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Abstract: Machine learning (ML) approaches have enabled
rapid and efficient molecular property predictions as well as
the design of new novel materials. In addition to great
success for molecular problems, ML techniques are applied to
various chemical reaction problems that require huge costs
to solve with the existing experimental and simulation
methods. In this review, starting with basic representations of
chemical reactions, we summarized recent achievements of
ML studies on two different problems; predicting reaction

properties and synthetic routes. The various ML models are
used to predict physical properties related to chemical
reaction properties (e.g. thermodynamic changes, activation
barriers, and reaction rates). Furthermore, the predictions of
reactivity, self-optimization of reaction, and designing retro-
synthetic reaction paths are also tackled by ML approaches.
Herein we illustrate various ML strategies utilized in the
various context of chemical reaction studies.

1. Introduction

Chemistry is a branch of science that covers the properties of
substances and their changes. For the last couple of centuries,
experimental and theoretical studies improve our understand-
ing and the predictability of molecular properties and chemical
reactions. Recently, a new type of approach, so-called machine
learning (ML), has emerged in many fields of science and
engineering.[1,2] ML methods are powerful but very general tools
to find hidden relationships that are hardly captured by human
insight or existing analysis methods.[3] The ML provides useful
tools to extend our predictability on many problems at the
molecular level.

By utilizing many molecular databases,[4–8] numerous inter-
esting ML applications for predicting molecular properties that
are originally measured by time-consuming and expensive
experiments or simulations (e.g., toxicity, solubility, and elec-
tronic structures) are reported.[9–15] Data-driven approaches to
quantitatively elucidate structure-property relationships have
been studied since the 1980s.[16–18] The recent ML studies greatly
improve the quality and coverage of predictions. Furthermore,
ML models are applied to a generative problem which is the
design of noble chemical structures for a target property. By
the accumulation of large chemical databases with appropriate

descriptors, ML applications for various chemical problems are
stimulated.

In contrast to the great advances in ML methods to handle
chemical compounds, ML studies for chemical reactions,
another main subject of chemistry, have been relatively less
active due to the lack of data. Recently, with the aid of data-
mining and high-throughput simulations, chemists can build
reaction data libraries beyond lab-scale or manually constructed
reaction databases.[19,20] Those stimulate ML applications in
chemical reactions. In addition to the size of databases, stand-
ardization of chemical reactions are another problem. To
describe chemical reactions, it is required to represent not only
structural changes of chemical compounds and various chem-
ical agents and conditions (e.g. temperature, solvent, and
catalyst). Despite the complexity of chemical reactions, various
chemical reaction problems are tackled in the aspect of ML.

In this review, we addressed recent ML applications
according to the chemical reaction problems. Those ML studies
in terms of various chemical reaction problems. Starting with
the illustration of descriptor of chemical reactions and database
(Section 2), ML applications to predict physical properties of
chemical reactions (Section 3) and synthetic routes (Section 4)
were discussed. In Section 3, depending on the target property,
physical nature and type of data are largely different. Therefore,
we categorized ML studies according to the target properties;
thermodynamic quantities accompanying chemical reactions,
transition states, and reaction rate & potential energy surface. In
Section 4, we addressed three categories of ML studies;
predicting reactivity, self-optimization of chemical reactions,
and retrosynthesis.

2. Data and Descriptors for Chemical Reactions

2.1. Reaction Descriptors

ML models require the input data that is properly transformed
into a trainable format. For some digitized data such as images
and sounds, no additional transformations are required. But
other than digitized data such as natural language demands an
appropriate transformation named encoding. For the descrip-
tions of chemical data such as chemical structures and reaction
conditions, some available encoding methods have been
proposed.

[a] S. Park,+ Prof. H. Kim
Department of Chemistry
Incheon Natoinal University and Research Institute of Basic Sciences
Incheon, 22012 (Republic of Korea)
E-mail: kim.hyungjun@inu.ac.kr

[b] Dr. H. Han+

Digital Bio R&D Center
Mediazen
Seoul, 07789 (Republic of Korea)

[c] Dr. H. Han+

Department of Polymer Science and Engineering
Dankook University
Yongin, Gyeonggi 16890 (Republic of Korea)

[d] Dr. S. Choi
Division of National Supercomputing
Korea Institute of Science and Technology Information
Daejeon, 34141 (Republic of Korea)
E-mail: sunghwanchoi@kisti.re.kr

[+] These authors contributed equally
© 2022 The Authors. Chemistry – An Asian Journal published by Wiley-VCH
GmbH. This is an open access article under the terms of the Creative
Commons Attribution License, which permits use, distribution and re-
production in any medium, provided the original work is properly cited.

Review

Chem Asian J. 2022, 17, e202200203 (2 of 16) © 2022 The Authors. Chemistry – An Asian Journal published by Wiley-VCH GmbH

Wiley VCH Freitag, 08.07.2022

2214 / 248849 [S. 8/22] 1



Descriptors for chemical compounds in the early stage of
ML research are designed to reflect the information on
substructures such as the number of atoms, bond counts,
molecular weight, and fragment counts.[3] For chemical struc-
tures, substructure-based descriptors are widely adopted.
Fingerprint and Bag-of-bond methods, the two examples of the
substructure-based descriptors, explicitly count the number of
predetermined substructures based on atomic
connectivities.[21,22] Those descriptors explicitly capture substruc-
ture patterns in molecules so that molecular properties which

are strongly affected by substructures can be effectively learned
from those descriptors.[23] Furthermore, chemical reactions can
be represented using those substructure-based descriptors
since chemical reactions involve the change of substructures.
The reaction features using substructure-based descriptors are
illustrated in the top panel of Figure 1. Since each molecule
corresponds to one feature vector, two different ways to
represent reactions are available. The first way is to concatenate
reactants’ and products’ vectors. It can incorporate the overall
features of reactant and product but the dimension of reaction
features varies depending on the number of reactant and
product molecules. The discordance of feature vector lengths
limits its generality. The second way is to calculate the
difference of molecular descriptors. It can represent changes of
substructures within a fixed length but it does not include
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Figure 1. The example of descriptors for chemical reactions. The substruc-
ture-based descriptors represent changes of substructures in the reactant
and product. (top) The reaction-SMILES denotes three parts of reactions:
reactants, agents, and products as a single code. (middle) The graphical
representation contains node and edge features for atoms and bonds
information, respectively. R1–4 represent differences or concatenations of
node features from reactant and product structures. (bottom)
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information on structures that do not directly change during
the reaction.

Although substructure-based descriptors reflect chemists’
insights well, their applicability is limited due to the lack of
whole molecular structure information. It is, in principle,
possible to illustrate an overall molecule structure with the
substructure-based descriptors by continuously extending the
radius to define substructures/fingerprints. However, typical
descriptors consider only a finite number of neighbors to
consider substructures because representations of all possible
substructures induce enormous lengths for chemical descrip-
tors, which is impractical. The absence of overall chemical
structure information influences to represent chemicals as well
as chemical reactions. To overcome this limit, the representa-
tion that can include whole structural information is highly
demanded.

