to a specific DNA region
upstream of icaA resulting in strong suppression of icaADBC tran-
scription [66,72] (Fig. 2). Deletion of icaR leads to PIA over-
production [66]. Aminoglycoside antibiotics can interfere with
the binding of IcaR to DNA, thus resulting in the induction of bio-
film formation [71]. Some but not all of the environmental influ-
ences on PIA production as well as the impact of global
regulators discussed below are mediated by IcaR. Interestingly,
the 30 untranslated region (UTR) interferes with the Shine-
Dalgarno sequence of the icaR transcript, producing a substrate
for RNAse III, thereby reducing icaR translation [73].

TcaR, a MarR-type transcriptional of the icaR transcript regula-
tor, provides IcaR-independent regulation of icaADBC [74]. TcaR
negatively regulates icaADBC, however to a much smaller extent
than IcaR [72]. In S. epidermidis, TcaR can become the primary ica
repressor in the absence of IcaR [74]. Interestingly, while IcaR
binds to only one specific site upstream of icaA, TcaR can bind to
multiple sites, including the binding site of IcaR as a competitor
of IcaR as well as to the icaR promoter region as a repressor [74].



Hoai T.T. Nguyen, T.H. Nguyen and M. Otto Computational and Structural Biotechnology Journal 18 (2020) 3324–3334
SarA is the most extensively studied regulator among the
staphylococcal accessory regulator (Sar) family. This protein is rel-
atively small, containing 124 amino acids with a winged-helix DNA
binding domain [75]. SarA strongly activates the icaA promoter via
high binding affinity [76–78]. In S. aureus, mutations in sarA
decrease but do not stop the production of PIA [76], while in S. epi-
dermidis, deletion of sarA can result in complete abortion of PIA
production [77,79]. Interestingly, in S. aureus, SarA induces not
only the transcription of icaADBC but also its suppressor icaR, sug-
gesting binary control to prevent the overproduction of PIA [78].
On the other hand, in S. epidermidis, SarA regulation of PIA produc-
tion is IcaR-independent [77]. SarA represents a global regulator
with manifold influences on staphylococcal physiology, many of
which are mediated via its impact on the Agr quorum-sensing sys-
tem [80], another major regulator of staphylococcal gene expres-
sion [81]. Agr itself does not impact ica transcription but similar
to SarA impacts many unrelated biofilm factors such as proteases
and phenol-soluble modulins (PSMs) [81,82]. Overall, the impact
of sarA and agr deletion on staphylococcal biofilm formation is neg-
ative and mostly PIA-independent, because both regulators
strongly upregulate protease and PSMs, which are biofilm detach-
ment factors [83]. Other members of the Sar protein family that
regulate ica in S. epidermidis comprise SarX and SarZ. SarX binds
to the icaADBC promoter, upregulating transcription, while SarZ
also upregulates ica transcription in an unknown fashion [84,85].

Sigma B is an alternative sigma factor that regulates a number
of virulence and virulence-associated genes in response to environ-
mental stimuli. It has been reported to be important for S. aureus
and S. epidermidis biofilm formation. While initial studies reported
that sigmaB increases ica transcription in a potentially IcaR-
dependent way [78,86], this has been controversial at least for S.
aureus [76], and recent research suggests that the impact of sigma
B on PIA production in S. aureus is due to altered proteolytic turn-
over of PIA biosynthesis proteins [87].

In addition to the regulators discussed in detail above, a number
of other regulator factors/ systems have been shown to affect PIA
synthesis, including Rbf [88], LuxS [89], Spx [90], SrrAB [91], Ygs
[92], GdpS [93], and CcpA [94]. SrrAB, for example, appears to be
important for the increase of PIA production under anerobic condi-
tions [91]. Moreover, recent findings also add non-protein factors
to the list of PIA regulators. IcaZ, a non-coding 400-nucleotide
RNA, which is encoded downstream of icaR, was found to inhibit
icaR mRNA translation, leading to increased PIA production [95].
Fig. 3. Functions of PIA. PIA embeds staphylococcal cells in a dense extracellular matrix
defense (AMPs, phagocytes). Furthermore, some reports have suggested direct pro-infl
mediated by its contribution to biofilm formation. This includes most notably device- an
the protection from AMPs and phagocytosis. Finally, PIA may contribute to epithelial co

3327
IcaZ is found inclusively in ica-positive S. epidermidis but no other
staphylococcal species [95]. Additionally, a regulatory RNA named
RsaE binds in its processed form to the 50UTR of the icaR mRNA,
also increasing PIA production [96].

