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Abstract: We analytically investigate the feasibility of long graded-index (GRIN)-lens-based microen-
doscopes through wavefront shaping. Following the very well-defined ray trajectories in a GRIN lens,
mode-dependent phase delay is first determined. Then, the phase compensation needed for obtaining
diffraction limited resolution is derived. Finally, the diffraction pattern of the lens output is computed
using the Rayleigh–Sommerfeld diffraction theory. We show that diffraction-limited resolution is
obtained for a 0.5 mm diameter lens with a length over 1 m. It is also demonstrated that different
imaging working distances (WDs) can be realized by modifying the phase compensation. When
a short design WD is used, a large imaging numerical aperture (NA) higher than 0.4 is achievable
even when a low NA lens (NA = 0.1) is used. The long- and thin-GRIN-lens-based microendoscope
investigated here, which is attractive for biomedical applications, is being prioritized for use in a
clinical stage microdevice that measures three-dimensional drug responses inside the body. The
advance described in this work may enable superior imaging capabilities in clinical applications in
which long and flexible imaging probes are favored.

Keywords: GRIN-lens microendoscopy; two-photon imaging; wavefront shaping; biomedical mi-
crodevice; in vivo drug response testing

1. Introduction

An implantable in vivo biomedical microdevice [1] that combines drug delivery with
optical imaging of tumor responses directly within the tumor has emerged as a powerful
platform for high-throughput in situ screening of drugs in patients [2,3]. The microdevice
enables evaluation of drug responses in their natural microenvironment, which is critical for
efficient drug development and therapy selection for each individual patient. To maximize
the impact of such microdevices, an in situ optical imaging probe capable of visualizing the
drug responses in real time should be integrated (see Figure 1), especially in deep regions
where long probes are required to circumvent the shallow penetration depth associated
with conventional fluorescence imaging. Such an effort was demonstrated in [4], in which
a side-viewing graded-index (GRIN) probe was inserted into the microdevice. This system
demonstrated monitoring of cell apoptosis in parallel for multiple drugs released into a
tumor at different locations. However, the imaging system applied was incapable of optical
sectioning, the probe was rigid, and the length was on the order of only 1 cm. An advanced
version would require an optical probe with three-dimensional (3D) imaging capability
implemented by, e.g., confocal [5–7] or multiphoton [8–11] configuration. Two-photon
imaging will be discussed in this work. For clinical translation of drug-response imaging
in vivo, one would desire a long and flexible GRIN-lens-based microendoscope, so that the
distal end of the lens may be extended from the microscope to the patient. Here, we want
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to mention that while GRIN multimode optical fibers nominally have the same parabolic
profile as GRIN lenses, GRIN lenses usually have a more faithful parabolic index profile
than GRIN optical fibers [12], possibly because of the different fabrication methods and
accuracy. Therefore, in this work, the term of long GRIN lenses instead of traditional GRIN
optical fibers is used to reflect this difference.

Materials 2021, 14, x FOR PEER REVIEW 2 of 9 
 

 

microendoscope, so that the distal end of the lens may be extended from the microscope 
to the patient. Here, we want to mention that while GRIN multimode optical fibers nom-
inally have the same parabolic profile as GRIN lenses, GRIN lenses usually have a more 
faithful parabolic index profile than GRIN optical fibers [12], possibly because of the dif-
ferent fabrication methods and accuracy. Therefore, in this work, the term of long GRIN 
lenses instead of traditional GRIN optical fibers is used to reflect this difference. 

 
Figure 1. Schematic showing the implantable microdevice equipped with a side-viewing imaging 
probe. 

However, commercially available GRIN lenses are usually rigid and short (typically 
a few cm). The nonaplanatic property of GRIN lenses that accumulates with length is one 
contributor to the lens aberration. For two-photon imaging, dispersion of the lens material 
may lead to further aberration. These aberration sources rationalize the short length of 
commercial GRIN lenses. In [11], customized GRIN lenses with lengths up to 28.5 cm were 
investigated for clinical applications in which access to deep tissue; e.g., prostate, is nec-
essary. For such a long and rigid lens, the axial resolution degrades significantly, but the 
lateral resolution does not deteriorate much. If lens length is increased further, the rays 
may become severely mismatched axially, as shown in Figure 2a. The intensity squared 
pattern (for two-photon imaging) with multiple peaks shown in the top panel of Figure 
2b is a result of this mismatch. As a comparison, an ideal case would be a diffraction-
limited pattern with a single peak, as shown in the bottom panel of Figure 2b, which is 
achievable with the wavefront shaping described later in this work. The top panel of Fig-
ure 2c suggests that the wavefront shaping is very effective in cleaning up the out-of-focus 
fields. However, since the GRIN lens does not introduce lateral mismatch, the field is very 
well confined laterally even without wavefront shaping (see the bottom panel of Figure 
2c). Note that dispersion of the lens material is not included in the simulation, which may 
lead to experimental resolutions worse than the theoretical results shown here, but 
chirped mirrors may be used to alleviate the dispersion effect. In addition, note that the 
slightly wider lateral distribution after wavefront shaping is due to the small imaging NA 
(𝑖NA). The lateral resolution is improved if a larger 𝑖NA is obtained with a shorter work-
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Figure 1. Schematic showing the implantable microdevice equipped with a side-viewing imaging
probe.