Before ML was introduced in the chemistry field in earnest,
a representation called simplified molecular-input line-entry
system (SMILES) was used to describe chemical compounds as a
series of characters.[24–26] The SMILES translates overall connec-
tivities among atoms in a molecule using the predetermined
rules. This method lists the atomic symbol following the
backbone of a molecular graph. In the middle panel of Figure 1,
red arrows represent the backbone of molecular structures. For
branches stemmed from a backbone (like the Br atom in the
example), their atomic symbols are written in parenthesis. For
the detailed rule of SMILES and its variations, you can refer to
the other documents. For its simplicity, many large chemical
databases employed SMILES. For instance, GDB-17 contains 166
billion organic small molecules stored in the format of SMILES
representations.[27,28] Also, many alternative approaches to
encode chemical structures using character sequences have
been proposed.[29,30] One additional advantage of such character
sequences is that the matured ML model natural language
processing can be applied seamlessly like a plain natural
sentence.[31–33]

The SMILES can be extended to reaction-SMILES which
represents a chemical reaction. A reaction-SMILES consists of
three parts (reactants, agents, and products) separated by a
“> ” symbol.[34] In the agent part, reaction conditions such as
catalysts and solvents are explicitly included while reactant and
product parts contain ordinary SMILES of reactant and product
structures, respectively.

SMILES and reaction-SMILES represent chemical structures
and reactions as a sequence of characters so that the arbitrary
order among atoms is inevitable. In order to preserve the
permutation-invariance of molecular structures, the graphical
representation and the corresponding ML models are intro-
duced. A molecular graph is represented by node and edge
features that are derived from atoms and bonds, respectively.
Unlike other descriptors, graphical representations consist of
heterogeneous quantities (node and edge features) so that a
specific type of ML model named graph neural network (GNN)
is demanded to preserve graphical nature of data. To build
reaction features from a graph representation, difference or
concatenation of GNNs outputs, edge or node features, can be
used like the substructure-based features do. The bottom panel

of Figure 1 represents that the reaction node features (R1,2⋯4),
are evaluated from the node features from reactant and
product structures. These reaction features can effectively
represent changes in molecular structures, but the information
for only reactant and product (not reaction condition) are
included.

2.2. Reaction Database

As we mentioned above, the development of large database
allowed the rapid growth of ML applications in chemistry. The
database of the early stage for chemical reaction prediction was
mostly created based on data published in journals or
registered as patents. The United States Patent Trademark
Office (USPTO) database, the largest public dataset, was created
by extracting more than 3 M reactions from more than 9 M data
registered in US patents between 1976 and 2016 using text
mining techniques.[35,36] This dataset is used for learning various
chemical reactions, such as reverse synthesis[37], synthetic
analysis[38], reaction classification, and yield prediction.[39] The
USPTO has the advantage of having a large amount of data, but
there are some incomplete or duplicated reactions. Therefore,
by additional filtering, more well-structured and focused data-
bases are frequently used rather than using the entire set.

Coley’s group extracted 15 K organic reactions from the
original USPTO database.[40] This database usually named
USPTO-15K is designed to include the rolls of all chemical
agents in reactions (e.g. solvent and catalyst) and no
duplications. Many ML models to predict products of reactions
utilize USPTO-15K. (Discussed in Section 4.1) Independently of
USPTO-15K, Liu et al. constructed USPTO-50 K database consist-
ing of 50 K organic reactions with atom-mapping which is the
one-to-one map between atoms in reactants and products.[41]

The reactions in USPTO-50 K are selected from the ten
predetermined types of the original USPTO reactions. In
contrast to USPTO-50 K, there is another variant of USPTO,
USPTO-380K, with larger number of unclassified reactions.[42]

This large database can be used to train less accurate but
general ML model for transfer learning. Jin et al. released
another USPTO-based database with 480 K reactions, USPTO-
MIT, without duplicates and chemically incorrect reactions.[43]

Pistachio is the USPTO’s extended commercial dataset. While
the USPTO dataset includes reactions reported until September
2016, Pistachio covers reactions up to November 2017. More-
over, 13.3 M chemical reactions obtained from ChemDraw
sketch data and text-mined European Patent Office (EPO)
patents.[44,45]

Besides from the USPTO-based database, there are reaction
datasets from other sources. Reaxys which is only commercially
available has 57 M chemical reactions from journals and
patents.[46–48] SPRESI is a manually generated database contain-
ing 4.6 M reactions extracted from 700 K references with 170 K
patents during the period between 1974–2014.[49] CAS REAC-
TIONS is a database created by the American Chemical Society.
It is a dataset containing 144 M single and multi-step reactions
extracted from journals, patents, and papers published from
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1840 to the present. Searching in this database can be
performed by structures, functional groups, and reaction
centers.[50] Current Chemical Reactions (CCR) is a part of the
Web of Science provided by the University of Reading. CCR
includes 1 M synthesis methods reported in more than 100
organic chemistry journals. This provides detailed reaction
information such as reaction conditions, reaction diagrams, and
overall reaction pathways.[51]

Those databases on chemical reactions were created based
on journals or patents, but, recently, Kearnes et al. announced
the Open Reaction Database (ORD), for collecting more reaction
data. ORD is structured with the schema divided into nine
sections: Reaction identifiers, inputs, setup, conditions, notes,
observations, workups, outcomes (products and analytics), and
provenance. Each schema is flexibly designed to contain diverse
chemical reactions. At the initial stage of creation, 2 M reactions
extracted from existing databases such as the USPTO were
included, and ORD can be expanded by additional registration
of reactions from researchers.[20,52]

There has been some database for a specific type of
reaction. Xu et al. developed a database of asymmetric catalysts
for asymmetric hydrogenation of olefins reaction.[53] This dataset
was constructed using data collected based on 355 papers
during the period between 2000–2020, and the dataset includes
four main entity categories (compounds, reaction conditions,
reaction performances, and source of publication). This dataset
consists of 2,754 olefins and 1,686 catalysts for a total of 12,619
reactions and it enables the hierarchical learning to design the
predictive ML model using only olefins and dozens of
enantioselectivity data.

From the next section, we will address how reaction
descriptors and databases are employed to train ML models on
various chemical reaction problems.

3. Physical Properties of Chemical Reactions

To obtain deeper insights into chemical reactions, it is essential
to predict their observable properties. There are two categories
for chemical reaction properties: state- and path-functions. For
the case of a state-function, reaction properties are determined
by the initial and final states of a reaction. Enthalpy and entropy
changes belong to this category. Another type of property such
as reaction barriers is strongly dependent on the reaction
coordinates. Here, we introduced some ML approaches to learn
both types of reaction properties

3.1. Thermodynamic changes

The predictions of atomization energies have received a great
deal of attention from the early stage of ML applications in
chemistry. By the definition, the atomization energy is an
energy change accompanied by breaking all chemical bonds to
form isolated atoms. The atomization reactions hardly occur in
reality, therefore, atomization energy is more frequently used as
a reference energy. By computing the difference of atomization

energies for reactants and products, the energy changes during
a general chemical reaction can be indirectly evaluated.

