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Abstract
A large volume of medical data are labeled using nonstandardized nomen-
clature. Although efforts have been made by the American Association of
Physicists in Medicine (AAPM) to standardize nomenclature through Task
Group 263 (TG-263), there remain noncompliant databases. This work aims
to create an algorithm that can analyze anatomical contours in patients with
head and neck cancer and classify them into TG-263 compliant nomenclature.
To create an accurate algorithm capable of such classification, a combined
approaching using both binary images of individual slices of anatomical con-
tours themselves, as well as center of mass coordinates of the structures are
input into a neural network. The center of mass coordinates were scaled using
two normalization schemes, a simple linear normalization scheme agnostic of
the patient anatomy, and an anatomical normalization scheme dependent on
patient anatomy. The results of all of the individual slice classifications are then
aggregated into a single classification by means of a voting algorithm. The total
classification accuracy of the final algorithms was 97.6% mean accuracy per
class for nonanatomically normalization scheme,and 97.9% mean accuracy per
class for anatomically normalization scheme.The total accuracy was 99.0% (13
errors in 1302 structures) for the nonanatomically normalization scheme, and
98.3% (22 errors in 1302 structures) for the anatomically normalization scheme.
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1 INTRODUCTION

Radiation therapy is a treatment modality that is indi-
cated for many oncologic malignancies and some
benign functional disorders. It is a technologically-
advanced field of medicine that is process-oriented. As
such, there are many steps in the treatment workflow
that are amenable to machine learning (ML) meth-
ods. Examples of applications of ML methods from the
recent literature include: automated diagnosis,[1] tissue
segmentation,[2] treatment planning[3,4], and outcome
prediction[5].

This is an open access article under the terms of the Creative Commons Attribution License,which permits use,distribution and reproduction in any medium,provided
the original work is properly cited.
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The quality of data in a radiation therapy is high:high-
resolution CT images,expert-drawn tissue contours,and
high-accuracy dose distribution calculations. The vol-
ume of high quality across modern radiation therapy
centers around the world is immense. Tools to permit
the mining of these data would be of great benefit to
investigators interested in applying ML methods to chal-
lenges in radiation therapy. However, significant barriers
exist that prevent this from happening currently. Barriers
related to data confidentiality are obviously very impor-
tant, but are not within the scope of the current work.
Instead, this work proposes a solution to a technical
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challenge that has very significant implications for data
mining efficiency: structure classification.

1.1 Problem Statement and hypothesis

Modern ML algorithms can often require a large amount
of data to train properly, and acquiring this data can
be difficult, particularly with medical data. The lack of
standardization further exacerbates this, as a partic-
ular structure may have different labels. For example,
the left parotid gland may be labeled “Left Parotid,”
or “Parotid_Left,” “Parotidl,” etc. There exist numerous
public databases of medical data, such as the Cancer
Imaging Archive,[6] and while these do contain numer-
ous image datasets, labeling of regions of interest
(ROIs) and organs at risk (OARs) remains inconsis-
tent between the various datasets. Thus, there exists
a demand for a method of curating the data.[7] The
American Association of Physicists in Medicine (AAPM)
through Task-Group 263 (TG-263) sought to improve
this by standardizing nomenclature for ROIs and dose-
volume histogram (DVH) metrics.[8] This standardization
was in response to the development of TG-113 in which
standardization of clinical trial methodologies recom-
mended standardization of nomenclature to facilitate
data pooling between clinical trials.[8,9] Moving forward,
institutes that choose to use the TG-263 standard could
potentially share data, but could lead to the exclusion
of datasets that predate TG-263, as well as data from
institutes that choose not to comply with TG-263.

1.2 Contributions and related work

Efforts to classify already contoured structures are often
made in the context of error detection. McIntosh et al.
(2013) used a Groupwise Conditional Random Forest
(GCRF) approach for detection of erroneously labeled
structures located in the chest, abdomen, and pelvis,
achieving an accuracy for organs at risk of 97% and
accuracy for target volumes of 85%.[10] This method
was chosen as the authors believed that CNNs lacked
the ability to discriminate similar shapes with a sufficient
level of accuracy.

