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We present an implicit solvent coarse-grained (CG) model for quantitative simulations of 1-palmitoyl-2-
oleoyl-sn-glycero-3-phosphocholine (POPC) bilayers. The absence of explicit solvent enables membrane
simulations on large length and time scales at moderate computational expense. Despite improved computational
efficiency, the model preserves chemical specificity and quantitative accuracy. The bonded and nonbonded
interactions together with the effective cohesion mimicking the hydrophobic effect were systematically tuned
by matching structural and mechanical properties from experiments and all-atom bilayer simulations, such as
saturated area per lipid, radial distribution functions, density and pressure profiles across the bilayer, P2 order,
etc. The CG lipid model is shown to self-assemble into a bilayer starting from a random dispersion. Its line
tension and elastic properties, such as bending and stretching modulus, are semiquantitatively consistent with
experiments. The effects of (i) reduced molecular friction and (ii) more efficient integration combine to an
overall speed-up of 3-4 orders of magnitude compared to all-atom bilayer simulations. Our CG lipid model
is especially useful for studies of large-scale phenomena in membranes that nevertheless require a fair
description of chemical specificity, e.g., membrane patches interacting with movable and transformable
membrane proteins and peptides.

1. Introduction

Phospholipid bilayers are among the most versatile and
significant biomaterials in nature. They enclose and protect all
living cells and compartmentalize all eukaryotes into many
specific organelles (such as nucleus, endoplasmic reticulum,
Golgi apparatus, etc.) between which they enable highly
regulated membrane-mediated traffic.1,2 The biological functions
of phospholipid bilayers depend strongly on their structural and
mechanical properties,3,4 and a great deal has been learned from
experimental techniques such as NMR, scattering techniques,
micropipet aspiration, etc.4-11 However, important examples
remain in which complex biomembrane behavior is key to
biological function but hard to probe directly in experiment. In
this situation (and in fact through all branches of physics),
computational physics has long been valued as an attractive
option to complement the laboratory.12-16

A strategy which has offered much insight in the past is to
perform all-atom (AA) simulations.17-20 However, experimental
limitations are often felt particularly dearly on the mesoscale,
the range smaller than what can be optically accessed but larger
than localized chemistrysloosely speaking, tens to hundreds
of nanometers and micro- to milliseconds in time scale.
Unfortunately, with current (and foreseeable) computational
resources, fully atomistic simulations are generally restricted
to a few hundred to at most a few thousand lipids (10-50 nm)
for up to a few hundred nanoseconds (smaller system in a few
cases can be simulated for up to the order of a microsecond).21

In this situation, simplified models promise to bridge the gap
between experiment and simulation. Of particular interest to us
are particle-based coarse-grained (CG) models, in which lipids
or small lipid patches are replaced by objects with much fewer
degrees of freedom.22-25 The majority of these models follows

a top-down scheme,26-36 in which not only the resolution is
lowered but also no explicit effort is made to rescue local
chemical specificity. Rather, these models are tuned to reproduce
global observables, such as phase behavior or elastic properties,
and are thus most useful when lipid- or chemistry-specific detail
can safely be neglected.

However, the chemical composition of the fatty acid chains
or the nature of the hydrophilic headgroup does not just
determine macroscopic membrane properties; they matter if one
wants to understand, say, how chain unsaturation affects fluidity
or rigidity, or how inserted proteins interact with the bilayer
and each other. Since these questions can still involve large
scales (think for examples of antimicrobial peptide agg-
regation37,38), coarse-graining often remains the only viable way,
but local detail must now be rescued in a systematic effort aimed
to quantitatively bridge the finer and coarser scales. Along these
lines, several bottom-up methodologies have been developed
for deriving more reliable and computationally efficient biomem-
brane models. For instance, by matching structural properties,
Shelley et al.39 and their followers40 developed explicit-solvent
lipid CG models which quantitatively reproduce the radial
distribution functions (RDFs) and cross-bilayer density profiles
from fully atomistic simulations. Another approach is to match
lipid partitioning coefficients between oil and water;28,41 a recent
popular incarnation of this strategy is the MARTINI force
field42,43 and its extension to peptides.44 Simulations show that
these models then also reproduce the cross-bilayer density
profile, P2 orientational order parameter, and elastic properties.42,43

Finally, Izvekov and Voth derived effective CG force fields by
matching the total force on each CG particle to the one observed
in the corresponding all-atom system.45 This MS-CG methodol-
ogy optimizes a different merit function while approximating
the full N-body potential of mean force and thus generally differs
from force fields derived through structure matching protocols.
However, since both are approximative (structure matching* E-mail: zwang@cmu.edu or zunjingwang@gmail.com.
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neglects higher than two-body correlations and force-matching
projects the N-body potential onto the smaller subspace of
realized interactions), no generally valid quality statement can
be made (see ref 46 for more details.)

Given that membranes are two-dimensional structures in
three-dimensional space, accounting for the embedding solvent
is prone to becoming the computationally dominating task,
especially once the membrane bends significantly. This makes
any strategy that eliminates the solvent very attractive.47

Successes in removing solvent particles from simulations have
first been achieved in top-down CG models.29-36 These models,
however, never aimed at reliable structural information. Re-
cently, Murtola et al. found that structure matching based on
inverse Monte Carlo gave rise to some unphysical thermody-
namic properties of their solvent-free CG lipid model.48

Although these authors explicitly derived their CG force field
from a bilayer state, the resulting CG lipids occasionally formed
dense clusters separated by empty space. In order to stabilize
the membrane state, Murtola et al. had to artificially couple a
surface tension constrain to the CG model. This suggests that
structure matching by itself might not suffice for arriving at a
solvent-free CG lipid model which yields a stable stress-free
membrane. Izvekov and Voth also recently presented a bottom-
up solvent-free CG lipid model based on the MS-CG protocol.49

Although their CG model was shown to reproduce most
atomistic RDFs (a nontrivial statement if mapping is based on
forces), their CG lipids self-assembled into “bicelle”-like
aggregates in which boundary hydrocarbon chains remained
exposed at the boundaries (see ref 49). At this point it is unclear
whether this is a deficiency of the parametrization or merely an
indication of a kinetically trapped state.