For an atomization energy prediction, various GNN models
that can systematically learn the chemical environment by
considering neighboring nodes and edges have been proposed.
(e.g. deep tensor neural network[54], message passing neural
network (MPNN[55]), and Schnet[56]). Those GNNs compute
interactions (or messages) among atoms and update node
features without loss of permutation-invariance and size-
extensivity.

To achieve high accuracy and transferability, selections of
the model architecture as well as training dataset are important.
For molecular property prediction, the QM9 database is a
standard database. The QM9 database consists of density
functional calculations for ~134 k small organic molecules. The
optimized chemical structures and the corresponding molecular
properties are included. All molecules are generated from the
enumeration of molecular graphs with up to 9 heavy atoms (C,
N, O, and F), which means collecting all possible graphs
satisfying the octet rule.[26,57] Although density functional
calculations provide acceptable accuracy and graph enumera-
tion methods exhaustively span the chemical space, the
accuracy and diversity of the QM9 database are still insufficient
in the aspect of accuracy and diversity. To supplement the
original QM9 database, two different approaches— enhancing
accuracy of QM9 database using a higher-level quantum
chemical method and enumerating more molecular structures/
configurations— have been reported.

Improving the accuracy of the QM9 database with the
G4MP2 method was conducted independently by two different
groups; Kim et al. released all results of G4MP2 calculations for
QM9 molecules.[58] By comparing G4MP2 results and the B3LYP
results from the original QM9, they figured out that there are
two types of unwanted geometries in the original QM9;
duplicated structures and geometries with multiple molecules
(i. e. bimolecular or trimolecular systems). Narayanan et al. also
performed the same calculations and compared the result to
the experimental data. For the selected 459 molecules, the
G4MP2 shows better agreement with the experimental data
than density functional calculations do. This improvement of
data quality reduces the bias from the database and increases
the ML model performances.[59]

Enlarging the coverage of molecular databases can contrib-
ute to improving the transferability of the trained model.
Nakata et al released PubChemQC PM6 dataset which covers
94% of PubChem which is the largest freely accessible
molecular database. In addition to the electronically neutral
cases, they calculate cationic, anionic, and spin-flipped elec-
tronic states. They validate the accuracy of PM6 calculations by
comparing density functional calculations.[60] The aforemen-
tioned databases mainly focus on the equilibrium geometries of
molecules. The equilibrium geometry is the most frequent pose
of a molecule and it is highly relevant to ground-state proper-
ties. Nonetheless, nonequilibrium conformations are also im-
portant in various problems, especially in the properties related
to dynamics. Smith et al. computed the normal modes of 50 k
organic compounds using density functional calculations, which
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yielded 20 M off-equilibrium conformations.[61] By training the
ML model with nonequilibrium geometries, the accurate
molecular energies for both near and far from equilibrium
geometries are obtained.[57]

Figure 2 represents two ML approaches to predict reaction
properties. An ML model predicts molecular properties for
reactants and products, and then a reaction property is derived
from the predicted molecular properties using physical princi-
ples such as the energy conservation law (Figure 2(a)). This
approach can predict a reaction property without explicit
featurization of reactions. It is applicable only for a state-
function because feature vectors contain the information of
individual molecules rather than the reaction itself. However,
instead of learning molecular properties, the ML model can
directly predict a reaction property based on reaction features
without the help of chemical principles. This approach is
illustrated in Figure 2(b). In that case, we need to build
descriptors for a chemical reaction, and the ML model performs
prediction from the reaction features so that a large reaction

database is mandatory for training. While acquiring a reaction
database is a big huddle in many cases, the second approach is
still appealing because it is applicable to predict both state-
and path-functions.

A prediction of drug-target interaction (DTI), the metric to
quantify the interaction strength between a target protein and
a ligand molecule, is a primary example of the second
approach. Although DTI does not involve bond formation or
breaking, DTI values vary depending on the combination of
proteins and ligands. The estimation of DTI is frequently used
to examine the effectiveness of drug candidates.[62,63] Estimating
strengths of DTI demands expensive experiments or simulation
ways. Instead of those heavy methods, ML approaches can
make a rapid prediction of DTI which contributes to the
acceleration of drug discovery.[33,34,64,65] It is quite difficult to
obtain reasonably accurate reference energy of a protein due to
its huge size and complex structures. Instead of using atom-
ization energies, an ML model takes advantage of reaction
features to estimate DTI values. Figure 3 illustrates the process
to predict DTI values using ML models. The ML model calculates
an output score (DTI) from the reaction feature vector (red
vectors) which is derived from the protein sequence (green
vectors) and fingerprints of a drug molecule (yellow vectors).

3.2. Transition states

A transition state information is essential to determine a
chemical rate of reaction, but its identification in an exper-
imental way is a highly challenging task due to its short lifetime.
Quantum chemical methods can obtain the structure and
properties of the transition state.[66] Those methods are power-
ful tools to elucidate a reaction profile, however, they are not
attractive solutions when the overall kinetic rate is affected by
dozens of chemical reactions. Also, the identification of
transition states in a computational manner is not well

Figure 2. Schematic representations of two different ways to apply a
machine learning (ML) model for chemical reaction problems. (a) Reaction
properties are computed from the chemical properties predicted by ML. (b)
An ML model directly predicts reaction properties from a chemical reaction
itself.

Figure 3. An illustration of the reaction feature construction for drug-target
interaction (DTI). Protein and chemical features are obtained from protein
sequence and fingerprint respectively. The machine learning model is
employed to find the relationship between the reaction feature and the
corresponding DTI value.
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automated, unlike equilibrium geometries. Thus, a huge
amount of computational resources as well as human labor are
required to complete reaction profiles.

To estimate a large number of reaction barriers, group
additivity models are frequently employed.[67,68] These methods
utilize prior knowledge on reaction barriers for some specific
reaction types, so-called reaction templates. For the given
reactions, the group additivity models find an appropriate
reaction template and adjust the predetermined reaction
barrier considering the chemical environment. This approach is
widely employed to elucidate the reactions mechanisms of
combustion and explosion. RMG-Py developed by Green and
coworkers includes a large number of reaction templates from
simulations/experiments and provides various tools to estimate
the kinetics of chemical reactions.[69] Despite several matured
theories and accumulated data, the accuracies of group
additivity methods are insufficient in many cases.

The transition state database covering general chemical
reactions is not easily achievable due to the vastness of reaction
space. Therefore, ML applications to predict barrier heights that
share the same mechanism are reported. Singh et al. con-
structed and trained neural network models to predict the
performance of heterogeneous catalysts using hand-craft
features that are closely related to the mechanism of catalytic
reactions (e.g. a coordination number of the metal atom and
identity of the adsorbate).[70] For training, 50% randomly
sampled reactions from the entire database containing 249
reactions were used. The trained neural network model
predicted activation energies within 0.22 eV error on average
which overwhelms the accuracy of Brønsted–Evans–Polanyi
relations.