Altman et al. (2015) used a series of metrics of the
contours themselves, such as the number of slices the
structure appears on, and axial area to construct a
database of metrics associated with known good con-
tours; achieving a sensitivity of 0.95 and specificity of
0.81, respectively.[11]

Chen et al. built a similar geometric attribute distribu-
tion (GAD) that characterized a contour’s mechanical
properties, such as shape and centroid, and compare
it against other structures, achieving sensitivity and
specificity of up to 1 and 0.979, respectively, for train-
ing set, with sensitivities between 0.848 and 0.908,

TABLE 1 Summary of regions of interest (ROI) along with the
TG-263 compatible name, the mean number of slices per patient that
contain such ROI, and the standard deviation of the mean

ROI TG-263 name

Train
set
(slices)

Test
set
(slices)

Left eye “Eye_L” 4788 1101

Right eye “Eye_R” 4738 1090

Left cochlea “Cochlea_L” 161 53

Right cochlea “Cochlea_R” 158 55

Larynx “Larynx” 5750 1283

Left lens “Lens_L” 1504 348

Right lens “Lens_R” 1494 345

Chiasm “Chiasm” 810 196

Left optic nerve “OpticNerve_L” 1125 281

Right optic nerve “OpticNerve_R” 1086 278

Brainstem “Brainstem” 11 536 2567

Brain “Brain” 25 590 5727

Esophagus “Esophagus” 20 832 4824

Spinal cord “SpinalCord” 21 746 4824

Left parotid “Parotid_L” 10 031 2220

Right parotid “Parotid_R” 9879 2183

Pituitary gland “Pituitary” 1357 298

Total 122 582 22 709

and specificities between 0.824 and 0.837 on the test
set.[12]

Altman et al. and Chen et al. both studied nine struc-
tures: brain, brainstem, left and right eyes, left and right
optic nerves, left and right parotids, and optic nerve. In
this work, we analyze all of the aforementioned struc-
tures, as well as the left and right cochlea, left and
right lenses,esophagus,spinal cord, larynx,and pituitary
gland (see Table 1).

Although an application of the algorithm discussed in
this paper could be used in error detection, we will dis-
cuss it in the more general case of contour classification.

In this work, we will introduce a novel tool that uses
a convolutional neural network (CNN) based on the
ResNet18[13] architecture to analyze the contours of a
particular patient CT slice and classify that contour.Ana-
lyzing the contours of many slices, we can aggregate
the classifications and assign a classification based on
a consensus.

One of the challenges associated with working with
medical data is the inherent unbalanced nature of
datasets. In this work, structures to be classified have
been drawn on CT datasets. Because these images
are sliced axially, certain ROIs are inherently overrep-
resented. Patients tend to have far more images with
a spine contour as compared to ROIs like the eyes
or optic chiasm. Although we considered several meth-
ods for handling data imbalance, ultimately, we decided
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to increase the weights on the most challenging ROIs,
the cochlea, and pituitary gland (see Table 3). Prelimi-
nary evaluation of network performance suggested that
increased the relative weights of several ROIs improved
overall network performance (data not shown).

We describe an algorithm that is capable of automat-
ically classifying ROIs. The approach we use is unique
as we combine images of the segments of the ROIs that
we wish to classify,as well as the position and geometric
properties of the contour itself to inform our classifica-
tion algorithm. Combining these different data together
is quite important to overcome some of the downsides
of each individual classification method.Using an image
of the segment of the ROI, a CNN can easily classify
ROIs with different shapes. However, it is very difficult
for CNNs to differentiate objects of similar shapes,at dif-
ferent positions, such as the left eye from the right eye,
or the esophagus from the spine.[10] Using the position
of the ROI, one can easily tell the difference between
two objects that are consistently separated in space,
such as the left and right eye, but will struggle with
ROIs that about one another, such as the spine from
the brainstem.[10] We can then compile the results for
numerous slices of the same ROI to evaluate how each
slice of the ROI is identified.

One of the differences between this work and previ-
ously published work described earlier is that previously
published work attempts to classify the entire structure.
This work breaks each structure into slices, attempts
to classify individual slices, and then aggregates the
results of the many classifications into a single clas-
sification of the entire ROI. Although we believe that
this work could be modified to perform classification on
whole structures using three-dimensional classifier, this
would require a significantly larger memory capacity as
compared to a two-dimensional classifier. Thus, it was
decided for this work to limit the work to two dimensions.