Our primary goal in this paper is to propose a novel implicit
solvent CG model for lipid membranes which overcomes several
of the difficulties mentioned above. We derive a structure-
matched bottom-up solvent-free CG lipid force field which
yields a stable zero-tension membrane at the correct area per
lipid, while retaining computational efficiency, chemical speci-
ficity, structural accuracy, and, as a consequence, essentially
correct elastic properties. Along the way, we also suggest a
strategy for how to incorporate aspects of the equation of state
(specifically, the question what the correct zero-tension state
should be) into the iteration loop that refines the CG potentials.
Finally, since our coarse-graining scheme differs both from the
one employed by Murtola et al.48 and Izvekov and Voth,49 we
thereby also provide an alternative model which will be valuable
when assessing remaining questions about the still subtle step
of eliminating the solvent in simulations aiming to preserve
specificity.

The remainder of this article is organized as follows. In
section 2, we describe the simulation details, including the
reference system, CG model, the method used to derive the CG
force field, and the resulting CG interaction potentials. In section
3, we evaluate the performance of our model in terms of RDFs,
cross-bilayer density profile, pressure profile, the saturated area
per lipid, self-assembly, elastic properties, line tension, and
diffusion behavior.

2. Model and Method

2.1. Reference System. The reference data for coarse grain-
ing (e.g., RDFs, P2 order parameter, density profiles, pressure
profiles, etc.) were obtained from all-atom (AA) simulations.
Also, available experimental data were compared with AA
simulations to examine their reliability. Beyond this, experiments

were also used as reference for saturated area per lipid (i.e., the
zero-tension area per lipid) as well as stretching and bending
modulus.

All AA simulations were performed with the parallel mo-
lecular dynamics (MD) program NAMD.50 Initial coordinates
of the lipids were taken from a previous simulation by Feller
and MacKerell.51 All systems were simulated using the fully
atomistic CHARMM2752 parameters to describe the lipid
interactions. The visualizations were performed with VMD.53

Periodic boundary conditions were applied and a constant
temperature (310 K) was maintained using a Langevin thermo-
stat with a damping coefficient of 0.5 ps-1. Constant pressure
(1 atm) in the simulations was obtained using a Langevin-piston
barostat with a piston period of 2 ps, a damping time of 2 ps,
and a fully anisotropic pressure coupling.51 The long-range
electrostatic interactions were computed every time step with
the particle mesh Ewald (PME) algorithm,54 employing a real-
space cutoff of 12 Å. The integration time step was 1 fs.

The smallest square membrane system consisted of 72 lipids
fully hydrated with 3881 water molecules and equilibrated for
about 30 ns in the NPzzAT ensemble, with the pressure normal
to the membrane Pzz ) 1 atm (box size in z-direction 〈Lzz〉 )
83.8 ( 0.3 Å) and the projected membrane area A ) Lx × Ly

corresponding to an area per lipid of 68.3 Å2 (the saturated area
measured in experiments9). A larger membrane systems with
288 lipids was then created from this base system by replicating
it along both the x- and y-directions. A comparison of electron
density profiles between AA simulations and experiment9 is
shown in Figure 1, which validates the structure from an area-
fixed AA simulation. Note that Debye-Waller broadening due
to thermal undulations of the bilayer has been removed from
the experimental data by a deconvolution based on the known
value of the bilayer elasticity.5 Hence, a comparison with the
essentially fluctuation-free result from the simulations of a small
bilayer patch is permissible. In complementary simulations using
the NPzzΣT ensemble (with an applied tension Σ ) 0), we found
that the saturated area shrinks by 15-18% compared to
experiments. This is a well-known artifact of the CHARMM27
force field55 which we will explicitly address during the coarse-
graining procedure. Even though the bilayer at the correct area
per lipid is therfore under stress, a comparison of structure is
nevertheless believed to be meaningful.56 The reason is that
stresses react far more sensitively to changes in interactions.

When computing the density and pressure profiles, we aligned
the center of mass of the membrane for each frame individually
before block averaging data. The pressure profiles were
calculated at constant volume and fixed area of the simulation
box. The instantaneous local pressure tensors were computed

Figure 1. Comparison of electron density profiles between experiment
and simulation. The red solid line represents experimental data; the
blue dashed line and error bars were computed via block average of
an equlibrated all-atom NPzzAT simulation.
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with the method presented by Lindahl and Edholm,57 where the
simulation space was partitioned into approximately 1 Å wide
slabs along the average normal of the membrane (i.e., the
z-direction), and the instantaneous pressure was computed from
all kinetic contributions and pairwise interparticle interactions.
Pairwise interactions include the covalent two-, three-, and four-
body terms of the bonded forces (three- and four-body terms
were decomposed into simple two-body forces in the calculation
of the instantaneous pressure), as well as the nonbonded
electrostatic and van der Waals forces. The contribution to the
local pressure tensor from the kinetic energy and the covalent
interactions were first computed by conducting simulations using
PME as described above, with coordinates saved every 1000
fs. These saved coordinates were subsequently analyzed using
the direct Coulomb interaction truncated at the cutoff distance
of 20 Å. This truncation of the electrostatic potential is
sufficiently long to reproduce a similar local pressure profile to
the Ewald profile of bilayers.58 All spatially resolved stress
profiles were sampled over 20 ns after equilibration. For an
anisotropic lipid bilayer system, the lateral membrane stress is
obtained from the pressure tensor according to ref 59

where Pn ) 〈Pzz〉 is the normal and Pt(z) ) (1/2)〈Pxx(z) + Pyy(z)〉
the average lateral pressure. While Pn is constant for reasons
of mechanical stability, Pt(z) depends on the depth inside the
bilayer.