ML models for a specific reaction type can be successfully
trained with a small amount of data. This approach can be a
practical solution for transition state problems where numerous
databases are available on a specific type of reaction. However,
it is not transferable to the reactions having different mecha-
nisms.

In order to apply ML models to predict barrier height
prediction for general organic chemical reactions, the ML
models need to be trained with general chemical features. Choi
et al. proposed a general reaction feature based on changes of
molecular quantities (thermodynamic quantity, fingerprints, and
topological indices) during reactions. Various ML models for the
general reactions were trained and validated using reaction
data from the RMG database. Although the proposed reaction
feature does not include mechanistic information, they
achieved a mean absolute error (MAE) of 1.95 kcal/mol for the
test set which consists of various types of reactions. However,
the reactions belonging to the RMG database are biased toward
combustion reactions. Even though the trained ML model and
data feature do not include information on reaction types, the
recorded performance might not be preserved in other
chemical reaction databases.

Green and coworkers constructed a reaction database
covering the reaction space more fairly and released activation
barriers and molecular structures based on density functional
calculations.[71]

The reactant and product molecules were sampled from the
GDB-7 database and the corresponding transition states were
computed from the single-ended growing string method which
is one of the automated potential energy surface exploration
methods. This reaction database contains ~12 K chemical
reactions. Despite the limited size of the reaction database,
~12 K high quality and regularized chemical reaction data
provide the opportunity to study the barrier heights of organic
reactions.

In the following work, Green and coworkers proposed the
ML model consisting of directed MPNN[55] layers and feed-
forward layers to predict barrier heights of the database
released by themselves. The directed message passing layers
calculate node features of both reactant and product as usual
MPNN[55] layers and subtract reactant’s node feature from the
product’s one. (See the bottom panel of Figure 1) By summing
up all node differences, the reaction feature that includes the
overall changes due to the reaction can be constructed. The
conventional feedforward layers predict barrier heights from
the reaction feature. This approach achieved an MAE of
1.7 kcal/mol for a test set.[71]

Furthermore, the simulation reaction database is employed
to predict geometries of transition states. Since the absolute
atomic position is not chemically meaningful, the interatomic
distances which are translationally and rotationally invariant are
predicted. However, interatomic distances are overcomplete to
represent chemical structures. To avoid interatomic distances
that are not allowed by mathematical conditions, Green and
coworkers built the model that predicts the weight and initial
distance matrices rather than predicts the distance matrix
directly. The obtained weights and the initial distance matrix
are used for the nonlinear optimization of atomic positions. The
predicted initial distance matrix does not need to satisfy the
conditions fully. Nonetheless, a final distance matrix from the
nonlinear optimization is always forced to satisfy the condition
because it is constructed from the positions that minimize
deviation to the initial distance matrix. For each isomerization
reaction, 71% of transition state geometry results in successive
convergence of further optimization calculations, which means
the ML results are good enough to be initial guess structures of
quantum chemical calculations.[72–74]

3.3. Predicting reaction rate and potential energy surface

A reaction barrier elucidates the temperature dependence of
reaction rate, but it is insufficient to determine a reaction rate.
Strictly speaking, a full understanding of reaction rate requires
analysis of all possible reactive trajectories. However, in practice,
transition state theory which only considers fixed geometries
have been widely adopted because of its simplicity and high
accuracy.[75,76] In transition state theory, a reaction rate constant,
k, is determined by differences of free energy between a
reactant and transition state, and a quantum tunneling factor,
k.[77,78] The problem is that k is not simply obtained from the
fixed geometry, unlike free energy changes.[79–82]
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To obtain accurate k from an existing database, the
Gaussian process model was trained and validated with actual
experimental data.[83] The trained Gaussian process model
predicts the scaling factor of the existing k from a traditional
transition state theory. In order to extend the coverage of ML
predictions, the limited number of experimental tunneling
factor data is insufficient. Therefore, instead of real chemical
reaction data, Komp and Valleau performed quantum simula-
tions of randomly generated 1D potentials.[84] The generated 1D
potentials are designed to represent the energy profiles of
molecules along with a hypothetical reaction coordinate. From
1D quantum simulations, they constructed a database for the
products of k and the partition function of reactants which can
be computed by integrating transmission coefficient over the
entire energy window. A neural network model was trained
with the constructed simulation database. The trained model
was validated by simulation data as well as realistic chemical
reaction data by using experimental reaction barrier informa-
tion.

Another way to study the kinetics of chemical reactions is to
construct a potential energy surface (PES) and generate
trajectories on that surface. To construct a PES, an accurate
energy function that yields energy of a given geometry needs
to be fitted. From the late 1990s, there were attempts to fit
flexible neural network functions to obtain a PES before ML
techniques were sophisticated.[85] However, those methods tune
parameters of the existing pairwise interaction formula, which
restricts the flexibility of ML potentials. On the other hand,
because a PES consists of energies of various configurations,
the rapid inference of ML models described in Section 3.1 can
be readily utilized to construct a PES.[86] However, to understand
chemical dynamics properly, accurately preserving the symme-
try of PES is essential.[87] For this purpose, the permutationally
invariant polynomials (PIP) approach is widely used.[88] Instead
of directly using interatomic distances, the PIP method
constructs symmetrized polynomial vectors and samples config-
urations on that vector space. Guo and coworkers demon-
strated that the neural network is successfully trained with
symmetrized polynomial vectors for three- and four-atom
systems.[89,90] This PIP with a neural network method (so-called
PIP-NN method) can be also applied to electronically excited
systems.[91]

A typical quantum chemical simulation based on Born-
Oppenheimer(BO) approximation provides adiabatic energy.
However, BO approximation is improper for the geometry in
the vicinity of a conical intersection that has degenerated
electronic states. To describe mixing two electronic states, a
diabatic potential energy matrix consisting of diabatic and
coupling potentials is introduced. The elements of the diabatic
potential energy matrix are constraint by the group symmetry
and permutation-invariance. PIP-NN method is accurately
trained with satisfying invariance conditions and successfully
demonstrated non-adiabatic photodissociations of H2O and
NH3.

Since the model that learned the PES of a specific molecule
cannot be applied to other molecules, it is necessary to repeat
the training procedure for each molecule. The PES-Learn

package can automate PES fitting within the ML scheme.[92] It
performs geometry sampling and trains neural networks or
Gaussian process regressors with the quantum chemical results
of sampled configurations. Additionally, it automatically tunes
hyperparameters to improve the accuracy of ML models.