Finally, another distinctly different way to regulate PIA synthe-
sis that was found in S. epidermidis is the reversible insertion of
IS256 into either icaA, icaC, rsbU or sarA, which causes a ‘‘phase
variation” phenotype of abolished or decreased PIA production
[97–100]. Similar to ica, IS256 is associated with infection origin
of S. epidermidis isolates [101,102], suggesting that this type of
PIA regulation is important for pathogenesis.

6. Role of PIA in biofilm formation

Biofilm is a consortium of microbial cells that aggregate with
each other and to a surface via a self-synthesized slimy extracellu-
lar matrix (ECM). This matrix is chemically heterogenous, compris-
ing extracellular DNA (eDNA), lipids, EPS, and proteins that
frequently form amyloid fibers [103]. The types and ratio of each
component depend on the bacterial species and environmental
conditions. In many staphylococci, particularly S. epidermidis, the
EPS PIA is the major component of the biofilm matrix [12,104]
(Fig. 3). Biofilm formation develops in at least three main stages:
(i) attachment of microbial cells to a surface, followed by (ii) pro-
duction of the ECM and maturation of the biofilm, and finally (iii)
detachment of microbial cells or clusters [105,106].

Attachment to an abiotic surface, such as that of an indwelling
medical device, is governed by the physicochemical properties of
the surface and the bacterial envelope and is reversible [107]. Stud-
ies mostly performed in S. epidermidis have attributed key roles to
charge and surface hydrophobicity in staphylococcal attachment to
abiotic surfaces [108–110]. However, in vivo, surface attachment is
mediated predominantly via specific adhesion molecules, such as
those of the MSCRAMM family, which cover the abiotic surface of
an indwelling medical device soon after insertion [111].

Despite its positive charge, PIA appears to contribute to surface
hydrophobicity of S. epidermidis [112] and may thus mediate initial
adherence to some extent. However, the adherence properties
often attributed to PIA in the literature [113] likely rather reflect
its contribution to the beginning second, accumulation stage of
biofilm formation. By representing a major component of the
extracellular matrix, PIA fixes staphylococcal cells in the fibrous
net it produces and thereby builds up biofilm mass [114], which
network. This network protects the cells from attacks by mechanisms of innate host
ammatory functions of PIA. However, most of the biological functions of PIA are
d other biofilm-associated infections. Biofilm formation also further contributes to
lonization under specific conditions.
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leads to increased resistance of the biofilm to mechanical force.
Accordingly, PIA is crucial for biofilm formation under high-shear
flow conditions like those found inside catheters [40,115–119],
but it becomes less important under low-shear conditions like
those in subcutaneously implanted tissue [120], ocular infections
[121], or platelet concentrate [122]. Single-cell force spectroscopy
data demonstrated multivalent electrostatic interaction of the
cationic PIA polymer with the negatively charged wall teichoic
acids on staphylococcal cells, confirming on the molecular level
that the cationic character previously shown to be crucial for PIA
function [63] has an important role in the attachment of PIA to
the cell surface and PIA-mediated intercellular adhesion [123].
There is no evidence for a covalent linkage of PIA to the cell surface.

In the final stage of biofilm formation, staphylococcal cells are
detached from the biofilm. Detachment can happen via mechanic
force in a process often called sloughing, by enzymatic digestion
via proteases or nucleases, or via detergents [124]. The role of
the PSM detergent-like molecules in this process has been demon-
strated in vivo in S. epidermidis and S. aureus and is independent of
whether the biofilm is PIA-dependent or -independent [125–127],
while enzymatic digestion depends on the chemical nature of the
biofilm [128–130]. Notably, PIA-degrading enzymes have not been
found in staphylococci. The only known enzyme to degrade PIA is
dispersin B, which is found in a periodontal disease-causing patho-
gen, Actinobacillus actinomycetemcomitans [131]. This enzyme
hydrolyzes the 1,4-b-glycosidic linkage of PIA, causing detachment
and dispersion of cells from biofilms [131], effectively inhibiting
PIA-dependent staphylococcal biofilm formation and immune eva-
sion capacity [114,132,133]. It is often used to determine PIA
dependence of staphylococcal biofilm formation [134]. Whether
an open reading frame that has similarity to the dispersin B gene
and is found in S. lugdunensis close to the ica locus codes for a
PIA-hydrolase remains to be shown [135].