However, commercially available GRIN lenses are usually rigid and short (typically a
few cm). The nonaplanatic property of GRIN lenses that accumulates with length is one
contributor to the lens aberration. For two-photon imaging, dispersion of the lens material
may lead to further aberration. These aberration sources rationalize the short length of
commercial GRIN lenses. In [11], customized GRIN lenses with lengths up to 28.5 cm
were investigated for clinical applications in which access to deep tissue; e.g., prostate,
is necessary. For such a long and rigid lens, the axial resolution degrades significantly,
but the lateral resolution does not deteriorate much. If lens length is increased further,
the rays may become severely mismatched axially, as shown in Figure 2a. The intensity
squared pattern (for two-photon imaging) with multiple peaks shown in the top panel
of Figure 2b is a result of this mismatch. As a comparison, an ideal case would be a
diffraction-limited pattern with a single peak, as shown in the bottom panel of Figure
2b, which is achievable with the wavefront shaping described later in this work. The top
panel of Figure 2c suggests that the wavefront shaping is very effective in cleaning up the
out-of-focus fields. However, since the GRIN lens does not introduce lateral mismatch, the
field is very well confined laterally even without wavefront shaping (see the bottom panel
of Figure 2c). Note that dispersion of the lens material is not included in the simulation,
which may lead to experimental resolutions worse than the theoretical results shown here,
but chirped mirrors may be used to alleviate the dispersion effect. In addition, note that the
slightly wider lateral distribution after wavefront shaping is due to the small imaging NA
(iNA). The lateral resolution is improved if a larger iNA is obtained with a shorter working
distance (WD), which will be demonstrated in detail later in Section 3.
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tions. Definition of point B in (a) is the same as Figure 3. WS, wavefront shaping. 
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Except for this difference, the RI profile defined in Equation (1) is identical to the 

Figure 2. Simulated ray trajectories (a), intensity squared pattern I f (b), and the intensity profile (c)
along the while dotted lines in (b). Simulation parameters Z0 = 705 mm, ρ = 250 µm, NA = 0.1,
nco = 1.5, nm = 1, λ = 1040 nm and f = 450 µm are shown in (c); see main text for all the definitions.
Definition of point B in (a) is the same as Figure 3. WS, wavefront shaping.

In this work, we theoretically investigate long GRIN lenses, and derive the phase
compensation needed for obtaining diffraction-limited resolution. A thin GRIN lens
possesses the flexibility of a typical optical fiber endoscope because of similar material
properties. In practice, to prevent the long GRIN lens from breaking, it can be protected
with the same polymer coating that is used for optical fibers. In addition, propagation-
invariant modes of a parabolic profile GRIN lens have been shown to be almost unaffected
by bending [12]. Therefore, a long and flexible GRIN lens probe may be realizable in
practice, which would enable deep organ imaging for the implantable microdevices and
beyond. Note that lenses with linear index profile have been investigated [13], but they are
not within the scope of this work.

2. Theory

Here, we only consider the meridional rays, using the coordinates in Figure 3. The
refractive index (RI) n(r) of a parabolic profile GRIN lens in the meridional plane is
expressed as:

n2(r) =

{
n2

co

[
1− NA2

n2
co
(r/ρ)2

]
, 0 ≤ |r| < ρ

n2
cl , |r| ≥ ρ

(1)

where nco is the RI on the axis of the GRIN lens, ρ is the lens radius, NA =
√

n2
co − n2

cl is the
lens numerical aperture (NA) with ncl being the cladding RI, and r is the lateral position.
Note that Equation (1) is different from the conventional definition in which r is the radial
position, and never takes negative values [12,14]. The lateral position r in Equation (1) may
take negative values, which facilitates the description of the ray trajectories. Except for this
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difference, the RI profile defined in Equation (1) is identical to the conventional definition.
A meridional ray trajectory associated with the ray invariant β follows the function [14]:

r = rtp sin(Cz) (2)

where
C = NA/(ρβ); rtp = ρ

√
n2

co − β2/NA (3)

Note that ncl ≤ β ≤ nco holds for bound rays, which is related to the inclination angle
α (see Figure 3) through:

β = nco cos α (4)