4. Synthetic Routes

In order to synthesize organic compounds, an appropriate
synthetic route needs to be carefully selected. The aforemen-
tioned ML models to predict the physical properties of chemical
reactions may provide helpful information for chemists to
decide the feasibility of a reaction. Nonetheless of such
information, only well-trained chemists can design reaction
pathways. To provide a synthetic strategy directly from ML
predictions, many ML models are trained with organic chemical
reaction databases. Thanks to well-structured large-scale organ-
ic chemical reaction database, large ML models become
trainable.[19,20] The first type of ML studies to figure out synthetic
routes is to quantify the reactivity and the second category is
an optimization of reaction. The last one is retrosynthesis which
aims to directly find the starting materials and series of
backward reactions from a target material.

The three topics of this section (reactivity prediction,
reaction optimization, and retrosynthesis) are closely related
and some studies include multiple topics. Many recent retro-
synthetic studies include both reaction optimization and
reactivity predictions. On the other hand, some reaction
optimization studies include optimization of not only reaction
conditions but also reactants’ structures. Nonetheless, for ease
of explanation, we categorized studies based on their final
goals.

4.1. Reactivity Prediction

Generally speaking, reactivity indicates the potential for a
certain reaction to happen but its strict definition is ambiguous.
Therefore, depending on contexts, a reactivity prediction may
refer to predicting reaction yield or activation barriers from a
given reactant and product molecules. In some other cases,
reactivity prediction refers to predicting the molecular structure
of a major product.

Many ML studies to predict the performance of catalysts are
categorized into the first category. Owing to the diversity of
catalysts and ML studies on them, we highlighted a primary
example for each catalytic type. For a detailed overview of ML
applications in catalyst design, there are some reviews focusing
on ML studies for a specific type of catalyst.[93–95]

For the CO2 reduction with the presence of a heterogeneous
catalyst, adsorption of CO2 on the metal surface is the first and
the main bottleneck due to the huge number of possible
adsorption sites. In order to explore reactive sites, the ML model
is employed. Ulissi et al. applied a neural network model to
predict adsorption energies of CO2 on various possible config-
urations of a Ni/Ga catalyst.[96] The approximate adsorption
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energies from quantum mechanical (QM) simulations of un-
relaxed structures are used to train the model. Such a fast
prediction enables active site screening for a Ni� Ga catalyst. By
this screening, they reduced the number of structural relaxa-
tions using QM simulations and efficiently explored many
possible configurations to figure out the active site of Ni� Ga
catalysts. In this study, catalytic activity is simplified as the
adsorption energy on unrelaxed heterogeneous catalysts which
is from QM simulations. As we mentioned in the previous
section, simulation is one way to accumulate data with
manageable resource and time.

On the other hand, QM simulations can be used to
construct descriptors to predict an activity of homogeneous
catalyst. Hong’s group applied an adaptive boosting model to
predict the reactivity of hydrogen atom transfer (HAT)
reactions.[97] By performing QM calculations for various combi-
nations of catalysts and reactants molecules, a virtual database
was constructed. The adaptive boosting model is trained to
predict the energy changes of HAT reactions from 56 physical
organic descriptors. The physical organic descriptors include
local and global features that are derived from QM calculations.
Also, they showed that their QM-based physical organic
descriptor can be applied to predict the regioselectivity of
radical C� H functionalizations in other literature.[98]

In the case of enantio-selective catalyst reactions, the
conventional descriptors described in Section 2.1 cannot be
applied because enantiomers share the same structural and
electrical properties. To construct an ML model to predict
enantio-selective catalysts, it is essential to build a new
descriptor to distinguish mirror-images in 3D space. There are
two different enantio-selective descriptors.[99,100] Average steric
occupancy descriptors represent molecules within colored grid
points. Each conformer is aligned on an equidistant grid and a
value of each grid point increases if the grid point is within van
der Waals (vdW) radii. On the other hand, a spherical projection
descriptor of molecular stereostructure introduces angular
coordinate on a custom sphere and fills the distance between
the vdW surface and the sphere on each grid point. In both
studies, the authors predicted free energy differences between
the transition structures leading to each enantiomer by using
their enantio-selective descriptors. Both descriptors successfully
predict the enantio-selectivity of combinatorically generated
catalysts with a typical feed-forward neural network. The
arbitrary factors such as grid setting and the orientation of
molecules affect the sensitivity of descriptors, which can be a
potential source of bias. In some recent ML studies, ML models
that can directly represent 3D point clouds without any
arbitrary factors were proposed.[101]

In the ML aspect, catalyst performance predictions are more
close to conventional molecular property predictions because
reactants and products are fixed and the structure of the
catalyst is a single variable of the prediction. To predict whether
a certain set of compounds react or not, it is essential to collect
the negative cases which mean reactions hardly occur. How-
ever, most of reaction databases consist of positive data. To
overcome this limitation, Carrera et al. generated negative
experimental data from the existing positive dataset. They tried

to predict whether a given compound reacts with BuNH2 or
NaCNBH3 by training a random forest model with an exper-
imental database. For the negative data, they use two different
approaches. The first approach is to generate actual negative
data by removing reactive functional groups from the mole-
cules of positive data. This approach is used to generate
negative data for test and validation sets. For negative data in
the training set, they generated descriptors based on a set of
unchanged bonds in positive training data. Using this database,
they successfully predict the reactivity of compounds.[102]

The result of the aforementioned models is a single scalar
value which indicates the size of reactivity but, for the second
type of problem, a chemical structure that is non-trivial in
algebraic notations needs to be predicted. To avoid difficulty to
predict chemical structures, Nakai and coworkers replaced the
original problem with predicting reactive donor and acceptor
atoms.[103] Using a QM descriptor, they designed ML to predict
most reactive atoms in donor and acceptor and heuristically
formed product based on prediction. The QM descriptor is
composed of two types of features; Fukui function and orbital
information (e.g. orbital energies, MO coefficients from
HOMO� 2 to LUMO+2, and populations for each atomic
orbital). For each atom in donor and acceptor, QM descriptors
are evaluated from QM simulations. Using the QM descriptors,
they independently trained gradient boosting classifiers for
donor and acceptor with a manually built reaction database
from an organic chemistry textbook. After the selection of
reactive atoms, a final reactive atomic pair is chosen by the
ranking model which is trained to select the most reactive
atomic pairs from all possible pairs of reactive atoms. The
trained model with QM descriptor shows overwhelming
performance compared to that with a fingerprint-based
descriptor. In this study, although the chemical structure of a
product is not directly derived from ML model, a reaction can
be completed by predicting the most reactive atoms for the
donor-acceptor reaction. Although QM descriptor provides
accurate results, the computational cost for QM descriptors is a
huge obstacle to their application.