2.2. CG Model. Each POPC lipid molecule is mapped onto
a structure consisting of 16 CG sites and 8 different bead types
(see Figure 2). We will use the following notation: CH for the
choline entity of the headgroup; PH for the phosphate group;
GL for the glycerol backbone; E1 and E2 for the ester groups
of the sn-1 and sn-2 tails of the lipid, respectively; AS, AD,
and AE for the hydrocarbon groups -(CH2-CH2-CH2)-,
-(CH2dCH2)-, and -(CH2-CH3), respectively (see Figure 2).
This mapping is at the same resolution as previous work.39,42,49

In addition, we distinguish the unsaturated alkyl groups AD with
a double bond from the saturated AS groups similar to the
improved MARTINI force field.43 This is important, because
lipid chain orientational order and bilayer phase behavior are
sensitive to the level of alkyl chain unsaturation.60,61 Figure 3
shows a comparison of the probability distribution of the

intramolecular bond angle between AS-AD-AS and AS-
AS-AS, from which it is obvious that this distinction is
necessary to properly capture the structural difference between
saturated and unsaturated tails.

The comparison of bond distributions between the CG sites
E1 and E2 is also shown in Figure 3. Although E1 and E2 are
different in bonded interactions, their nonbonded interacting
potentials with other particles should not differ since they have
the same chemical structure. We thus denote both E1 and E2
as ES when referring to their nonbonded interactions.

For each of the CG beads, the center of mass of the atom
groups is defined as the CG center. We will also separate the
interactions between CG beads into bonded and nonbonded
interactions, i.e.

Neither is implementing this in practice trivial nor is the answer
unique, because the available atomistic pair correlation functions
entangle the contributions from bonded and nonbonded forces.
However, due to the physically distinct role played by both types
of potentials, the effort is worthwhile, because it should improve
transferability of the force field.62

For the intramolecular bonds, angles, and dihedrals, the
potentials of mean force are obtained from their probability
distributions:

Figure 2. Structure of the POPC lipid molecule. The left panel shows
the mapping scheme from AA to CG, the middle panel shows the
topology of the lipid molecule in a CG simulation with multibody
interactions (where the three-body angle interactons and four-body
improper dihedral interactions are not explicitely shown), and the right
panel shows the topology of the lipid molecule in which all the
multibody interactions have been replaced with effective two-body
interactions. Notice that the size of the CG beads in the middle and
right panel does not represent the real excluded volume of each bead.

Σ ) -∫-∞

∞
dz [Pn - Pt(z)] (1)

Figure 3. (a, top) Comparison of the distribution probabilities of bonds
between AA simulations and fitting data via eq 6. (b, bottom)
Comparison of the distribution probabilities of CG bond angles across
a saturated and unsaturated CG bead between AA simulations and fitting
data via eq 7.

Ucg(r) ) ∑ Ub
cg(r) + ∑ Unb

cg(r) (2)

Ub
cg(r) ) -kBT ln

Pb(r)

r2
+ const (3)
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where kB is the Boltzmann constant, T the temperature in Kelvin,
r the bond length, θ the angle between two intramolecular bonds,
and ψ the intramolecular dihedral angle.

Figure 3 shows an example of the distributions of bonds and
angles on the CG level obtained from AA simulations. The
distribution of bonds can be successfully described as a sum of
2 to 5 Gaussian functions:

and similarly the angle distributions can be described by

with suitable fitting coefficients of ab,i, bb,i, cb,i, etc.
Figure 4 shows ln[Pd(ψ)] for several intramolecular dihedral

angles between CG groups obtained from AA simulations.
Except for the improper dihedral PH-GL-E1-E2, all the other
effective dihedrals vary on the order of the thermal energy kBT,
so we chose to neglect the latter in our CG model.

It is of course feasible to perform CG simulations with
multibody interactions such as the ones in eqs 4 and 5. However,
computing surface tension and pressure profiles of a simulation
system with multibody interactions is nontrivial.63 In order to
simplify our CG force field, we therefore replaced all multibody
intramolecular interactions with effective pairwise bonded
interactions (see Figure 2, from middle panel to right panel).
Using this CG model then leads to 21 types of bonded
interactions and 28 types of nonbonded interactions (see
Supporting Information for more details).

2.3. CG Simulations. We performed CG MD simulations
in both the NAT and the NΣT ensemble, where N is the number
of CG particles, A the box area, T the temperature, and Σ the
lateral bilayer tension. The units used in our CG simulations
are ς ) 1 Å (length), ε ) kBT = 4.28 × 10-21 J = 2.58 kJ/mol

= 0.617 kcal/mol (energy) at T ) 310 K, m ) 1 Da (mass), τ
) ς(m/ε)1/2 = 0.062 ps (time). Notice that, although the units
for length, temperature, and mass retain their physical meaning
also in the CG system, the same does not hold for the time unit
τ. It is the appropriate characterization of the dynamics only if
one considers instantaneous properties such as the kinetic
energy, but it does not describe the correct long-time dynamics
of the corresponding AA system, because there is no reason
why coarse-graining would preserve dynamical properties. In
fact, due to the strongly reduced molecular friction in a system
with fewer degrees of freedom, the dynamics tends to be
substantially speeded up, an effect which is usually considered
beneficial. We will discuss this in more detail in section 3.

The constant temperature in all the CG simulations was
achieved via a Langevin thermostat64 (with a time step δt )
0.1τ and a friction constant Γ ) 0.2τ-1). Constant-volume
simulations were implemented using a quadratic cross-sectional
area in bilayer xy-plane, i.e., Lx ) Ly. Periodic boundary
conditions were applied in all three directions and Lz was set
large enough so that the membrane will not interact with its
periodic image in z-direction (Lz = 167ς in our simulations).
In the NΣT ensemble, the constant tension conditions were
achieved via a modified Andersen barostat,65 allowing for box
resizing only in x- and y-directions (with a box friction Γbox )
4 × 10-5τ-1 and a box mass Q ) 10-5-10-4m). All CG
simulations were performed using ESPResSo.66

2.4. CG Force Field Derivation. The difficulties encountered
by Murtola et al.48 when following the standard structure-based
bottom-up CG strategies (see our Introduction) suggest that
elimination of the solvent entails difficulties that need to be
addressed explicitly. Indeed, after the water is removed the
hydrophobic effect must be reincorporated by hand and is not
automatically contained in the potentials derived from the AA
pair correlation functions extracted from the bilayer state (a
subset of phase space!). The reason for this is easy to understand:
imagine a system of two particle types, A and B, with purely
repulsive interactions but a �-parameter which drives demixing.
The pair correlation functions between A particles inside the
demixed A phase can be inverted to the original repulsive A-A-
interactions, but of course in the absence of B particles the A
particles would not aggregate. Rather, the absence of a confining
pressure must be compensated by cohesive interactions which
are adjusted to reproduce the A density of the segregated binary
system in the B-free aggregated unary system.