Ultimately, this work will help facilitate the automated
mining of historical and current databases to enhance
the efficiency of ML research in those applications
in which accurate identification of tissue structures is
of importance.

2 METHODS AND MATERIALS

This work is a retrospective study that received approval
from the local ethics board. CT image and contour
data from 546 previously treated head and neck can-
cer patients were anonymized and exported from the
Eclipse treatment planning system using an in-house-
developed ESAPI script. All OARs were contoured by
experienced, CMD-certified dosimetrists and approved
by a radiation oncologist. Of the 546 data sets, all
patients contoured before TG-263 were labeled with
an in-house-standardized nomenclature; patients after
TG-263 were labeled with a TG-263 compliant scheme.

Each CT image had a size of 512 × 512 voxels and
images were not preprocessed to match voxel dimen-
sions, with a uniform slice thickness of 2.5 mm.

Contours were saved in loss-less compressed
NumPy[14] arrays. Of the 546 patients, 100 were
withheld to serve as a test group. The remaining 446
served as a training set, 80% of which were assigned
to a train group and 20% were assigned to a validation
group. Table 1 outlines a brief summary of the patient
data used to train the network. Note that there is a
small asymmetry between certain classes, this can be
attributed to several factors include asymmetry in the
patient anatomy, or partial volume effects within the CT
that affected the delineation of contours.

In this work,we evaluate three different algorithms;the
first using only information regarding the position of the
segment along the axial plane (Section 2.1), the sec-
ond using only a fully CNN to classify images of the
segments (Section 2.2), the third is an algorithm that
incorporates both positional data, and binary images of
the contour to perform classification (Section 2.3).

The computer used to perform the calculations is a
desktop computer running Ubuntu Linux 20.04.2 LTS,
Intel Core i5-6500 3.2 GHz processor, 16 GB of RAM,
using GeForce RTX 2070 GPU with 8 GB of RAM for
network training.

2.1 Position-based classifier

The first network evaluated was a simple dense, or
fully connected, artificial neural network (see Figure 1,
“Position-Only Network”). Several versions were tested
including ones with and without a hidden layer, but in all
cases, the input is a tuple of scalars, and the output is a
vector of probabilities associated with each class. Con-
tour points were converted into binary masks (1 inside
the contour and 0 outside) and the geometric center of
the mask for each contour on each image slice was cal-
culated.To test whether or not a pixel should be a 1 or 0,
the center point of the pixel was checked to see if it was
inside the contour. No subsampling or supersampling
methods were utilized.

Images that are 512 by 512 pixels yield coordinates
pairs of integer value between 0 and 511; however,
most of the contours are localized around the center
of the image. As such in addition to unnormalized x–
y coordinate pairs, two normalization schemes were
studied. In the first normalization scheme, all coordi-
nates were linearly scaled from [0, 511] to [−1, 1] in both
the x and y directions in the axial plane. Coordinates
along the z direction (cranial-caudal) were also normal-
ized by taking the slice index of the superior slice of
the patient’s brain and setting that coordinate to be 1,
and the inferior slice of the patient’s brain to be 0, and
then linearly mapping the slice index of each slice for a
patient accordingly.In the second normalization scheme,
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(a)

(b)

(c)

(d)

(e)

(f)

F IGURE 1 Full network diagram for the combined segment-position-based classifier. (a) Input stack of images showing the slice to be
classified in the center, with preceding and succeeding images above and below, respectively (example slices are from a brain). (b) The images
are “stacked” into a three-dimensional array, of shape 3 × 512 × 512 and input into the pretrained ResNet18 (c). (d) The center-of -mass (CoM) is
extracted from the slice to be classified and input into the dense neural network alongside the output of the ResNet18 (e). (f) The output of the
network is a vector whose elements are probabilities that the slice in question is assigned to each class

the left- and right-most extremes of the patient’s brain
contour were identified and assigned coordinates of
−1 and 1, respectively, and all other coordinates scaled
linearly. This was repeated for the anterior-posterior
direction, setting the posterior-most point of the brain
to be 1, and anterior-most point to be −1. For the
z-direction, the most superior point was assigned a
coordinate of 1, and the most inferior point −1.

The choice of brain for coordinate normalization was
arbitrary, but justified based on the facts that: (1) it was
contoured on all patients in our dataset and (2) it is
large enough that small differences in contouring or
voxelization should be minimal.