To overcome this limitation of QM descriptor, on-the-fly
generation of QM descriptor was proposed.[104] Using the
concatenated feature vector with the generated QM descriptor
and graph embedding results using Weisfeiler-Lehman Network
(WLN), a fusion model successfully predicts changes in con-
nectivity due to a chemical reaction. WLN evaluates the
difference in graph-convolutional results and provides atomic
features to reflect different connectivities of product and
reactant molecules. WLN can be solely utilized to determine
reactive atomic pairs.[105] However, they apply global attention
to WLN results and concatenate them with QM descriptors.
Their QM descriptor is composed of atomic properties (atomic
charges, Fukui indices, and atomic shielding constants) and
bond properties (bond lengths and bond orders) which are
derived from the results of QM simulations. To cut off the
computational cost of QM simulation, the author trained a
directed MPNN with a large number of pre-constructed QM
descriptors in advance. The trained directed MPNN model
predicts QM descriptors from a molecular structure and it is
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applied to construct the combined atomic feature (QM and
WLN) in an on-the-fly manner. The pair features are constructed
from atomic feature by summing two atomic features. From the
pair feature, a fusion model predicts a change of bond orders
for each atomic pair. The fusion model was tested to predict
chemical structures of products in substitution reactions which
are obtained from Pistachio.[44] Without significant increase of
prediction time, the fusion model using WLN encoding with on-
the-fly generated QM descriptors recorded higher accuracy
than the results using WLN encoding only.

4.2. Self-Optimization of Reaction

Another subject in predicting chemical reactions is the self-
optimization of chemical reaction.[106] This subject is sometimes
called by artificial intelligence- or machine-guided optimization
because self-optimization finds the optimal reaction condition
by validating ML-suggested reaction conditions. Conventionally,
for reaction optimization, chemists sample candidates of
reaction conditions in multidimensional space based on their
chemical intuition and results of previous experiments. In the
self-optimization, ML models replaces human intuition in
suggesting experimental conditions. These ML approaches are
frequently combined with high-throughput experiment plat-
forms and result in fully automated reaction optimization.[107,108]

Figure 4 illustrates the iterative process of self-optimization.
Green and red circles indicate the steps performed by
computers and high-throughput experiment platforms, respec-

tively. Without human intuition or labor, the optimal reaction
condition can be found by repeating the iterative process.

For exploring vast reaction condition space, many combina-
tions of variables to control mechanical or electrical devices on
synthetic platform need to be tested. The relationship of
variables to the optimization objective relies on the target
reaction and the hardware settings. Therefore, systematic
modeling of objective function is hardly available. To overcome
this limitation, Bedard et al. reported the application of stable
noisy optimization by branch and fit (SNOBFIT) program in a
reaction optimization problem.[109] For every step, SNOBFIT
algorithm updates subdomains and the corresponding surro-
gate functions. By optimizing surrogate functions, new sets of
reaction conditions are recommended. This method finds
optimum without any prior knowledge on reactions.[110]

Because SNOBFIT package runs on commercial computing
platform, MATLAB, many alternative packages are released.
Many newly released packages employ traditional ML algo-
rithms rather than so-called deep learning methods due to the
lack of data and high costs of experimental results. The most
widely adopted method is Bayesian optimization which opti-
mally suggests next sampling points by balancing exploitation
and exploration.[112–114] Bayesian optimization packages are
available on almost every matured programming communities.
Here, we introduce two Python Bayesian optimization packages
specialized to the chemical reaction optimization.

First one is TS-EMO package released by Schweidtmann
et al.[113] This package support initial sampling methods and
Bayesian optimization with Gaussian processing surrogate
models. TS-EMO package is specialized for optimizing multi-
objectives. The authors reported optimal reaction conditions to
maximize the space-time yield and to minimize E-factor are
found for two different organic reactions.

Another way of Bayesian optimization application was
reported by Shields et al.[114] They implemented experimental
design via Bayesian optimization (EDBO) and applied it to find
the optimal reaction condition as well as functional group of
reactants. In order to optimize molecular functional group with
reaction conditions, they proposed the new encoding of
reactions by concatenating molecular descriptor for each
chemical component (reactant, product and solvent) and
continuous variables (temperature, reaction time and concen-
tration). For molecular descriptor, they adopt both Mordred
descriptor and QM descriptors. Mordred descriptor is a combi-
nation of known structural properties such as topological
indices and adjacency matrix.[115] It well depicts molecules
having different functional groups within 2D or 3D linear
algebraic notations. Also, electronic and steric descriptors from
QM simulations were also included in the molecular descriptor.
Using this molecular descriptor, Gaussian process models with
Bayesian optimization maximize reaction yields. In this work,
Bayesian optimization is applied by encoding a chemical
structure to continuous space. However, in principle, Bayesian
optimization can operate with both continuous and discrete
variables and there is another package, Gryffin, to support
Bayesian optimization with both types of variables.[116] Hase
et al. showed that ligands and reaction conditions for Suzuki-Figure 4. An illustration of self-optimization of reaction conditions.

Review

Chem Asian J. 2022, 17, e202200203 (10 of 16) © 2022 The Authors. Chemistry – An Asian Journal published by Wiley-VCH GmbH

Wiley VCH Freitag, 08.07.2022

2214 / 248849 [S. 16/22] 1



Miyaura reactions are optimally found. Furthermore, it could
work with organic solar cells and perovskite materials.

On the other hand, optimization with discrete and continu-
ous variables can be solved through mixed-integer non-linear
programming (MINLP). Baumgartner et al. reported simultane-
ous optimization of discrete variables (catalyst types) and
continuous variables (temperature, residence time, and catalyst
loading) for Suzuki–Miyaura cross-coupling reactions.[117] The
modified MINLP provides the optimal catalyst and reaction
condition to maximize the turnover number of catalysts under
the maximum yield constraint. By iteratively excluding combi-
nations of discrete variables whose expectation yields are low,
the number of candidates is reduced in every step. After the
exclusion, continuous variables to minimize uncertainty are
selected for each set of candidate discrete variables. By further
experiments with the chosen reaction condition, the remained
sets of discrete variables are further screened.

In addition to the traditional statistical methods, reaction
optimization can be solved by reinforcement learning (RL). The
RL is one kind of ML methods to optimize the action policy to
maximize or minimize rewards from the environment. RL is
frequently adopted to develop artificial intelligence to play
games because it finds the optimal routes for an objective with
incomplete information.[118] Zhou et al. applied this RL techni-
que to construct the model to find optimal reaction
conditions.[119] The action and the reward in the context of RL
correspond to the selection of reaction conditions and the yield,
the objective of optimization. The policy function is modeled
using a recurrent neural network. However, as we explained,
such deep learning architecture is hardly trained with a small
size of data. To solve this problem, the authors pretrained the
recurrent neural network on simulated reactions.

Another example of using deep learning was reported by
Gao et al.[120] They trained the neural network model to provide
catalysts, solvents, reagents, and temperature from the given
reaction descriptors, the difference of Morgan fingerprints. By
training the neural network with the large Reaxys database, the
model can provide an appropriate reaction condition based on
a non-iterative inference. The trained model provides a reaction
condition by learning reaction conditions of similar reactions
rather than performing optimization. Nonetheless of this
fundamental difference, it was well applied to find a reaction
condition in solving a retrosynthetic problem.[121]

4.3. Retrosynthesis

A retrosynthesis also known as synthetic planning is the process
of planning synthetic routes for a target product from readily
available starting materials. This is one of the challenging
problems because the thermodynamic feasibility as well as
various reaction environments/conditions need to be consid-
ered for an efficient retrosynthetic route. For a long time, well-
trained chemists’ intuition is a unique tool to solve a
retrosynthetic problem. After emerging of computers, many
computer-aided retrosynthetic approaches have been
proposed.[123–127] During the last decade, ML-based retrosyn-
thetic approaches to improve traditional computer-aided retro-
synthetic approaches or develop completely different ap-
proaches have been introduced. In Figure 5, we summarized
the ML-based retrosynthesis approaches covered in this section.