For a long time, PIA has been deemed crucial for staphylococcal
biofilms, but beginning in the early 2000s, there have been reports
on PIA-independent staphylococcal biofilm formation, in which
isolates from biofilm infection were shown to be ica-negative
and form in-vitro biofilms [33,136,137]. However, strains using
PIA-independent biofilm formation seem to form weaker and less
stable biofilm than those whose biofilms are based on PIA
[33,138]. Furthermore, PIA production results in dense, rough colo-
nies as opposed to smooth colonies formed by PIA-negative
biofilm-forming S. epidermidis [114]. It has also been reported that
ica-negative and -positive clinical staphylococcal isolates show
enhanced biofilm production when induced by heparin [139],
staphylococcal or host proteases [134], trypsin [140] or by special
conditions like those found within platelet concentrates [141–
143]. Furthermore, PIA-dependent biofilm is frequently found in
methicillin-sensitive (MSSA), while PIA-independent biofilm is
prevalent in methicillin-resistant S. aureus (MRSA) [32,136,144].
There have been attempts to link this difference to the mecA gene
that is responsible for methicillin resistance [145]. However, how
the mecA gene is mechanistically involved in the difference of
PIA usage for biofilm formation in MSSA and MRSA remains largely
undetermined. Lastly, S. epidermidis appears to have the ability to
switch to a protein-dependent biofilm upon disruption of the ica
gene locus by IS256 [98].
7. Contribution to host colonization

Research on staphylococci has traditionally been focused on
infection, while their commensal lifestyle has received only minor
attention. This is now changing due to the increased interest in
microbial communities and the human skin microbiome. The
abundant skin commensal S. epidermidis has recently been shown
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to occur in two major genetic clusters (A/C and B), of which virtu-
ally only the A/C cluster isolates contain ica genes (37% versus 4%
in cluster B) [35,36]. A/C cluster isolates also exhibit ica-
unrelated phenotypes, such as protease production and matrix
protein binding, making them potentially more pathogenic, while
B cluster isolates seem to have evolved to adapt to conditions
found in sebaceous glands and hair follicles [35]. Furthermore, an
earlier study performed in human volunteers showed that pres-
ence of the ica genes appeared to be disadvantageous for survival
on the skin due to a high fitness cost [146]. Together with the many
reports that associate presence of ica with infection, these results
suggest that PIA production may only be of advantage on the skin
under certain conditions and that presence of ica genes together
with other genetic features makes specific S. epidermidis isolates
more prone to infect the host. How PIA affects skin colonization
in other staphylococci has not yet been investigated.
8. PIA in infection

Animal studies that analyzed the contribution of PIA to different
types of infection have yielded conflicting results. Most frequently
these studies investigated S. epidermidis device-related infection.
Before the discovery of PIA, some studies reported an impact of
slime production on the pathogenesis of S. epidermidis device-
related infection [147] and an association with origin from infec-
tion, for example from nosocomial bacteremia [148], while others
did not [148,149]. In addition to the assumption that clumping/
slime production increases the success of infections on indwelling
medical devices, recent research also has suggested that this phe-
notype increases the chances of staphylococcal dissemination
through the bloodstream [150].

After the discovery of the ica genes, isogenic deletion mutants
were used to directly investigate the impact of PIA on infection.
Most of those studies used the ica-negative M10 transposon
mutant of S. epidermidis strain 1457 [10]. The first studies were
performed in the Rupp laboratory and consistently showed a sig-
nificant impact of the ica genes on catheter-related infection in
mice and rats [117,151,152]. Later, it was shown that introduction
of the ica genes alone is sufficient to render a commensal S. epider-
midis strain invasive [153], and several further studies showed
similarly reduced infectivity of isogenic ica-negative S. epidermidis
as compared to the parental strain in device-related infection
[154], independently of the used biomaterial [155]. Moreover,
the importance of PIA deacetylation for device-related infection
in mice, as investigated using an icaB isogenic deletion mutant, fur-
ther confirmed PIA’s importance for pathogenesis [63]. Addition-
ally, ica-positive S. aureus or S. epidermidis showed better in-vivo
survival than their corresponding ica mutants in wild-type/
mutant mouse co-infection models [70]. Finally, a significant
impact of the ica genes on S. epidermidis infection was confirmed
in a C. elegans infection model, where ica genes were required for
lethal infection produced by feeding challenge [156]. Together,
these results add to those already mentioned above showing
increased prevalence of ica genes in infective S. epidermidis isolates
to substantiate a role of ica in S. epidermidis device-related infec-
tion [37–42] (Fig. 3).