For bound rays, 0 ≤ α ≤ αm = cos−1(ncl/nco). The half-period Zp along the axial
direction is given by [14]:

Zp = πρβ/NA (5)
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The optical path length along a ray trajectory is determined by the following integral:

LOP =
∫ z0

0

n2(r)
β

dz =
n2

co + β2

2β
z0 +

n2
co − β2

4NA
ρ sin(2Cz0) (6)

where z0 is the lens length. The lateral position re of the exit point P (see Figure 3) of a ray
is:

re = rtp sin(Cz0) (7)

For a given lens length z0, the distance between the exit point P and the lens axis; i.e.,
|re|, may increase and then decrease as α increases (see the blue curve in Figure 4a). To
calculate the turning inclination angle αt, one can take the derivative of Equation (7); i.e.,:

dre

dα
=

ρnco

NA
cos α sin(Cz0) + z0 tan2 α cos(Cz0) (8)

and thus αt is the solution when Equation (8) is equal to zero. The turning lateral position
rt is obtained by inserting αt into Equation (7). At the exit point P, the incident angle θe on
the lens side is made by the tangent line of the trajectory with the positive z axis (Figure 3),
which satisfies:

tan θe =
dr
dz

∣∣∣∣
z0

= rtpC cos(Cz0) (9)
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Using Snell’s law, the refraction angle θ0 when the ray exits the GRIN lens is governed
by:

n(re) sin θe = nm sin θ0 (10)

where nm is the RI of the surrounding medium, which is typically air or water. The
refractive straight ray is governed by the following equation:

r = re + tan θ0(z− z0) (11)

If B is defined as the point of intersection between the refractive ray and lens axis,
then the axial distance fB between B and the lens exit end face (See Figure 3) is given by:

fB = −re/ tan θ0 (12)

Since fB is dependent on the inclination angle α, all the rays intersect with the lens
axis at different positions, as demonstrated in Figure 2a, which results in the multiple-peak
pattern in Figure 2b. To form a single-peak pattern, like the one in Figure 2c, one may
modify the phase of the incident rays. To do this, we first define a point F on the lens axis,
which is here called the design focal point, around which the single-peak pattern appears.
Then, the total optical path length for a ray travelling from the starting point O to F is
determined by:

Ltotal = LOP + LPF (13)

where
LPF = nm

√
r2

e + f 2 (14)

where f is the axial distance between point F and the lens exit endface (see Figure 3), which
here is called the design WD. The red curve in Figure 4a shows the optical path difference
(OPD) as a function of the incident angle when f = 450 µm. To compensate for the OPD,
an initial phase φ0 can be introduced to the incident rays, which is given by:

φ0(α) = (Ltotal − Ltotal |α=0)k (15)

where k = 2π/λ is the vacuum wavenumber, with λ being the wavelength in vacuum.
Figure 4b shows such an initial phase as a function of the inclination angle. With this phase
compensation, all the rays are in phase when they reach the designed focal point F. In
practice, the initial phase of the incident laser beam can be manipulated via a spatial phase
modulator [15], deformable mirror [5], or liquid crystal [16], following the phase pattern
shown in Figure 4c. In addition, note that another way to modify the phase is through
microstructures constructed on the proximal endface of the lens [17,18]. According to the
geometric relations shown in Figure 4d and the Fresnel laws, the radial position rlaser in
Figure 4c is proportional to tan

[
sin−1(ncosinα)

]
. With this phase modulation, the exact

interference pattern shown in the bottom panel of Figure 2b is achieved.
With all the ray parameters being determined, following the coordinates in Figure 5,

the interference pattern around the design focal region is simulated by the first Rayleigh–
Sommerfeld diffraction integral [19]:

U(P1) = −
j
λ

x

∑

U(P)
e−jkmR

R
cos
(→

V,
→
R
)

ds (16)

where P1 and P are a point around the focal region and source region ∑, respectively; U
is the light field amplitude; j is the imaginary unit; km = knm is the wavenumber in the

surrounding medium;
→
R is the directional vector pointing from P toward P1, and

→
V is the

directional vector pointing from P toward B. To apply Equation (16), one should note
that the source region ∑ has an overlapped region when there is a turning angle αt. For
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convenience, Equation (16) is rewritten in terms of the azimuthal angle ϕ and inclination
angle α; i.e.,:

U(P1) = −
j
λ
×
∫ 2π

0
dϕ
∫ αm

0
E(α)ejφ0(α)e−jkLOP

e−jkmR

R
cos γ|re|

∣∣∣∣dre

dα

∣∣∣∣dα (17)

where dre/dα is given by Equation (8), γ is the angle made by
→
V and

→
R, and E(α) is the field

distribution of the source, which is assumed to be unity in all calculations. By resorting to

the Cartesian coordinate in Figure 5, vectors
→
V and

→
R are expressed as:{ →

V = (−|re| cos ϕ,−|re| sin ϕ, fB)
→
R = (x1 − |re| cos ϕ, y1 − |re| sin ϕ, z1)