All position-based classification that included the z-
axis also included z-axis normalization as the range
of possible values depended on the positioning of
the patient within the scanner and ranges for possible
values varied dramatically.

2.2 Segment-based classifier

The second algorithm employed a transfer learning
approach,[15] using a ResNet18 and[13] pretrained on
ImageNet (see Figure 1, “Segment-Only Network”).[16]

The ImageNet-trained ResNet18 is expecting an input
with three channels, corresponding to the red, green,
and blue color channels; in this work, we input a single
slice binary mask of the ROI we wish to contour into the
“green” channel. In a single-slice classification scheme,
we simply fill the other two channels with 0’s. In a mul-
tislice scheme, we fill the adjacent slices into the “red”
and “blue” channels (if the slices exist, otherwise leave

as zeros). We remove the last layer of the ResNet18,
and replace it with a hidden layer, followed by a fully con-
nected output layer. This was done to match the number
of outputs to the number of classes.

Previous work by Xu et al.has demonstrated that com-
bining consecutive slices dramatically improves the per-
formance of CNNs in medical imaging applications.[17]

2.3 Combined
segment–position-based classifier

Using the same methods as described in Section 2.1,
we generated center-of -mass coordinates from binary
masks of contour images. The inputs to our network
are then the binary image of the contour (input into a
ResNet18), as well as the center-of -mass, which are
concatenated to the final layer of the ResNet18 (see
Figure 1 “Combined Segment-Position Network”). Simi-
larly to work in Section 2.2, the number of nodes in the
hidden layer was determined using a Bayesian hyper-
parameter selection using a Tree-structured Parzen
Estimator in Optuna.[18–20]

Three versions of this classifier were tested: the
first with position coordinates normalized to [−1,1]
(nonanatomical coordinates), one with position coordi-
nates normalized anatomically as described in Sec-
tion 2.1, and a second network anatomically normalized
networked trained using the eyes and brainstem to pro-
vide cradial-caudal and lateral extent to define the [−1,1]
normalization points. This normalization scheme was
considered since it is not necessarily standard clini-
cal practice to include the entirety of the head in the



LIVERMORE ET AL. 5 of 13

TABLE 2 Summary of networks tested

Network Description

PU Position along axial plane only, unnormalized

PU-32 Position along axial plane only, unnormalized, with 32-node hidden layer

PN Position along axial plane only, normalized (nonanatomical)

PN-32 Position along axial plane only, normalized (nonanatomical), with 32-node hidden layer

PN-32Z Position in three dimensions, normalized (nonanatomical), with 32-node hidden layer

PA-32Z Position in three dimensions, anatomically normalized, with 32-node hidden layer

SS Segmentation-only using a single slice image

SM Segmentation-only using three consecutive images

CNS Combined position-segmentation classifier, normalized (nonanatomical), slice-by-slice classification

CNV Combined position-segmentation classifier, normalized (nonanatomical), after application of the voting algorithm

CAS-B Combined position-segmentation classifier, anatomically normalized to the brain, slice-by-slice classification

CAS-E Combined position-segmentation classifier, anatomically normalized to the eyes and brainstem, slice-by-slice classification

CAV-B Combined position-segmentation classifier, anatomically normalized to the brain, after application of the voting algorithm

CAV-E Combined position-segmentation classifier, anatomically normalized to the eyes and brainstem, after application of the voting
algorithm

planning CT scan. The alternative anatomical normal-
ization using the eyes and brainstem was only tested
for the combined segment and position-based classifier.
This is because, as it will be shown in the results, the
combined classifier produced better results compared
to the position only classifier.

In addition to the inclusion of a coordinate system,
as a further input to the network, we included the total
number of slices in the ROI being identified. For this
dataset, which uses uniform slice thickness of 2.5 mm,
the number of slices will be related linearly to the length
of the ROI along axial direction. This information was
included as early trials of our network demonstrated that
including additional information had a dramatic effect on
network performance (see Section 3.1).

2.4 Voting algorithm

The output of each network studied in Sections 2.1–2.3
was a slice-by-slice classification of each contour
present on a given slice. No restrictions were placed on
the output of the networks, meaning that more than one
contour on a given slice could be assigned to the same
class. Ultimately, the output of the networks was used to
assign a class to an entire ROI (composed of multiple
contours on multiple slices).For each slice in a structure,
we perform classification on the given slice and consider
the class selected by the algorithm as a “vote” in favor
of that particular structure. The structure with the most
overall votes is considered the winner.