Hence, we need to incorporate an additional effective
cohesion between the lipids. We will then show how to adjust
this interaction during the usual iteration loop for potential
optimization such that (i) its strength correctly mimics lipid
cohesion while (ii) it does not affect the known structure that
we of course still aim to reproduce. As it turns out, this
additional parameter conveniently permits us to correct the one
obvious deficiency of the AA simulation, namely, that the area
per lipid at zero tension is too small.

In our CG model we choose to exclude the intramolecular
nonbonded interactions between the CG beads which have been
covered by bonded interactions. Figure 5 shows the control
diagram in deriving the CG force fields with the improved
multiscale structure-match methodology. Let us now comment
on some critical aspects in a bit more detail:

1. Choosing good initial potentials. For the bonded interac-
tions, as shown in subsection 2.2, the initial estimates for the
tabulated nonbonded potentials among CG sites R and � were

Ua
cg(cos θ) ) -kBT ln Pa(cos θ) + const (4)

Ud
cg(ψ) ) -kBT ln Pd(ψ) + const (5)

Pb(r) ) ∑
i

ab,i exp{- (r - bb,i)
2

cb,i
2 } (6)

Pa(cos θ) ) ∑
i

aa,i exp{- (cos θ - ba,i)
2

ca,i
2 } (7)

Figure 4. Selected distributions of dihedral angles. The red line shows
the improper dihedral PH-GL*-E1-E2; all other curves (correspond-
ing to the dihedrals CH-PH-GL-E2, E1-AS-AS-AS, E2-AS-
AS-AD, AD-AS-AS-AE, and AS-AS-AS-AS) show a variation
that justifies their neglection in our CG simulation.

11210 J. Phys. Chem. B, Vol. 114, No. 34, 2010 Wang and Deserno



based on the potentials of mean force measured in the AA
reference system, i.e.

where gR�
AA is the RDF between CG types R and � measured in

the AA simulation (where RDFs were tabulated every 0.1 Å),
the subscript n represents nonbonded interactions, 0 represents
an initial estimate, and λ0 is an adaptive coefficient typically
within the range 0.15-0.25.

We computed the AA bond distributions from the atomistic
conformations sampled by simulating a single lipid molecule
in vacuum and avoided “double counting” of the nonbonded
interactions (i.e., erroneously incorporating some of their effects
into the bonded interactions) by switching off the intralipid
nonbonded interactions for a pair of atoms if they are not
explicitly covered via bonded interaction potentials on the CG
level (which includes bond and angle potentials).62,67 These long-
range interactions will later be incorporated through CG
intramolecular nonbonded interactions.

Similar to the previous SM CG work,39 we tabulated the
nonbonded potentials and matched them to the RDFs of the
CG sites of the reference system (AA simulations). For the latter,
we used the iterative Boltzmann technique (see below).

For most of the nonbonded interactions, the bilayer state under
a saturated area taken from experiment was chosen as our
reference systems for RDFs (see Figure 6a) since we aim to
reproduce the structure of such a bilayer system. However, the
sampled phase space of this reference system has an extremely
small probability for the hydrophilic CG beads (e.g., CH)
meeting any of the hydrophobic beads (alkyl beads AS, AD,
and AE). To alleviate this problem, we cut the bonded
interactions between each pair of the alkyl CG representatives

in AA simulations, resulting in another reference system for
the initial potentials as shown in Figure 6b in which CG
equivalents of head-tail contacts are sampled much more
frequently. The initial estimate of nonbonded potentials between
CH, PH and AS, AD, AE were obtained form this chopped-up
system rather than the intact bilayer. This trick of splitting the
target molecule into fragment molecules has been successfully
applied in CG modeling of azobenzene molecules with aniso-
tropic structures,62,67 but has not been tried in the previous CG
strategies for membranes.39,40,42,45 With this initial estimate of
the potentials, the excluded volume in the nonbonded interac-
tions between head and tail CG beads is much more accurate.
Since the CG potentials are state dependent, the difference in
average density between the two reference systems might lead
to a variation of the long-range part of the effective interactions,
but we can correct this in the subsequent optimization loops
where the bilayer membrane is the reference system.

2. Applications of Lorentz-Berthelot rules. The Lorentz-
Berthelot combining rules have been found valid for simple
mixtures of much greater degree of asymmetry.68 Considering
the similarity of the three types of alkyl CG beads in chemical
specificity, the assumption that their nonbonded interactions
obey Lorentz-Berthelot rules is thus reasonable.

In the parameter derivation, we separate the potentials into
five sets according to CH-alkyl, PH-alkyl, GL-alkyl, ES-alkyl,
and alkyl-alkyl interactions, as these five sets likely differ in
their functional form. For the alkyl-alkyl interactions, using
Lorentz-Berthelot rules and choosing the AS-AS interaction
as a reference, we define

where i, j ∈ {AS, AD, AE} and σ and ε represent the diameter
of exclude volume and potential depth, respectively. For the

Figure 5. Flow chart for deriving the solvent-free CG force field for our lipid bilayer membrane. The initialization of CG potentials includes two
parts (see eq 14). In the optimization procedure, the Lorentz-Berthelot rule was applied to the alkyl CG beads but this is not explicitly shown
inside.

Upmf,R�(r) ) -kBT ln[gR�
AA(r)] (8)

Un,R�,0
CG (r) ) λ0Upmf,R�(r) (9)

Uij(r) )
√εiεj

εAS
UAS-AS(σi + σj

2σAS
r) (10)
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other four sets of potentials, we use a slightly modified
Lorentz-Berthelot mixing rule, namely

where i ∈ {CH, PH, GL, ES} and j ∈ {AS, AD, AE}. Table 1
summarizes the Lorentz-Berthelot parameters in eqs 10 and
11. By use of these rules, the total number of nonbonded
interactions that need to be optimized was cut down by a factor
of 2 (from 28 to 15), which constitutes a significant technical
advantage.