However, other researchers found no impact of the ica genes on
virulence in device-related infection models. Chokr et al. reported a
lack of impact of ica on infection in a guinea pig tissue cage model
for S. epidermidis and Francois et al. for both S. epidermidis and S.
aureus in the same model [120,157]. Kristian et al. reported a sim-
ilar outcome when using a mouse tissue cage model and S. aureus
strain SA113 [158]. Furthermore, in a C. elegans infection model no
correlation of PIA-production and virulence was found comparing
30 S. epidermidis isolates from infective endocarditis [159]. The
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most likely reason for the conflicting reports as for the impact of
ica on virulence is a differential relative effect of PIA as compared
to other staphylococcal virulence factors and dependence on
strains and models used. Interestingly, at least two of the three
strains that were used by Francois et al. and Kristian et al.
[120,158] are Agr-dysfunctional (S. epidermidis O47, S. aureus
SA113) [82,160], suggesting that the resulting complete absence
of PSM production [161] and concomitant increased compact bio-
film [125–127] abrogates a measurable impact of PIA on biofilm
expansion.

In-vivo investigations on the impact of ica on infection in
staphylococcal species other than S. epidermidis are generally
rather scarce. PIA is produced by S. aureus in vivo and significantly
impacts S. aureus systemic infection in mice [162] despite variabil-
ity and strain-dependence of in-vitro production [70,163]. As for
device-related infection, the abovementioned studies that did not
find a role for S. aureus ica are the only studies that have been per-
formed [120,158]. Interestingly, loss of PIA in an S. aureus strain
that overproduces PIA due to a mutation in the icaADBC promoter
[164] produces a fitness gain by a compensatory mutation that was
also detected in clinical isolates; however, this was only deter-
mined in vitro [165]. Later, the same mutation that leads to PIA
overproduction and an associated immunoprotective ‘‘mucoid”
phenotype was detected in S. aureus isolates from cystic fibrosis
patients, in which also similar compensatory mutations with a
non-mucoid phenotype occurred over time [166]. Altogether, these
findings suggest that PIA production, while likely important for
device-associated infection and associated with a high fitness cost
in S. epidermidis, is subject to dynamic alterations in production,
especially in vivo and in S. aureus.

During co-infection with other organisms, PIA may play a role
to increase overall virulence. This was shown for coinfection with
Candida albicans, a pathogenic fungus that often occurs together
with staphylococci in catheter-related infection, wound infection,
cystic fibrosis, periodontitis and denture stomatitis [167]. In mixed
in-vitro biofilms of S. epidermidis strain RP62A and C. albicans,
slime, which is mainly composed of PIA in that strain [52], pro-
tected C. albicans from fluconazole penetration [168]. EPS produced
by S. epidermidis also increased the overall virulence of a mixed S.
epidermidis and C. albicans challenge in C. elegans, resulting in
reduced survival of the infected worms [169]. In S. aureus, MSSA
and MRSA grew synergistically with C. albicans within biofilms
[170], and C. albicans increased S. aureus resistance to vancomycin
[171], suggesting mutual benefit.
9. PIA and the host immune system

There are multiple studies that have investigated the role of PIA
in the interaction with the immune system (Fig. 3). In cell culture
assays, the ica-negative mutant M10 was more susceptible to
antimicrobial peptides (human beta-defensin 3, LL-37 and derm-
cidin) and to non-opsonic phagocytosis and killing by human poly-
morphonuclear leucocytes (PMNs) than the parental strain S.
epidermidis 1457 [104]. PIA-mediated resistance to opsonic PMN
killing was shown in another study by Kristian et al., which also
demonstrated diminished immunoglobulin and complement
(C3b) deposition on the surface of ica-positive S. epidermidis bio-
films in a device-related infection model in addition to increased
local infection, bacterial burden, and larger edema [154]. Further-
more, PIA-producing S. epidermidis biofilm was shown to lead to
less pronounced granulocyte activation and cytokine release than
the reduced biofilm produced by its isogenic ica mutant [172].
Finally, PIA was shown to decrease susceptibility to phagocytosis
by macrophages [114] and restoration of PIA production in the
M10 mutant resulted in reduced NF-kB activation and diminished
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IL-1b production in macrophages [114]. In S. aureus, depletion of
PIA resulted in increased IL-12 production in murine dendritic cells
[173], decreased blood CFU in intravenously challenged mice and
increased complement-mediated phagocytic killing [162].
Together, these results indicate that most of the effects of PIA pro-
duction on immune evasion are mediated by its impact on biofilm
formation, which shelters the cells from recognition by phagocytes
and from killing by antimicrobial peptides. Vuong et al. [104]
investigated single cells after biofilm disruption and found similar
immune evasion effects, suggesting that cellular ‘‘coating” with PIA
provides immune evasion properties also in the absence of a bio-
film, which thus may play a role also in non-biofilm-related, acute
infection.