Owing to the large number of networks described in
the methods, Table 2 has been provided with a brief
summary with an abbreviated nomenclature scheme,
which will be referred to in all subsequent text.

2.5 Robustness testing

To test the robustness of the network against missing
slices of contoured structures,34 patients were selected
at random from the test set. For each patient, a single
organ was selected and a single slice from the organ
was removed from the dataset with each organ being
selected exactly twice. The remaining slices were then
classified using our network, with arrays of zeroes filling
in the missing slices. In this instance, the entire structure
is classified slice-by-slice as per section 2.3 using the
brain anatomically normalized network,and then the vot-
ing algorithm is applied to create a single classification
as per Section 2.4.

3 RESULTS

3.1 Position-based classifier

Results for the position-based classifier are sufficiently
inferior that only the total accuracy statistics (i.e., per-
centage of correctly classified contours out of the total
number of contours in the test set) on a slice-by-slice
basis are reported. Figure 2 shows the performance
of all of the position-based classifiers described in
Section 2.1. Total accuracy is plotted as a function of
epoch. Unnormalized coordinates with no hidden lay-
ers (PU, green) achieved a total accuracy of 18.1%
in the final epoch on the validation set. The inclu-
sion of a 32-node hidden layer (PU-32, blue) only
improved the results to 21.1%. For perspective, guess-
ing randomly with equal probability of each class would
result in total accuracy of 5.8%, and guessing randomly
with probability proportional to the number of slices of
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F IGURE 2 Mean accuracy of the position-based classifier as a function of number of training epochs. (Training accuracy are in solid lines,
validation accuracy in dashed lines)

F IGURE 3 Plot of the accuracy of SS versus SM classifier networks. (Training accuracy are in solid lines, validation accuracy in dashed
lines)

each class would achieve a total accuracy of 13.1%.
Normalizing the coordinates, without including a hid-
den layer improved the total accuracy to 28.4% (PN,
red); adding a hidden layer with the normalized coor-
dinates improved the total accuracy to 34.8% (PN-32,
black). Including the normalized z coordinates with a 32-
node hidden layer improved the classification accuracy
to 65.5% (PN-32Z, cyan). Using anatomical normaliza-
tion of the coordinate system improved total accuracy to
69.5% (PA-32Z, magenta).

3.2 Segmentation-based classifier

Figure 3 shows the total accuracy as a function of epoch
when the classification is based on contour segmenta-
tion. The benefit of including adjacent image slices in

the red and blue channels becomes apparent after the
first epoch. The total accuracy of the multislice classi-
fier (SM) is 93.0% on the final epoch compared with
88.8% with the single-slice classifier (SS). Classification
based on segmentation alone is superior to classifica-
tion based on position alone,which only achieved a total
accuracy of at most 69.5%.

3.3 Combined
segment–position-based classifier

The combined segmentation and position-based classi-
fier achieved a mean accuracy per class (i.e., the propor-
tion of correctly identified structures averaged over all
structures) of 92.0% when using the first (nonanatomi-
cal) normalization scheme (CNS); while mean accuracy



LIVERMORE ET AL. 7 of 13

F IGURE 4 Normalized confusion matrix (top) and log (base-10)
of normalized confusion matrix for the slice-by-slice classification
scheme, nonanatomical normalized coordinates (blank areas
indicate zeroes)

per class was 93.3% when using the brain anatomical
normalization scheme (CAS-B). In terms of total accu-
racy, CNS achieves a total accuracy of 97.0%, while
CAS-B achieves a total accuracy of 97.3%, approx-
imately 4% better than the best segmentation-based
classifier (Figure 5). Figure 4 demonstrates the confu-
sion matrix of our slice-by-slice algorithm, normalized
such that the sum of each column is 1 (top), and the log
base-10 of the confusion matrix on the bottom. Normal-
izing the coordinates to the eyes and brainstem (CAS-E)
as opposed to the brain had a slight reduction in the
total accuracy on both a slice-by-slice and after the vot-
ing algorithm. The mean accuracy per class was 91.6%
when normalizing to the eyes and brainstem. A brief
summary of these results is presented in Table 4. It is

F IGURE 5 Normalized confusion matrix (top) and log (base-10)
of normalized confusion matrix for the slice-by-slice classification
scheme, brain anatomically normalized coordinates (blank areas
indicate zeroes)

worth noting that the spinal cord classification accuracy
was low when using the eyes and brainstem normaliza-
tion (71.6%,see Table 7);without including the spine, the
mean accuracy per class is 92.9%.