3. Iterative Boltzmann inversion. The initial guess for the
potentials will not reproduce the target RDFs from AA
simulations. One way to iteratively achieve convergence is to
use the difference in the AA PMF and the CG PMF in iteration
i as a correction to the PMF used for the next CG simulation i
+ 1. This so-called iterative Boltzmann inversion method thus
computes69,70

where the coefficient λiter,R�,i improves convergence. It typically
has values between 0.05 and 0.25 and can be optimized based
on the resulting difference in RDFs between a trial short-time
CG and AA simulations. In order to calculate the derivatives
of these potentials, we fit ∆Un,R�,i

CG (r) to splines after each
iteration.71 The updated CG nonbonded potentials Un,R�,i+1

cg, rdf (r)
were then tabulated every 0.01 Å and truncated at 15 Å, and
were used in a new simulation. This iteration was continued
until the maximum of the differences between the RDFs was
smaller than 0.25.

4. Phenomenological cohesion mimicking the hydrophobic
effect. As explained above, we need to introduce an additional
cohesive interaction potential to drive lipid aggregation. Bor-
rowing ideas from top-down CG methods,33,35,36 we mimic the
hydrophobic effect of water via a weak long-range attractive
interactions. The cohesion was added to alkyl tails and interfacial
beads (PH, GL, ES) of lipid based on the previous top-down
CG experience. For these CG sites, the effective force field
consists of two parts, namely

The effective force and potential describing the cohesion are
respectively

where for convenience we defined the scaled distance r* )
(π/wc)[r - (rc + 1/2wc)]. This potential is qualitatively the same
as the one proposed in refs 35 and 36, but it differs quantitatively
by also making the force a differentiable function of distance,
which simplifies later spline fitting. The cohesion strength ε and
its range [rc, rc + wc] now need to be adjusted. The necessary
tuning is based on (i) requiring bilayer stability, (ii) monitoring
the lateral stress profile, and (iii) comparing the RDFs of alkyl
beads from CG simulations with the reference AA system. The
latter two requirements do not play a role in top-down schemes,
but they matter for our bottom-up scheme.

We started by adding a weak cohesion to the hydrocarbon
tails of lipids and optimize the range of this cohesion and its
strength by matching the RDFs between CG and AA simula-
tions. Afterward, we included cohesion terms between the other
types of CG beads and also optimized their ranges and strengths

Figure 6. Snapshots of AA simulation of (a, left) a bilayer with 288 lipids; (b, right) a fragment system of 72 lipids where the AA bonds representing
the alkyl CG bonds were cut for each lipid.

TABLE 1: Parameters Used in the Potential Mixing Rules
from Eqs 10 and 11

CG type AD AE CH PH GL ES

σ/σAS 0.97 0.96 1.2 1.0 0.9 1.0
ε/εAS 0.44 1.1025 - - - -

Uij(r) ) � εj

εAS
Ui-AS( σi + σj

σi + σAS
r) (11)

∆Un,R�,i
CG (r) ) -kBT ln[gR�,i

CG (r)] - Upmf,R�(r) (12)

Un,R�,i+1
CG (r) ) Un,R�,i

CG (r) - λiter,R�,i∆Un,R�,i
CG (r) (13)

UCG ) UCG,RDF + UCG,cohesion (14)

fcohesion(r) ) -2ε
wc

cos2(r*), rc < r < rc + wc (15)

Ucohesion(r) )

{-ε

- ε
2{1 - 2

π
[r* + sin(r*) cos(r*)]}

0

r e rc

rc < r < rc + wc

r g rc + wc

(16)
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according to the saturated area per lipid, the lateral stress profile;
at the same time, we tried to keep the difference in RDFs between
CG and AA as small as possible. An appropriate range of this
cohesion is rc ) 8-10 Å and rc + wc ) 12-15 Å. Both the range
and strength of cohesion are CG-type dependent. Its strength turned
out to be remarkably small: ε is within 0.006-0.02kBT, but without
this small attraction the bilayer falls apart. We also found that the
optimized strength of cohesion is stronger for the interfacial CG
beads GL and ES (ε ) 0.01-0.2kBT) compared to the hydrocarbon
beads (ε ) 0.006kBT). This finding is consistent with the previous
CG study in a top-down scheme,33 but in our case it comes out as
a result of the optimization process and has not been imposed from
the start.

The adjustment of fcohesion was included in both iteration loops
(see Figure 5). In practice, in the first loop, after getting corrected
UCG, RDF, we tested several cohesion values and chose the
UCG, cohesion reproducing the long-range density (the tail part of
the RDFs) in AA simulations. The range, however, was not
modified, and cohesion only acted between tail beads. This best
UCG, cohesion is then included in the update of UCG. In addition,
recall that in the optimization process based on RDFs, rather
than remedying incorrect bonded distributions with nonbonded
interactions (or vice versa), we worked hard to separately adjust
the two. This also helps now, when we add an additional
nonbonded interaction which we do not want to affect bonded
forces. Overall, the number of iterations via RDFs was around
20 in the case leading to overall well-converged potentials with
the CG RDFs agreeing with AA simulations.

In the second iteration loop (see Figure 5), we include all
beads except CH in the adjustment of cohesion, and optimize
the partitioning of the cohesion in order to match both the
saturated area per lipid and stress profile (this required around
eight iterations). If locally the bilayer tension is too large/small,
the cohesion is locally reduced/increased. After the relative
strength has converged, we adjust the overall cohesion strength
by a global prefactor that aims to reproduce the correct area.
Finally, we made an overall adjustment of the CG force field
together by considering both RDFs and the saturated area per
lipid.

Figure 7 shows the effective potentials of the solvent-free
CG model. Figures 8 and 9 show several selected total RDFs

and intermolecular RDFs respectively. For detailed reference,
the Supporting Information shows a comparison of total RDFs,
intermolecular RDFs, and intramolecular RDFs among all CG
types (see Figures S1, S2, and S3, respectively). All bonded
and nonbonded distributions obtained from AA simulations are
quantitatively reproduced by our CG force field. Recall that all
CG potentials corresponding to CG sites AD and AE were
obtained from mixing rules of eqs 10 and 11 using the
parameters in Table 1, rather than from individual iterative
optimizations. The observed consistency in RDFs between CG
and AA simulations also for these interactions indicates that
using Lorentz-Berthelot-like combining rules, if carefully
handled, are a powerful and reliable way to derive effective
force fields for CG sites with similar chemical property.

