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Abstract: Melt quenching technique is used for preparing glasses with chemical formula (70P2O5)–
(16 − x)CdO–(14ZnO)–(xEr2O3), (x = 1–6 mol%). These glasses were named Er1, Er2, Er3, Er4, Er5,
and Er6, respectively. Photon buildup factors, fast neutron absorption, and electron stopping of the
prepared glasses were examined. Glasses’ density was varied from 3.390 ± 0.003 for the Er1 glass
sample to 3.412 ± 0.003 for the Er6 glass sample. The Buildup factor (BUF) spectra have relatively
higher values in the Compton Scattering (CS) dominated areas compared to both Photoelectric effect
(PE), and Pair Production (PP) dominated energy regions. The highest BUF appeared at the Er atom
K-absorption edge, whose intensity increases as the molar concentration of Er2O3 in the glasses
increases. The photon absorption efficiency (PAE) of the glasses increases according to the trend
(PAE)Er1 < (PAE)Er2 < (PAE)Er3 < (PAE)Er4 < (PAE)Er5 < (PAE)Er6. Fast neutron removal cross-section,
FNRC (ΣR) values of the glasses obtained via calculation varied from 0.1045–0.1039 cm−1 for Er1–Er6.
Furthermore, the continuous slowing down approximation mode (CSDA) range enhances the kinetic
energy of electrons for all glasses. Generally, results revealed that the investigated glasses could be
applied for radiation shielding and dosimetric media.

Keywords: phosphate glasses; photon buildup factors; fast neutron absorption; electron stopping
powers

1. Introduction

Ionizing radiation such as gamma-rays, X-rays, beta particles, protons, and neutrons
have benefited modern-day humans in no small measure. As the scope of these benefits
continues to rise, our understanding of different ways in which these radiations interact
with atoms and molecules in biosphere and non-biological systems has widened as well.
The interaction of ionizing radiation in many cases with atoms of a given medium is
such that energy is exchanged. Such controlled exchange of energy within an interact-
ing medium and its consequent effects have been found to help treat clinical symptoms
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such as cancer and tuning biological, physical, and chemical properties of the interacting
medium [1–3]. On the other hand, the deleterious effect of uncontrolled radiation inter-
action with biological or non-living systems has made the use of radiation shields and
other protective measures a significant part of radiation applications [1,3]. The choice of
radiation shielding material is a function of several parameters, chief among which are the
radiation type, energy, and acceptable radiation level outside the shield.

Recently, the use of different glass materials for radiation shielding has been gaining
popularity [4–7]. This stems from the fact that glasses that are harsh, cheap, lightweight,
radiation-resistant, non-toxic, and possess other novel characteristics can be obtained via
simple synthesis methods. The choice of glass shield will continue to grow as enormous
combinations of properties could be obtained via flexible and easy preparation methods.
Evaluation of the shielding capacity of glass is fundamental before the glass can be deployed
for shielding application. Today, due to their attractive properties, many glass compositions
containing different transition metals have been investigated for their radiation shielding
capacity via different experimental and theoretical procedures [4–15]. Phosphate glasses
containing transition metal oxides with/without rare earth, such as Er2O3, are characterized
by high thermal expansion coefficient, high mechanical properties, low viscosity, and good
optical properties [16–19].

The fact that rare-earth elements (REE) such as erbium (Er) play crucial roles in the
human transition to environmentally friendly technology and economy has made glass
containing Er and other REE worthy of investigation for an environmentally friendly shield
for different ionizing radiations. This paper reports the effect of Er molar concentration on
the photon, electron, and neutron shielding efficacy of 70P2O5.(16 − x)CdO.14ZnO.xEr2O3
glass system.