Hyperparameters of the final network were deter-
mined using Bayesian Hyperparameter search using a
Tree-Parzen Estimator in Optuna.[18–20] The final hype-
rparameters used in the network are detailed in Table 3.

3.4 Voting algorithm

Using the voting algorithm, we are able to achieve an
total accuracy of 99.0% (13 errors in 1302 structures;
mean accuracy per class of 97.6%) when using the
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TABLE 3 Summary of hyperparameters used in network design
and training (Dropout 1 denotes dropout between the concatenated
output of the ResNet18 and the hidden layer; dropout 2 denotes the
dropout between the hidden layer and the output layer.)

Hyperparameter Value

Batch size 12

Learning rate 0.1

Learning rate decay 0.5

Weight decay (L2) 0

Dropout 1† 0.6

Dropout 2† 0.2

Size of hidden layer 64

Cochlea weight 10

Pituitary weight 10

All other class weights 1

nonanatomical coordinates (CNV), 98.3% (22 errors in
1302 structures, mean accuracy per class of 98.1%)
when using the brain anatomical coordinates (CAV-
B); and 97.9% (27 errors in 1302 structures, mean
accuracy per class 96.7%) when using the eyes and
brainstem anatomical normalization coordinates (CAV-
E) (Figure 6). In Figure 7, the normalized and log-10
confusion matrices demonstrate only a handful of incor-
rect classifications for the brain-normalized network.
Similarly, Figure 8 shows the normalized and log-10
confusion matrices for the anatomical model using the
brain normalization scheme. Figure 9 demonstrates
the normalized and log-10 confusion matrices for the
anatomical model using the eyes-brainstem normaliza-
tion scheme. While the overall number of errors in the
network is reduced when using the nonanatomical coor-
dinates, the number of misclassified cochlea is reduced
when using anatomical coordinates.

In Figures 10–12, histograms of the number of failed
classifications as a function of structure thickness (i.e.,
number of image slices containing the incorrectly clas-
sified ROI) are shown for the cases of nonanatomical
coordinates (Figure 10) and brain anatomical coordi-
nates (Figure 11) and eyes and brainstem anatomical
coordinates (Figure 12). A majority occur for structures
with fewer than 10 slices.

Table 4 provides a brief summary of the difference
between CNS, CNV, CAS-B, and CAV-B. Table 5 shows
a more detailed breakdown of the total accuracy of CNS,
and CNV networks on each of the anatomical struc-
tures. Table 6 shows a more detailed breakdown of the
accuracy of CAS-B,and CAV-B networks on each of the
anatomical structures.

3.5 Robustness testing

The algorithm proved to be quite robust against small
gaps in the slices of the structures. Out of 34 organs

F IGURE 6 Normalized confusion matrix (top) and log (base-10)
of normalized confusion matrix for the slice-by-slice classification
scheme, using the eyes and brainstem normalized coordinates
(blank areas indicate zeroes)

TABLE 4 Summary of results for the nonanatomically
normalized coordinates and anatomically normalized coordinates for
both the mean accuracy per class on a slice-by-slice basis, and after
applying the voting algorithm (all values are states as mean accuracy
per class)

Method

Slice
accuracy
(%)

Voting
(ROI)
accuracy
(%)

Nonanatomically Coords, CNS, CNV 92.0 97.6

Brain Anatomically Coords, CAS-B,
CAV-B

93.3 97.9

Eyes and Brainstem Anatomically
Coords, CAS-E, CAV-E

91.6 96.7
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TABLE 5 Summary of the accuracy for individual ROIs using
CNS and CNV

ROI

Slice
accuracy
(%)

Voting
accuracy
(%)