On the other hand, several ex-vivo and in-vivo studies reported
increased inflammatory reactions to PIA-positive versus isogenic
PIA-negative bacteria. Fredheim et al. showed increased comple-
ment activation ex vivo [172], and Ferreirinha et al. increased neu-
trophil recruitment in vivo by PIA-positive strains. Al-Ishaq et al.
reported association of C5a concentration with PIA mode of biofilm
formation in clinical samples [174]. These effects are likely due to
higher bacterial survival and more pronounced infection that PIA
producers cause via their above-mentioned immune evasion
effects. Additionally, when assessing altered pro-inflammatory
effects of PIA-negative mutants, one should keep in mind that such
effects may be due to differential release of the strongly pro-
inflammatory PSMs, or lipopeptides, whose release is PSM-
dependent [175], in a biofilm setting [125,126], rather than direct
effects of PIA itself.

Finally, based on investigation using purified PIA, it has been
suggested that the PIA molecule is itself pro-inflammatory
[172,174,176]. For example, studies using incubation of purified
PIA with human astrocytes implicated that PIA can induce IL-6,
IL-8, and MCP-1 expression via TLR-2 [176]. However, the purifica-
tion of PIA is difficult, making it hard to rule out effects by contam-
inating strongly pro-inflammatory molecules, which is why further
verification of the pro-inflammatory capacities of the PIA molecule
is certainly warranted.
10. PIA and antimicrobial resistance

Biofilm formation is widely known to decrease susceptibility to
antibiotics and other antimicrobial agents [177]. The underlying
mechanisms comprise a reduced metabolic state, persister forma-
tion, and decreased penetration through the biofilm extracellular
matrix, among others [178]. As for staphylococci, oxacillin, cefo-
taxime and vancomycin reportedly penetrate poorly through S.
aureus and S. epidermidis biofilms [179], while some other antibi-
otics, such as amikacin and ciprofloxacin, were unaffected by
staphylococcal biofilm formation [179]. While it has also been
reported that rifampin and vancomycin have at least some capacity
to penetrate through the biofilmmatrix [180–182], their antibacte-
rial efficacy was shown to depend on biofilm age or infection dura-
tion [183], or concentration and conditions [184,185], respectively.

As PIA is part of the extracellular matrix, it is reasonable to
assume that it mostly affects antibiotics whose penetration
through the biofilm matrix is impaired. However, due to its essen-
tiality for biofilm formation in many isolates, PIA may also theoret-
ically impact the activity of antibiotics that easily penetrate
through the matrix. In correlative studies, ica-positive S. epider-
midis and S. aureus strains showed increased resistance as com-
pared to ica-negative strains to a variety of antibiotics, such as
oxacillin, gentamicin, ciprofloxacin, levofloxacin, co-trimoxazole,
erythromycin, vancomycin, and the cell-wall degrading enzyme
lysostaphin [186–189]. It is also noteworthy that subinhibitory
concentrations of some antibiotics can increase transcription of
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the ica locus; yet the underlying mechanisms are not understood.
This was found for tetracycline and quinupristin-dalfopristin, and
to some extent erythromycin, while most antibiotics tested did
not show such an effect [65]. Finally, PIA may enhance horizontal
gene transfer via its impact on biofilm formation, inasmuch as
plasmid transfer by conjugation in S. aureus was observed to be
10,000 times higher in biofilm than in planktonic states, which
can be explained by increased cell-to-cell contact in biofilms [190].
11. PIA as an immunotherapeutic target