2. Samples Preparation and Theoretical Background
2.1. Samples

Six glass sample with chemical formula (70P2O5)–(16 − x)CdO–(14ZnO)–(xEr2O3),
(x = 1–6 mol%) were prepared via melt quenching method. Accurate amounts of Analar
grade CdO, P2O5, ZnO, and Er2O3 were combined by gently grinding all mixtures fre-
quently to acquire a soft powder. Mix for each sample was liquefied in a small porcelain pot
in an electrically warmed oven with a temperature around 950 ◦C–1000 ◦C at normal air
conditions for one h to homogenize liquefy. Heat treatment is carried out for the acquired
glass samples after the quenching in stainless-steel mold at around 275 ◦C to take off any
internal thermal and mechanical stresses for 3 h. Archimedes process is used to get the
studied glass samples density (ρ) using an immersion liquid such as Toluene. Table 1 shows
the samples code, chemical composition, and density of the prepared glasses.

Table 1. Glasses code, composition, density of the prepared glasses (70P2O5)–(16 − x)CdO–(14ZnO)–
(xEr2O3), (x = 1–6 mol%).

Glass
Composition mol%

Density (gm/cm3) ± 0.003
ZnO CdO P2O5 Er2O3

Er1 14 15 70 1 3.390

Er2 14 14 70 2 3.395

Er3 14 13 70 3 3.399

Er4 14 12 70 4 3.403

Er5 14 11 70 5 3.408

Er6 14 10 70 6 3.412
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2.2. Photon Buildup Factors

The exponential (Beer–Lambert) equation which describes the transmission of mo-
noenergetic and well-collimated photon beam through a thin absorbing barrier, is given in
Equation (1) [1].

I = Ioe−µ(E,x)x (1)

where I and Io are the photon flux intensity before and after transmission through the
absorbing barrier of thickness x (in a dimension of length, say, cm). The parameter µ(E, x)
is called the linear attenuation coefficient (LAC) of the absorbing medium, and it depends
on the thickness, x, and the photon flux energy, E. LAC is a measure of the number of
photons that goes through the absorber without interacting.

The measure of photon scattering by a medium in cases where the Beer–Lambert
condition is not observed is estimated using the photon buildup factor (BUF). The BUF
gives the correction to equation 1 in the bad geometry scenario. BUF comes under different
names depending on interest’s radiation detector response function [20–22]. However,
the energy absorption (EABUF) and exposure (EBUF) BUF are two common BUF that are
generally estimated and used for shielding and dosimetric media. For EABUF and EBUF,
the energy absorbed and the exposure in air equivalent thickness of the material is the
detector response function, respectively. The estimation of both BUFs can be done via the
very accurate Monte Carlo simulations, GP-fitting procedure, or free online software based
on the GP-fitting method as the following steps [20–22]:

Firstly: The equivalent atomic number (Zeq) values can be obtained with the interpola-
tion method by proportioning the mass attenuation coefficient (MAC) values, (R) obtained
for incoherent and total non-coherent interactions:

Zeq =
Z1(log Y2 − log Y) + Z2(log Y− log Y1)

log Y2 − log Y1
(2)

where Z1, and Z2 are the atomic numbers related to the ratios Y1 and Y2, respectively.
Secondly: The obtained Zeq values of the investigated glasses were used to determine

the GP coefficients with the next equation:

P =
P1
(
log Z2 − log Zeq

)
+ P2

(
log Zeq − log Z1

)
log Z2 − log Z1

(3)

Here P1 and P2 refer to the GP fitting parameters. Therefore, the EBF values were
estimated according to the conditions in the following equations:

B(E, X) = 1 +
b− 1
K− 1

(Kx − 1) for K 6= 1 (4)

B(E, X) = 1 + (b− 1)x for K = 1 (5)

Here,

K(E, X) = Cxa+d
tan h

(
x

Xk
− 2

)
− tan h(−2)

1− tan h(−2)
for x ≤ 40 (6)

where K(E, X) refers to the dose multiplicative coefficient.