Left eye 98.2 100.0

Right eye 96.3 100.0

Left cochlea 84.9 86.7

Right cochlea 90.9 93.3

Larynx 96.1 100.0

Left lens 98.9 100.0

Right lens 97.2 97.8

Optic chiasm 87.2 94.1

Left optic nerve 93.9 100.0

Right optic nerve 93.0 100.0

Brainstem 75.2 98.0

Brain 94.0 100.0

Esophagus 89.6 98.9

Spinal cord 92.5 100.0

Left parotid 93.8 98.9

Right parotid 97.1 100.0

Pituitary gland 85.2 92.0

Mean 92.0 97.6

TABLE 6 Summary of the accuracy for individual ROIs using
CAS-B and CAV-B

ROI

Slice
accuracy
(%)

Voting
accuracy
(%)

Left eye 99.7 100.0

Right eye 99.6 100.0

Left cochlea 88.7 93.3

Right cochlea 89.1 93.3

Larynx 93.7 98.8

Left lens 99.4 100.0

Right lens 99.4 100.0

Optic chiasm 91.6 96.5

Left optic nerve 95.9 100.0

Right optic nerve 96.5 100.0

Brainstem 86.9 99.0

Brain 97.5 100.0

Esophagus 80.5 95.7

Spinal cord 86.1 96.2

Left parotid 97.2 100.0

Right parotid 99.6 100.0

Pituitary gland 91.0 91.0

Mean 93.6 97.9

F IGURE 7 Normalized confusion matrix (top) and log (base-10)
of normalized confusion matrix for the structure classification
scheme after voting, non-anatomically normalized coordinates (blank
areas indicate zeroes)

evaluated, 32 were correctly identified when there were
no missing slices, and 30 were correctly identified when
there was a single missing slice. When there were
no missing slices, the two errors being an esophagus
classified as a brainstem, and an optic chiasm classi-
fied as an esophagus. When there were missing slices,
the previously mentioned errors persisted, and the two
new misclassifications were a right eye mislabeled as
a brainstem, and a left cochlea being mislabeled as a
left lens. In the instance of the first misclassification, six
slices were initially classified right eye, five slices were
classified brainstem, and one was right lens; and in the
instance with missing slices, four were labeled right eye,
five were labeled brainstem, and two were labeled right
lens. In the case of the misclassified cochlea, initially
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F IGURE 8 Normalized confusion matrix (top) and log (base-10)
of normalized confusion matrix for the structure classification
scheme after voting, brain anatomically normalized coordinates
(blank areas indicate zeroes)

two slices were labeled left cochlea and one slice was
labeled left lens, and after removing a slice, one slice
was classified as a left cochlea and one slice was clas-
sified as a left lens, leading to a tie (ties are considered
misclassification).

4 DISCUSSION

Normalization of the coordinate system plays a role in
ensuring that a network is able to classify structures.
We attribute this to two factors: centering the coordinate
system in the middle of the field allows the algorithm to
more easily differentiate between left and right anatomy;
and a normalization reduces the absolute differences

F IGURE 9 Normalized confusion matrix (top) and log (base-10)
of normalized confusion matrix for the structure classification
scheme after voting, eyes and brainstem anatomically normalized
coordinates (blank areas indicate zeroes)

between training values. Using the anatomical coordi-
nates also had an improvement for several structures.
This is likely due to the fact that patient anatomy can
vary quite a bit, but each patient will likely have similar
proportions in their anatomy.

Using multiple slices of contour data results in a
marked improvement in the performance of the net-
work in the segmentation-based approach since this
affords the classification algorithm more information.It is
important to note that the position-based and segment-
based classifiers were only trained for five epochs and
with limited hyperparameter tuning. This was intentional
as these networks were selected to demonstrate the
relative impact of normalization and utilization of multi-
ple slice data in network performance. The training and
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F IGURE 10 Histogram of number of classification failures as a
function of number of slices in a structure to be classified,
nonanatomical coordinates

testing curves also appear to be quite similar, which
may be because the training set was sufficiently large
that it was representative of the anatomical distribution
contained within the test set.

The voting algorithm used in this paper is a sim-
ple approach to electoral systems. There are numerous
other possible voting systems (see, e.g.,[21]), and future
work could determine a more suitable approach for clas-
sification problems. We considered several alternatives,
including a ranked-ballot approach, but found that in
many of the cases that challenge our network, it did not
make a meaningful difference, and thus opted to keep
the first-past-the-post method.