The first category in Figure 5 is a template suggestion
based on ML. The template is a type of reactions developed for
a traditional retroynthetic approach, rule-based expert system

Figure 5. An illustration of categories of ML-based retrosynthetic predictions discussed in the retrosynthesis part (Section 4.3)

Review

Chem Asian J. 2022, 17, e202200203 (11 of 16) © 2022 The Authors. Chemistry – An Asian Journal published by Wiley-VCH GmbH

Wiley VCH Freitag, 08.07.2022

2214 / 248849 [S. 17/22] 1



that performs decision-making in consultation with accumu-
lated human knowledge. Template suggestion ML models solve
retrosynthetic problem with the same way to traditional
method in aspect of selecting a reaction template among a
predetermined template set based on the given molecular
structures. For the prioritization of feasible reaction templates,
the expert systems employ a set of heuristic chemical rules.
Although the heuristic rules provide plausible reactions in many
cases, the finite number of rules can cover only a part of
synthetic accessibilities which refer to the feasibility of synthetic
routes.

To overcome the shortcoming of the existing expert system,
some ML-based methods to accurately evaluate the feasibilities
of reaction templates for a given product have been introduced.
Segler and Waller introduced a neural network to select the
most probable template from molecular fingerprints.[128] The
optimal template among many possible templates was selected
by a multiclass classification model. They reported that this
classification model can solve forward reaction prediction as
well as retrosynthesis problems with overwhelming speed
compared to an existing expert system. Similarly, Wei et al
proposed a reaction template scoring method based on ML
models to solve the forward reaction prediction.[129] The main
difference between these two models in the aspect of input
features is the way to handle fingerprints of multiple reactant
molecules. The model released by Wei et al concatenates the
substrate and the secondary reactant. However, the feature for
the model released by Segler and Waller is obtained by
summing up all fingerprints of reactants.

The aforementioned ML models do not provide the
interpretability of their results. To achieve an accurate selection
of a reaction template with reasoning, a conditional graph logic
network was released.[130] This model decomposes the proba-
bility of selecting a specific template into two parts; the
probability for choosing a reaction center and the conditional
probability of reactants for the given reaction center. This
model yields the final probability of the template as well as the
probability of choosing a reaction center. The information of
reactivity of each substructure can rationale the chosen back-
ward reaction and provide the interpretability of ML inferences.

To enhance the accuracy of the template-based retrosyn-
thesis model, the ML model using a new type of template was
reported. The traditional templates include a reaction center as
well as some neighboring structures to represent the required
chemical environments. The modern GNN can build atom and
bond features including the effect from neighboring or overall
structures. Chen and Jung introduced the concept of local
templates which represent atom and bond changes without
neighboring substructures and LocalRetro model to solve a
retrosynthetic problem. This model predicts an atom (or bond)
template for each atom (or bond) in a molecule based on atom
(or bond) features from the global reactivity attention layer
followed by MPNN[55]. The model directly predicts reactants
from a graphical representation of the product molecule by
selecting the most probable local templates among predicted
templates on all atoms and bonds.

Existing templates reflect chemists’ insight which can be
human bias. Therefore, a generative model to discover new
templates from existing reaction data which are free from
human bias was proposed.[131] The generative model that is
trained with existing chemical reactions generates new chem-
ical reactions which were not reported before. Through the
trained generative model with the USPTO database, 31 novel
reaction centers and 13 neighborhoods of known reactions are
discovered.

Despite many efforts to expand and diversify the reaction
templates, template-based methods have a fundamental limi-
tation that they fail to elucidate the chemical changes outside
of preselected reaction templates. As an alternative, template-
free retrosynthesis methods are reported. Since a template-free
method does not rely on the guidance of predefined templates,
the results of a template-free method are exposed to problems
of generating chemically nonsensical structures. In order to
solve this problem, the concept of synthon completion has
been widely adopted. A synthon is a hypothetical (incomplete)
structure generated from breaking down a certain bond of
product molecule.[132,133] Many template-free ML approaches for
a retrosynthetic problem first generate synthons from starting
material, and then complete a chemical reaction by modifying
synthons based on chemical rules.

Somnath et al. proposed two different models responsible
for generating synthons and completing synthons.[134] The first
model calculates bond edit scores by encoding an input
chemical graph. It generates incomplete structures called
synthons. The second model predicts a leaving group from a
set of 170 preselected groups. The authors showed that the
two models can be jointly or separately trained and a beam
search using two trained models successfully finds the best
cumulative score of both models.

A synthon completion is also performed by a sequence of
graph edits suggested by a generative model rather than a
discriminative prediction of leaving group.[135] For that, Shi et al
proposed a generative model whose results depend on both
latent vectors and synthons’ features. The generative model
chooses one of the actions amongst termination, nodes
selection, and edge labeling. The node selections determine
which atom needs an additional bond and what element will
be added. The following edge labeling determines the type of
bonding. Such action predictions are repeated until termination
is selected. This sequence of actions makes synthon be
complete. This sequential editing of a chemical graph is not
limited to the retrosynthetic problem. Sacha et al. examined the
performance of sequential graph editing on both retrosynthesis
and forward synthesis without the help of the ML model to
detect reaction centers.[136]

The synthon completion methods are useful to handle the
incomplete chemical graphs while their applicability is not
limited to graph data. Wang et al. proposed the RetroPrime
model which consists of two transformers models; the first one
splits out the product into a set of synthons (P2S) and the
second one generates reactants from the given synthons (S2R).
The transformer model is one of the encoder-decoder models
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which are a general approach to solve a sequence-to-sequence
(S2S) problem.

An encoder-decoder model is powerful to tackle an S2S
problem. The changes of SMILES due to reactions can be
considered as one of the S2S problems. The first attempt to
predict synthetic routes by applying S2S model was done by
Nam and Kim.[137] They constructed the attention-based en-
coder-decoder model to predict a forward reaction. In this
work, the model directly translates the reactants’ SMILES to the
products’ SMILES without the help of the synthon completion.
Although they do not utilize additional ML models to complete
SMILES, their model achieved reasonable Tanimoto scores for
forward reaction problems. Liu et al. further developed this idea
to handle retrosynthetic problems.[41] For the retrosynthetic
problem of USPTO database, their template-free model
achieved comparable performance with a templated-based
baseline model.