2.3. Fast Neutron Absorption

The absorption of fast (fissile) neutrons by elastic and inelastic interactions in any
material is measured by a parameter called the fast neutron removal cross-section-FNRC
(ΣR). ΣR is the analogous to the linear attenuation coefficient of photons. It measures the
likelihood that a fissile neutron will be removed from the fissile group on its first collision
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within a medium. Theoretically, ΣR of a medium can be calculated from the addition rule
via Equation (7) [3–6]

ΣR = ∑i ρi

(
ΣR
ρ

)
i

(7)

where ρ is the density of the medium and
(

ΣR
ρ

)
i

is the mass removal cross section of the

ith element in the medium.
(

ΣR
ρ

)
i

is obtainable from the expressions [3]:

ΣR
ρ

= 0.19Z−0.743 for Z ≤ 8; and,
ΣR
ρ

= 0.125Z−0.565 for Z > 8 (8)

2.4. Electron Stopping Powers and Ranges

The energy loss by an electron as it moves through a material due to the coulomb
(collision) and radiative losses is called the stopping power (SP). SP accounts for these
losses (electronic/collision and radiative). In the continuous slowing down approximation
(CSDA), the range of electrons in the material gives the average distance moved within the
medium before it loses all its energy and stops [6].

Ionizing radiation interaction parameters can be determined via experimental proce-
dure, direct calculations, and Monte Carlo simulations. Theoretical (direct) calculations
have been detailed to have similar accuracy to results from experimental procedures and
simulations while also having other advantages such as saving time and being cost-effective.
To this end, the investigated glasses’ photon and electron shielding parameters were theoret-
ically calculated via the free online Phy-X/PSD [22] and ESTAR [7] platforms, respectively,
while the fissile neutron cross-sections were obtained via Equations (7) and (8).

3. Results and Discussion
3.1. Photon Buildup Factors

A measure of photon scattering in the glasses is evaluated via the analysis of the
variation of EABUF and EBUF with photon energy, as depicted in Figures 1–6. The figures
show the pattern of changes in BUFs as photon energy changes for selected penetration
depths within 40 MFP. Generally, the pattern of variation is similar for both BUFs and
glass material at all the selected depths of penetration. However, one common feature of
the BUF spectra has relatively higher values in the Compton scattering (CS) dominated
areas compared to both photoelectric effect (PE) and pair production (PP) dominated
energy regions. In fact, the trend of the magnitude of the BUFs concerning energy regions
where each of these interactions dominates is (BUF)PE < (BUF)PP < (BUF)CS. This trend
is consistent with the fact that both PE and PP are processes that lead to total photon
absorption while CS scatters the photon; thus, BUF is high in CS region. Furthermore,
the annihilation of electron–positron pairs created by the PP process produces photons
whenever higher photon buildup occurs in the PP region compared to the PE region [20].
The G–P fitting coefficients (b, c, a, Xk, and d) of Er1–Er6 samples for EBF and EABF are
tabulated in Supplementary Tables S1–S6, respectively.

The peak of both EABUF and EBUF appeared at a photon energy of 0.5 MeV for all
the glasses. Another notable feature of the BUF spectra is the appearance of high BUF
at the Er atom K-absorption edge, whose intensity increase as the molar concentration
of Er2O3 in the glasses increase. This is due to the fluorescence that takes place after the
K-electron photon absorption. A BUF greater than unity at a depth of 0.5 MFP in the glasses
shows that the optimum glass thickness to prevent photon scattering in the glasses is below
an equivalent thickness of 0.5 MFP of all the glasses. In order to investigate the effect of
the chemical composition of the glasses on their photon scattering capacity, EABUF and
EBUF of the glasses were plotted against depth at selected photon energies (0.015, 0.15,
1.5, and 15 MeV) and presented in Figures 7–10. At 0.015 MeV, the BUF is low due to the
absorption of a photon by the PE process, while at 0.15 and 1.5 MeV, the BUFs increase in
magnitude. Among the compared energies, BUF is maximum for 0.015 MeV and maximum
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for 1.5 MeV, in agreement with the effect of PE, CS, and PP. Figures also show a consistent
trend in the increase in BUF as the mass density and Er2O3 reduce in the glasses. This
shows that photon absorption efficiency (PAE) of the glasses increases according to the
trend (PAE)Er1 < (PAE)Er2 < (PAE)Er3 < (PAE)Er4 < (PAE)Er5 < (PAE)Er6. This also affirms
the fact that PEA of a material depends on the photon energy and chemical composition of
the shielding material.
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3.2. Fast Neutron Absorption