With surface location representing a key prerequisite of a vac-
cine target, PIA, as an important surface-located biofilm compo-
nent, was early considered as a potential vaccine candidate.
However, the immunogenicity of polysaccharides is generally low
[191]; and presence of capsule or EPS generally represents an
immune evasion mechanism by which the bacteria minimize
opsonization [192]. Nevertheless, anti-PIA antisera may overcome
such limitation if they are highly reactive. In the 1990s, immuniza-
tion of rabbits with PIA [capsular polysaccharide/adhesin (PS/A)]
was shown to reduce disease severity in rabbit models of
catheter-related S. epidermidis bacteremia and endocarditis
[193,194]. ELISA and immunoelectron microscopy data also clearly
indicated adsorption of anti-PIA antibodies by various PIA-positive
staphylococcal strains [55]. A PIA-based vaccine was then devel-
oped and showed protective effects in mice against kidney infec-
tion and death caused by S. aureus strains Reynolds and MN8
[56], which interestingly produced undetectable levels of PIA
in vitro [56]. Furthermore, when PIA was conjugated with diphthe-
ria toxoid (DT), the vaccinated mice or rabbits produced significant
anti-PIA antibody titers [195]. The obtained anti-PIA antibodies
opsonized and induced killing of various staphylococcal strains
and their transfusion cleared S. aureus from mouse blood [195].
Importantly, the conjugated deacetylated PIA (85% deacetyla-
tion)/DT was markedly more effective as a vaccine than native
PIA (15% deacetylation)/DT [195]. The stronger potential of
deacetylated PIA (>75% deacetylation, dPIA) compared to native
PIA in inducing protective antibodies was again shown in a later
study, in which dPIA was conjugated with tetanus toxoid (TT) for
immunization [196], eliciting anti-PIA antibodies in mice and rab-
bits, mediating opsonic killing of various S. aureus strains and
E. coli, and protecting the animals from skin abscess caused by S.
aureus and peritonitis caused by E. coli [196]. The stronger poten-
tial of dPIA compared to native PIA in protecting challenged ani-
mals is likely due to the increase of surface attachment of PIA
following deacetylation [63,197] and may explain why natural
antibody against native PIA is unable to trigger protective effects
despite being common in human and animals [198–200]. In
another study, a PIA vaccine in form of a bacterin preparation
resulted in high production of anti-PIA antibodies and significant
protection against S. aureus infection and mastitis in sheep [201].
Furthermore, PIA was expressed in E. coli in outer membrane vesi-
cles (OMVs) together with staphylococcal IcaB and the produced
PIA-decorated OMVs were highly immunogenic and protected
mice from infection not only by S. aureus but also the PIA-
positive Francisella tularensis subsp. holarctica [202].

PIA has also been combined with other molecules in vaccines.
For example, covalent conjugation of dPIA to clumping factor A
(ClfA), but not a mixture of the two unconjugated molecules, was
highly immunogenic in mice, rabbits, goats and rhesus monkeys
[203]. Transfusion of goat antisera to dPIA-ClfA vaccine to mice sig-
nificantly reduced blood CFU of different S. aureus strains [203].
When glycerol teichoic acid (Gly-TA) and PIA were used to
immunize mice, both anti-Gly-TA and anti-PIA antibodies were
obtained and the anti-Gly-TA/-PIA sera were able to inhibit biofilm
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formation of S. epidermidis and S. aureus in vitro significantly better
than anti-Gly-TA or anti-PIA sera alone [204]. Combination of PIA
and recombinant SesC protein as a conjugated vaccine induced
the production of opsonic antibodies, suppressed biofilm produc-
tion and protected mice from intravenous challenge with S. epider-
midis [205].

Despite multiple promising results in animal models, the clini-
cal potential of a PIA vaccine remains somewhat questionable
because of the limited prevalence of ica in several clinically impor-
tant staphylococci, such as S. epidermidis, and the varying expres-
sion of PIA. However, due to the fact that there is no effective S.
aureus vaccine despite numerous attempts, it may be worth to fur-
ther invest in PIA-based vaccine development [206], particularly as
PIA immunization may be valuable for infections also by Strepto-
coccus pneumoniae [207], Rhodococcus equi [208], and multiple
other species [209]. Finally, immunization against PIA only affects
pathogens but leaves microbial diversity virtually unaffected [210].

12. Summary and outlook

Despite increasing reports in the last 20 years on PIA-
independent biofilm formation, PIA is still recognized as a major
biofilm component particularly in S. epidermidis, many other CoNS,
and in MSSA. It contributes to immune evasion via its biofilm-
forming ability and possibly even independently of it, and affects
several directly and indirectly biofilm-related infection types.

Important open questions comprise PIA’s role in colonization
and how this is related to the association of ica gene presence with
specific clades. As for PIA’s role in infection, a thorough investiga-
tion of its contribution especially to the many different types of S.
aureus infection, relative to the contribution of other virulence fac-
tors, is warranted. Furthermore, it should be analyzed what the
precise function of IcaC is and whether and how the PIA molecule
has direct pro-inflammatory effects. Finally, given the problems
with obtaining a working S. aureus vaccine, PIA should not be given
up on as a vaccine component or target.
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