A nuanced difference between the anatomical and
nonanatomical normalization schemes is the accuracy
for the individual classes. For example, in Figure 7, the
nonanatomical normalization scheme achieves 100%
accuracy on 11 out of 17 classes; three other classes
achieving an accuracy of greater than 95%. The largest
proportion of errors can be attributed to the left and
right cochlea as well as the pituitary. In Figure 8, 8/17
structures have 100% accuracy, and five more are at
least 95% or greater.The left and right cochlea achieving
only 93.3% and 86.7% accuracy, respectively, and the
pituitary achieving 93.3% responsible for a large pro-
portion of the errors. Thus, while the brain anatomical
normalization achieves better mean accuracy per class
as compared to the nonanatomical normalization, it has
fewer classes with 100% accuracy.

F IGURE 11 Histogram of number of classification failures as a
function of number of slices in a structure to be classified, brain
anatomical coordinates

All normalization schemes yield algorithms that strug-
gle to perform classification on structures with a small
number slices (typically less than 10) after the voting
process (see Figures 10–12). As an extreme example,
classification of the brainstem in CNS algorithm was
75.2% accurate on a slice-by-slice basis, but after CNV
was 98.0% accurate. Compared to the left cochlea for
the same algorithm, only 84.6% accuracy on a slice-
by-slice basis, and after voting, this only improves to
86.7%. This is due to the fact that for a large organ,
it is unlikely that a majority of slices will be misclassi-
fied, but if the number of slices is very small, as in the
case of the cochlea, the probability of misclassification
is still high. Among the structures with a larger num-
ber of slices,misclassification generally occurs between
structures with similar shape placement along the axial
plane; the pituitary gland, for example, is often misclassi-
fied in CAV-B, CAV-E, and CNV as either an esophagus
or spinal cord.

Although the anatomical normalization scheme pre-
sented here used the brain as the reference anatomy,
it is likely that both anatomical and nonanatomical ver-
sions of these algorithms would generalize to other
anatomical sites, provided that a suitable reference for
the anatomical coordinate system was available. Fur-
thermore, there was no correction for the orientation of
the brain. Although all patients were imaged head first
supine, there is some variance in the posture. Finally,
the number of training examples for several of the ROIs
were very small (see Table 1), and it is very likely that
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F IGURE 12 Histogram of the number of classification failures
as a function of the number of slices in a structure to be classified,
eyes and brainstem anatomical coordinates

TABLE 7 Summary of the accuracy for individual ROIs using
CAS-E and CAV-E

ROI

Slice
accuracy
(%)

Voting
accuracy
(%)

Left eye 98.0 100.0

Right eye 98.2 100.0

Left cochlea 86.8 80.0

Right cochlea 89.1 93.3

Larynx 92.7 100.0

Left lens 98.3 100.0

Right lens 98.9 100.0

Optic chiasm 82.8 83.5

Left optic nerve 91.8 100.0

Right optic nerve 94.1 100.0

Brainstem 84.9 100.0

Brain 94.4 100.0

Esophagus 83.5 97.9

Spinal cord 71.6 96.2

Left parotid 95.5 98.9

Right parotid 99.2 100.0

Pituitary gland 93.9 96.6

Mean 91.6 96.7

a larger dataset with more examples would improve
the results.

The networks presented in this paper all relied on
two-dimensional data, or a series of two-dimensional
images as inputs. While it would certainly be possible
to use a network that utilizes three-dimensional data
and performs classification on the whole structure, this
would require a network with a larger memory foot-
print, and it was decided for the purpose of this study
to limit the effort to using a series of two-dimensional
images and the voting mechanism as a sort of proxy for
three-dimensional classification.

5 CONCLUSION

We have effectively demonstrated a robust algorithm
for the classification of anatomical structures in head
and neck patients in a radiation oncology setting. We
have also demonstrated how normalization of feature
data and including data from multiple sources impacts
the quality of classification. These algorithms are capa-
ble of classification of numerous structures with mean
accuracy per class of 97.6% for the nonanatomically
normalized algorithm, and 97.9% for the brain anatomi-
cally normalized algorithm, and 96.7% mean accuracy
per class for the eye-brainstem anatomically normal-
ized algorithm. Total accuracy of the nonanatomically
normalized algorithm achieved 99.0% accuracy, while
the brain anatomically normalized algorithm achieved
98.3% total accuracy, and the eyes-brainstem algorithm
achieved a total accuracy of 97.9%.
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