Fast neutron removal cross-section, FNRC (ΣR) values of the glasses obtained via
calculation varied from 0.1045–0.1039 cm−1 for Er1–Er6 glasses. A consistent decrease
in the value of ΣR is pictorially represented in Figure 11a. Obviously, ΣR decrease with
an increase in the Er2O3 content of the glasses. This is due to the higher fast neutron
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microscopic removal cross section of Cd compared to Er. Hence as the Cd content decreases
and Er increases in the glasses, FNRC declines in magnitude. A comparison of FNRC of Er1
with those of water, OC, and recently developed glass systems- TB, TZ, and TVM60 [23–25]
is presented in Figure 11b. It is evident that Er1 is a better fast neutron absorber compared
to these materials except TVM60.
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materials (b).

3.3. Stopping Powers (Se) and Range of Electrons

The energetic electron shielding capacity of the present glasses was investigated using
stopping powers (Se) and Range (continuous slowing down approximation mode (CSDA))
data for kinetic energies within 15 MeV. Figure 12 displays the changes in the value of Se
and Range of the glasses as a function of electron kinetic energy.

The figure shows that there was a general initial decrease of Se with energy up to
an energy of 1 MeV before increasing with energy further. The initial decrease is due
to collision losses that decrease with energy, while the latter increase in Se is attributed
to energy losses via radiation losses. Radiation yield of energetic electron increase with
energy hence the increase in Se beyond 1 MeV with kinetic energy. For the glasses, Se
values were very close, with insignificant differences. The CSDA range increase with a
kinetic energy of Electron for all glasses, as shown in Figure 13. An increase in the kinetic
energy of an electron leads to an increase in its penetrating ability. Hence the observed
increase in Range with kinetic energy. Similar to the Se, there was no significant difference
between the Range of electrons in the glasses. Hence, an increase in Er2O3 content of the
glasses within the molar concentration considered in this study does not significantly affect
the electron absorption capacity of presently studied glasses.
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4. Conclusions

Melt quenching technique is used for preparing glasses with chemical formula (70P2O5)–
(16 − x)CdO–(14ZnO)–(xEr2O3), (x = 1–6 mol%). These glasses were named Er1, Er2,
Er3, Er4, Er5, and Er6, respectively. Photon buildup factors, fast neutron absorption, and
electron stopping of the prepared glasses were examined. Results revealed that:
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1- Glasses’ density was varied from 3.390 ± 0.003 for Er1 glass sample to 3.412 ± 0.003
for E6 glass sample.

2- The BUF spectra have relatively higher values in the Compton Scattering (CS) dom-
inated areas compared to both photoelectric effect (PE), and Pair Production (PP)
dominated energy regions.

3- The highest BUF appeared at the Er atom K-absorption edge, whose intensity increases
as the molar concentration of Er2O3 in the glasses increases.

4- The photon absorption efficiency (PAE) of the glasses increases according to the trend
(PAE)Er1 < (PAE)Er2 < (PAE)Er3 < (PAE)Er4 < (PAE)Er5 < (PAE)Er6.

5- Fast neutron removal cross-section, FNRC ( ΣR) values of the glasses obtained via
calculation varied from 0.1045–0.1039 cm−1 for Er1–Er6.

6- The continuous slowing down approximation mode (CSDA) range increases with a
kinetic energy of electrons for all the investigated glasses.

Therefore, the suggested glasses can be used for radiation shielding and dosimetric media.
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