3. Performance and Discussion

3.1. Structure. A comparison of the cross-bilayer mass
density profile (which is now more natural than the electron
density profile) between the AA and our CG model is shown
in Figure 10. Both AA and CG simulations were performed in
the NVT ensemble with the saturated area per lipid fixed to the
value Alipid ) 68.3 Å2 reported in experiments.9 Considering
the error bars, the density profiles are mutually consistent,
indicating a good reproduction of structure by the solvent-free
CG force field.

To evaluate the lipid alignment with the bilayer normal, we
computed the orientational order parameter of each lipid bond as

where θ is the angle between the unit vector along some particular
CG bond and the average bilayer normal. A completely aligned
bond has Sbond ) 1, a completely random (isotropic) bond has Sbond

) 0, and a bond which is perfectly perpendicular to the bilayer
normal has Sbond )-1/2. The comparison of the orientational order
parameter of each CG lipid bonds between CG and AA simulations
shows again a good overall agreement (see Figure 11) even though
the tail order appears to be slightly underestimated in our CG
model. Notice, however, that the reduction in order in the

Figure 7. Selected nonbonded interacting potentials between CG beads.

Sbond ) 1
2

〈3 cos2 θ - 1〉 ) 〈P2(cos θ)〉 (17)
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unsaturated sn-2 tail is captured very well. This shows that the
CG force field is able to reproduce important membrane features
corresponding to the lipid bond order, which matters for instance
for bilayer phase transitions, in which this order changes significantly.

3.2. Saturated Area Per Lipid. The solvent-free CG
simulations were performed both in the NAT and in the NΣT
ensembles. Figure 12 shows the pressure profile from an NAT
CG simulation. The normal component of the pressure of the
lipid membrane is constant (as required by mechanical stability)
and in particular equal to zero in our CG case (as expected in
the absence of explicit solvent). The surface tension of the CG
membrane is thus obtained by eq 1 with Pn ) 0, i.e., by the
integral over the tangential stress distribution. A comparison
of the stress profile Pt(z) - Pn between solvent-free CG
simulations and AA simulations is shown in Figure 12. Although
the overall curve shape is similar between CG and AA, the
amplitude in the AA simulations is bigger than in the CG case.
The reduced CG stress in the center region of the CG lipid
membrane is due to the added cohesion recreating the hydro-
phobic effect. The smaller outer peaks within a distance of
20-30 Å from the center of the CG bilayer also stem from the
absence of an explicit solvent; this region of our simulation
where the transition to the solvent (or rather its absence) actually
occurs naturally is most susceptible to such artifacts, and we

did not find a way to entirely eliminate the discrepancy in the
stress profile without at the same time adversely affecting other
observables, such as the RDFs.

Notice that, with the CHARMM27 force field, the AA
simulations in the NPzzΣT ensemble produced a much too small
saturated area per lipid compared to experiment. If we write dA

for the hydrocarbon thickness in an NPzzAT atomistic simulation
(with A chosen as the correct saturated area from experiment9),
and dΣ0

for the (incorrect) hydrocarbon thickness from a zero-
tension atomistic simulation, we can define the scaling parameter
s ) dA/dΣ0

and stretch Pt(z) into Pt
s(z) ) Pt(z/s). Both Pt(z) - Pn

from an NPzzAT atomistic simulation and Pt
s(z) - Pn from a

zero-tension atomistic simulation are shown in Figure 12.
Figure 13 shows the time evolution of the projected (simula-

tion box) area in a CG simulation. The average of the data after
equilibration (past 3 × 105τ in Figure 13, corresponding to an
uncorrected time of 20 ns, i.e., without including the speed-up
factor associated with the reduced number of degrees of
freedom) yields a saturated area per lipid A ) 69.8 ( 0.5 Å2

from an NΣT CG simulation, consistent with the experimental
value A ) 68.3 ( 1.5 Å2 per lipid.9 This verifies that our solvent-
free CG force field reproduces the saturated area per lipid from
experiments.

Figure 8. Comparison of the total radial distribution functions g(r) between AA (red solid line) and CG (blue dashed line) simulations among six
selected CG types. The total g(r) includes both intermolecular and intramolecular contributions. The figure for CH-E1 displays the worst-converging
case with the largest difference of g(r) among all the CG types. Both the AA and CG results were computed from block average of a simulation
of a bilayer with 288 lipids.

11214 J. Phys. Chem. B, Vol. 114, No. 34, 2010 Wang and Deserno



3.3. Stability and Self-assembly. To test the thermodynamic
stability of a CG bilayer, we tested whether our CG lipids would
self-assemble into this state. We thus followed the time evolution
of a system that was started from 288 lipids randomly dispersed
in a box of size (99.17 Å)3 (see Figure 14), which means that
the initial configuration was generated by choosing both the
position and orientation of every lipid randomly (of course
without mutual overlap). To avoid getting kinetically trapped

in states which display very slow healing of large-scale bilayer
defects, we used parallel tempering with replica exchanges
between eight temperatures (279, 294.5, 310, 325.5, 341, 356.5,
372, and 387.5 K). A sequence of snapshots taken from the
system at the temperature of interest, T ) 310 K, (see Figure

Figure 9. Comparison of the intermolecular radial distribution functions ginter(r) between AA (red solid line) and CG (blue dashed line) simulations
among six selected CG types. Both the AA and CG results were computed from block average of a simulation of a bilayer with 288 lipids. The
results of AS-AS, AE-AE, and AS-AE show the efficiency of the Lorentz-Berthelot combining rules in our applications. Comparison of ginter(r)
of CH-PH and ES-AS with the g(r) in Figure 8 illustrates how strongly the bonded and nonbonded interactions are entangled.

Figure 10. Comparison of the density profile between AA (red solid
line) and CG (blue dashed line) simulations of a bilayer, where both
AA and CG error bars were obtained from block averaging.