(18)

where (x1, y1, z1) are the Cartesian coordinates of P1. Then:

cos γ =

→
V·
→
R

VR
(19)

Note that V and R are the lengths of
→
V and

→
R, respectively. Since we are interested in

two-photon imaging, the fluorescent signal intensity I f is proportional to the excitation
intensity squared [20], then we have:

I f ∝ |U|4 (20)
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Figure 4. Simulated phase compensation. re and relative optical path difference (a) and phase
compensation (b) as a function of α. (c) Simulated phase compensation along the laser beam cross-
section (vertical dashed line in (d)), which is needed for obtaining the pattern shown in the bottom
panel of Figure 2b. (d) Schematic showing the radial position of the incident laser beam, rlaser,
corresponding to a ray with inclination angle α. In (c), D is the laser beam diameter. Simulation
parameters are identical to those in Figure 2.
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Figure 5. Coordinate system for calculating the diffraction pattern. Definitions of P and B are the
same as those in Figure 3.

3. Results and Discussion

Using the above theory, performance of the wavefront shaping for improving the
resolution is readily evaluated. As two examples showing the diffraction pattern at dif-
ferent design WDs, Figure 6a,b display the pattern when f = 200 µm and f = 600 µm,
respectively. The light field is confined to a much tighter spot in Figure 6a, which is due to
the larger iNA. Here, note that the iNA is different from the NA of the GRIN lens defined
in Equation (1); it takes the following definition:

iNA = nm sin
[
tan−1(|rt|/ fm)

]
(21)

where fm is the axial distance between the point with the highest intensity and the lens exit
endface, and rt is the aforementioned turning lateral position. Note that fm is generally a
little smaller than the design focal length f , mainly because the field amplitude is inversely
proportional to the source-image distance R.
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Figure 6. Simulated resolution. Distribution of I f when f = 200 µm (a) and 600 µm (b). Calculated
lateral (c) and axial (d) resolution vs. imaging numerical aperture (iNA). Here, resolution is defined
by the 1/e full width of the signal intensity (i.e., I f ) fitted to a Gaussian function. Simulation
parameters are the same as those in Figure 2, except Z0 = 1058 mm (equal to 90 times average Zp

minus 1 mm).

The blue dotted lines in Figure 6c,d show the simulated lateral and axial resolution
as a function of iNA. For comparison, the diffraction-limited lateral and axial resolutions
computed from the equations in Figure 4c of [20] are shown as the red curves. The very
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close agreement between these curves suggests that the lens reaches the diffraction-limited
resolution after the wavefront shaping. Note that the resolution is defined as the full width
at the 1/e signal intensity level after the simulated data is fitted to a Gaussian function. We
want to emphasize that these are on-axis resolutions; the off-axis resolutions are expected
to degrade gradually as the off-axis distance increases. Resolution defined by the full
width at half maximum can be calculated by the 1/e resolution divided by

√
ln2. It is

also noteworthy that, although a GRIN lens with low NA of 0.1 is used in the simulations,
iNA of over 0.4 is achievable for high-resolution imaging. This singlet configuration may
reduce the cost required by conventional doublets consisting of a low-NA relay lens and
a high-NA imaging lens, or triplets consisting of a low-NA relay lens and two high-NA
imaging lenses on both ends for coupling and imaging.

Wavefront shaping has been extensively used in experiments to manipulate the focal
point out of multimode fibers [21–25]. Those methods include a complicated calibration
process that requires access to the distal end of the probe, except for the case in which
a thin stack of structured metasurface reflectors is used for feedback [26]. In our work,
the compensation phase is predetermined analytically, and thus no calibration process is
needed. Then, the 3D imaging can be realized by galvanometer mirrors in combination
with a tunable lens [9] or a translational stage [8].

4. Conclusions

In conclusion, we have demonstrated analytically that diffraction-limited imaging
through long-GRIN-lens-based microendoscopes is made possible by wavefront shaping.
Taking advantage of the available analytical solution of the propagation modes in GRIN
lenses with a parabolic index profile, the phase difference between different modes can be
determined analytically. Diffraction-limited resolution is then obtainable after the phase
difference is corrected. In practice, the phase difference can be compensated by using a
spatial light modulator or other techniques. It was also found that, using a short design WD,
a low-NA GRIN lens may be used as a high-resolution probe with a large iNA; this singlet
configuration will significantly simplify the traditional design of doublets or triplets with
equivalent iNA. In future experiments, a long sub-millimeter-diameter GRIN lens with
protective coatings may serve as a promising flexible probe for the emerging microdevice
to be implanted in deep tissues.
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