As we mentioned earlier, SMILES cannot satisfy the
permutation-invariance. To solve this, Coley et al. proposed the
permutation invariant Graph-to-Sequence (G2S) model. The G2S
model uses a directed graph attention network (D-GAT) as an
encoder, a variant from MPNN. Encoding the molecule as a
permutation invariant graph, this method simplifies data
preprocessing and reduces training time. By applying a
permutation invariant encoder, the template-free method can
be implemented beyond the limits of the character
sequence.[138] To synthesize a complex chemical, multi-step
chemical reactions are frequently required. In principle, the
aforementioned methods can be extended to multi-step
reactions, but it is difficult to train a large number of multi-step
reactions within a reasonable computational cost. Monte Carlo
tree search (MCTS), a probabilistic way to find the optimal
selection on a tree, can explore various multi-step retrosynthetic
routes efficiently. In retrosynthetic problems, each node and
branching in a tree represent a chemical structure and back-
ward reaction. The possible chemical reactant structures can be

explored by expanding a tree with probabilistic sampling. To
obtain the proper solution from MCTS algorithm, it is important
to design the expansion and rollout policies. The expansion
policy determines how to generate candidates for child nodes
and the rollout policy evolves the tree to the terminal node. For
the case that only a limited number of actions is allowed at
once, the expansion and rollout policies are relatively well
defined[139] However, for each intermediate state on a retro-
synthetic pathway, an immeasurable number of possible
reactions are allowed, therefore, the careful restriction of
possible chemical changes without the significant loss of
accuracy is highly challenging.

Segler et al. reported the template-based MCTS application
for a retrosynthetic problem combined with three neural
networks.[140] In order to guide the expansion of MCTS, the first
neural network prioritizes reaction templates, and the second
neural network estimates the feasibility of top-ranked tem-
plates. The third neural network is designed for the rollout of
MCTS. By utilizing those neural networks, the MCTS algorithm
provides reasonable synthetic routes as much as literature
routes do. Also, it solves a retrosynthetic problem faster than
other heuristic best-first search algorithms. Schreck et al.
combined user-defined cost metrics to the template-based
MCTS method.[141] Their MCTS algorithm can solve a synthetic
problem with minimizing the user-defined cost metric to
consider chemists’ interests such as prices of reactants mole-
cules. On the other hand, the template-free MCTS method was
also proposed.[41] The most distinctive difference compared to
the template-based MCTS is that child nodes are generated
from an encoder-decoder model

For a retrosynthetic problem, the USPTO database is widely
adopted as a standard database. The USPTO database includes
organic chemical compounds with synthetic routes. The
performance and main method of the aforementioned retro-
synthetic model are summarized in Table 1. Since the USPTO
database includes many duplicated and erroneous reactions so

Table 1. Top-k accuracy for retrosynthesis prediction on USPTO-50k database when reaction types are unknown and machine learning technique to be
used.

Methods Top-n accuracy [%] Methodology
1 3 5 10 Prioritization of templates Synthon Completion Encoder-decoder Monte Carlo Tree Search

AutoSynRoute[142] 43.1 64.6 71.8 78.7 ✔ ✔
SCROP[143] 43.7 60.0 65.2 68.7 ✔
GET[19] 44.9 58.8 62.4 65.9 ✔
Tied Transformer[144] 47.1 67.2 73.5 78.5 ✔
Graph2SMILES
(D-GAT)[138]

51.2 66.3 70.4 73.9 ✔

Graph2SMILES
(D-GCN)[138]

52.9 66.5 70.0 72.9 ✔

MEGAN[136] 48.1 70.7 78.4 86.1 ✔
G2Gs[135] 48.9 67.6 72.5 75.5 ✔
RetroXpert[145] 50.4 61.1 62.3 63.4 ✔
GTA[146] 51.1 67.6 74.8 81.6 ✔
RetroPrime[147] 51.4 70.8 74.0 76.1 ✔ ✔
GLN[130] 52.5 69.0 75.6 83.7 ✔
Aug. Transformer[148] 53.2 – 80.5 85.2 ✔
LocalRetro[123] 53.4 77.5 85.9 92.4 ✔
GraphRetro[134] 53.7 68.3 72.2 75.5 ✔
Chemformer[149] 54.3 – 62.3 63.0 ✔
EBM (Dual-TB)[150] 55.2 74.6 80.5 86.9 ✔
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the most widely adopted regularized database is the USPTO-
50 k database which includes 50 k chemical reactions belonging
to 10 reaction categories. By re-regularizing the original USPTO
database, a larger database was also released.

5. Conclusion

In this review, we summarized recent machine learning (ML)
applications for chemical reactions. To apply ML approaches,
the proper descriptors, model, and numerous data are
demanded. Unlike molecular problems, a large number of
quantum chemical results are not accessible for chemical
reactions because transition state calculations are relatively less
automated and still need massive computing resources. None-
theless of these difficulties, various theoretical/experimental
databases are released and they stimulate various ML applica-
tions. Here, we discuss ML studies to predict reaction properties
and synthetic routes.

There are two different strategies to predict reaction
properties through ML models. The first is to predict molecular
properties from a well-trained ML model and derive reaction
properties from chemical principles with the predicted molec-
ular properties. A benefit of this approach is that a large
reaction database is not required to train the ML model because
the ML model does not explicitly learn chemical reactions.
Some path-independent reaction properties (e.g., enthalpy
changes) are successfully predicted by this strategy. However,
other path-dependent properties (e.g., reaction barriers) are not
solely determined by properties of reactants and products thus
the ML models learning reaction features are demanded. The
descriptors for chemical reactions are constructed by expanding
molecular descriptors (e.g., SMILES and graph notations). Also,
the many models for a chemical reaction are inspired by the
models for a molecule.

Predicting synthetic routes is one of the most sought-after
and challenging chemical problems. To tackle this problem,
several ML approaches have been proposed. In this review, we
categorized them into three subjects; predicting reactivity, self-
optimization of reaction, and retrosynthesis. To predict reac-
tivity from existing reaction data, many ML approaches design
models to predict more tangible features like the efficiency of
catalyst or reactive atoms and train them using a reaction
database. In the problem of self-optimization, the models that
can suggest reaction by reflecting the previous experimental
results are proposed. For the retrosynthetic problem, various
ML models with or without predetermined reaction types are
proposed. The predetermined reaction type, named template,
can successively reduce the possibility of chemically absurd
reactions but, simultaneously, it limits the capability of ML in
human intuitions.

Herein, we highlighted various ML models and their
applications in chemical reaction problems. We hope that the
addressed techniques to extract the information from reaction
data will leverage the realization of potential ML applications in
other chemical reactions. Although those various techniques
are important in ML applications, a large and high-quality

reaction database is essential to train the ML model, especially
for a large and sophisticated ML model. In order to extend the
applicability of ML approaches to chemical reaction problems,
continuous increase of reaction databases highly demanding.
From the authors’ aspect, because of the steady progress of
chemical theories and experimental techniques, the cost for
reaction data will be lowered continually and it will promote
the ML applications for chemical reaction problems that are still
not fully understood and predicted by our chemical knowledge.
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