Figure 11. Comparison of the orientational order parameter P2 of
intramolecular bonds between AA (red) and CG (blue) simulations.
The bond numbers listed on the horizontal axis are indexed in the inset.
Notice that the bonds 11 and 12 around the unsaturated CG group (and
their subsequent tail bonds) show a significantly lower bond order than
their corresponding partner bonds in the fully saturated tail.
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14) proves that our lipids spontaneously aggregate into a
membrane, or in other words, that the bilayer state is the
thermodynamically stable conformation of our lipids. This is a
nontrivial statement even if one considers that our force field
was parametrized from the bilayer state, because there is no
automatic way of guaranteeing that other states would not have
an even lower free energy. However, given the bilayer-derived
origin of our CG interactions, neither the thermodynamic
properties of the initial nonbilayer phase nor the kinetics or
thermodynamics of the transition into the bilayer equilibrium
should be regarded as being quantitatively correct.

3.4. Elastic Property. 1. Stretching Modulus. In simula-
tions, the zero-tension stretching modulus of a membrane, KA,
can be estimated from the thermal fluctuations of the membrane
area:72

where A is the projected area of membrane and Σ is its surface
tension, chosen to be zero in this case. From the projected area
fluctuation at equilibrium (after 3 × 105τ in Figure 13), we
obtained KA ) 108 ( 20 mN/m.

In experiments, the expansion modules KA of membranes was
obtained from the measured relation between the apparent area,
A, of vesicles and the applied tension:7,73

where A0 is the saturated area of the membrane at zero surface
tension. Notice that close to the stress-free state the surface
tension is not proportional to area dilation; instead, due to the
effect of thermal shape undulations the logarithm of the tension
becomes a linear function of area dilation, with a slope
proportional to the elastic bending modulus κ. A Hookean
stress-strain relation with a corresponding linear modulus Kapp

therefore only exists at slightly more elevated tension (above
approximately 0.5 mN/m).7,73 But since in simulations a bilayer
often consists of only a few hundred lipids, with very few
possibilities for shape undulations, eq 19 can be used to measure
KA even in the near-zero-tension regime (see the plot of surface
tensor versus projected area in Figure 15). By fitting the data
in Figure 15 to eq 19, we obtained KA ) 140 ( 15 mN/m. The
value of KA from “mechanical” measurements is larger than the
value obtained from “thermal” measurements by about 30%,
but within our error bars both values are not mutually
inconsistent as they have been in a previous study.72 Our value
of KA is somewhat smaller than typical experimental values for
phospholipid bilayers (230-265 mN/m),7,73 but not distressingly
so.

2. Bending Modulus. Evans and Rawicz proposed that the
bending modulus κ can be obtained from the stretching modulus
KA through the relation κ ) KAh2/b, where h is the membrane
thickness and b is a numerical elastic ratio. This relation was
obtained by a scaling analysis based on the molecular theory
of chain packing,3 but it also follows directly just from simple
continuum elasticity considerations.74 The tricky bit is the
numerical value of b. For a polymer-brush bilayer, where two
monolayers are held together by hydrophobic interactions, the
theoretical analysis75 proposed b ) 24. For an unbounded
isotropic-elastic bilayer, where the two monolayers can slide
freely against each other, the expected value is b ) 48.27,75 For
a pair of isotropic layers that cannot slide with respect to each
other, b ) 12.75 In experiments, the value of b ) 24 is typically
used to infer the stretching modulus from the bending modulus.76

Using this value, and the membrane hydrocarbon thickness h
) 27.1 Å, we find that the bending modulus of or CG POPC
membrane at T ) 310 K is κ ) (4.3 ( 0.5) × 10-20 J. Compared
with experimental data κ ) 8.5 × 10-20 J,9,76 our thus calculated
bending modulus is about a factor 2 too small. But since the
value of b is model-dependent, and also the precise value for
the membrane thickness h is not completely obvious (but it
enters quadratically), further checks are needed.

A more model-independent way to determine κ can be derived
from measuring the membrane undulation spectrum. The elastic
energy of a free-standing membrane, in the absence of external
perturbation, can be written as77

where κ and Σ are the bending modulus and lateral tension
respectively, Ap is the projected area of the membrane, hrb
describes the height of the membrane relative to some reference
plane (i.e., “Monge gauge”). Expanding hrb in Fourier modes

Figure 12. Comparison of the pressure profile between AA and CG
simulations of a bilayer with 288 lipids. The value of Pt(z) - Pn for
NPzz AT and NPzzΣT (Σ ) 0) in AA simulations are shown with green
and pink impulses, respectively. Both Pt(z) - Pn (red line) and Pn (blue
line) for the CG simulations are shown as well.

Figure 13. Projected area per lipid as a function of time for an NΣT
(Σ ) 0) CG simulation of a bilayer with 288 lipids. The blue line shows
the measured value from experiment.

KA )
kBT〈A〉NΣT

〈A2〉NΣT - 〈A〉NΣT
2

(18)

KA ) A0
∂Σ
∂A

(19)

E ) 1
2 ∫Ap

d rb[Σ|∇hrb|2 + κ|∇2hrb|2] (20)

hrb ) ∑
qb

hqbeiqb · rb (21)
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where qb ) (2π/L)(nxıb + nyjb), and applying the equipartition
theorem, we obtain the power spectrum of modes32,34,36,47

Here q is the magnitude of the vector qb and L is the side length
of the square membrane. Notice that under zero lateral tension,
the Σq2 term vanishes. Figure 16 shows the undulation spectrum
of a square membrane with 4608 lipids (〈L〉 = 40 nm) which is
sampled in the N(Σ)0)T ensemble for the simulation time of
9.8 × 106τ. Even though we have simulated a fairly large
membrane, there are still only a few modes which are in the
asymptotic regime, and the lowest-q mode might not yet be
fully equilibrated. Hence, we need a cautious extrapolation
procedure when fitting the spectrum. We decided to look at
q4〈L2|hqb|2〉 for low q and fit it to the functional form

see Figure 16. Notice that the c1qc2 term (c2 = 2) corresponds
to a protrusion contribution.78 Depending on the upper limit of
q chosen for the fit, we obtain values for κ in the range 8 ×
10-20 J (qmax ) 0.055 Å-1, c2 f 2.1) up to 13 × 10-20 J (qmax

) 0.033 Å-1, c2 f 1.9). This value for κ agrees better with
experiments than the estimate based on the stretching modulus.

3.5. Line Tension and Rupture Tension. In our CG model,
the hydrophobic effect of the aqueous environment is implicitly
accounted for by a phenomenological cohesion between non-
headgroup beads, which is optimized to reproduce the neat
bilayer state, but not an open edge. Hence, both the line tension
and, as a consequence, the overall stability of the bilayer could
be adversely affected. To test whether the membrane is
overstabilized by the cohesion, we computed the line tension
for CG membranes.

The line tension can be determined from a computation of
the free energy as a function of pore size32,79,80 or from the
stress-strain relation of a bilayer.36,81 Here we use a simpler
method. By spanning a membrane across the x-direction of a
periodic box which is not large enough to also span the
y-direction, two stable linear open edges appear (see Figure 17).

Figure 14. Self-assembly of lipids into a bilayer starting from a random dispersion at a temperature T ) 310 K captured from a parallel tempering
simulation. From top left to bottom right the snapshots taken at times t/τ ) 0, 600, 800, 950, 1000, 16 000, 21 000, 38 000, 50 000, 64 000,
respectively. Initially, the lipids aggregate quickly into a locally lamellar structure, presumably corresponding to a local minimum in the free energy
(see the top five snapshots from t ) 0 to t ) 1000τ). After this, it takes a very substantial time to eliminate kinetically trapped large-scale defects
and arrive at the global minimum in free energy, which corresponds to a defect-free fluid bilayer (see the bottom snapshots from t ) 16 000τ to
t ) 64 000τ).

Figure 15. Bilayer tension Σ as a function of projected area per lipid
from NVT CG simulations of a bilayer with 288 lipids. The solid line
is a linear fit to the Hookean model Σ ) KA(Alipid - Alipid,0)/Alipid,0.

〈L2|hqb|2〉 )
kBT

κq4 + Σq2
(22)

q4〈L2|hqb|2〉 )
kBT

κ
+ c1q

c2 (23)

Figure 16. Undulation spectrum of a bilayer membrane with 4608
lipids sampled in N(Σ ) 0)T ensemble for 9.8 × 106τ. The fits of the
data to the functional form eq 23 are shown with the upper limit of q
chosen as qmax ) 0.055 Å-1 (solid line) and qmax ) 0.033 Å-1 (dash
line). The fitted q-4-only terms (without protrusion term) are explicitly
shown as well (the straight lines in logarithm x- and y-coordinates).
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These edges will exert a force equal to twice the line tension
along the x-direction. Notice that since the width of the
membrane can relax by choosing the distance between the two
open edges appropriately, no additional force due to surface
tension exists. Hence, the line tension γ is given by the simple
formula

where σxx is the xx-component of the stress tensor, and Ly and
Lz are the side lengths of the simulation box in y- and
z-directions, respectively. After warmup and an additional
equilibration time of 2 × 105τ, averages were obtained by
simulating up to 106τ and measuring the stress σxx every 2τ
(after which the stress autocorrelation has essentially decayed
to zero). The measured value is γ ) 29 ( 12 pN.

Typical experimental line tensions for a phosphatidylcholine
(PC) bilayer membrane have been reported in the range of
6.5-30pN.82-85 All-atom simulations find (12 ( 9)-(35 ( 10)
pN for a DMPC membrane.86 Our value is well within the range
of both experiments and all-atom simulations of PC membranes.
Moreover, with a simple theory,36 the line tension γ can be
translated into a rupture tension

where A0 is the saturated area of the membrane. Using the value
A0 ) (40 nm)2, the area we used in the simulations where we
determined the undulation spectrum, we find that the rupture
tension is around 14 mN/m, showing again that we have not
overstabilized the bilayer phase.

3.6. Diffusion. The dynamics of the solvent-free bilayer was
examined by monitoring the in-plane lateral diffusion of lipids.
The long-time diffusion coefficient is defined as

where

and ri(t) and rcm(t) are the (two-dimensional) in-plane coordi-
nates of lipid i and the center of mass of the membrane at time
t, respectively, and N is the number of lipids. Figure 18 shows

the in-plane displacement of lipids as a function of time from
our CG simulation. It can be seen from this figure that the CG
lipid displacement curve exhibits a constant slope when t
exceeds about 2.5 × 104τ. Fitting the slope yields the diffusion
coefficient D ) 70.86 ( 0.77 µm2/s, using the uncorrected time
mapping τ ) 0.062 ps. Compared with typical experimental
values D ) 1.7-7.8 µm2/s87 and AA simulations D ) 2.6-3.9
µm2/s,87 the effective lateral diffusive dynamics is faster by 1-2
orders of magnitude. This is of course neither surprising nor
disconcerting, considering the reduced degrees of freedom in
the CG model. Rather, this factor is a measure of the model-
intrinsic speed-up between the “naive” time scale ς(m/ε)1/2 )
0.062 ps derived from natural length, mass, and energy, and
the actual long-term time scale which belongs to the physical
system our CG model is supposed to represent.

This speed-up is one of the two reasons why our CG model
gains computational efficiency. The other reason is the fact that
due to the different potentials, fewer degrees of freedom, and
the absence of water even a specified bare time can be simulated
faster on the CG level than on the AA level. Specifically,
simulating a membrane with 288 lipids for 1 ns (uncorrected
time in units of τ) on our cluster (Xeon E5430 2.66 GHz chips
in parallel with infiniband connection) takes 8 CPUh with our
CG model (using ESPResSo) but 504 CPUh with a fully
atomistic model (using NAMD). Combining both factors, we
expect an overall speed-up in computational efficiency of
approximately 3-4 orders of magnitude between our CG model
and a comparable AA simulation. Of course, once one begins
to look at bilayers which are curved and thus need to be
embedded in substantially more solvent, this factor will be
significantly bigger.

4. Conclusions

On the basis of an improved structure-matching methodology,
we presented a solvent-free coarse-grained model for quantita-
tive simulations of a POPC lipid membrane. When deriving the
CG force field, data from both all-atom simulations and
experiments were carefully chosen as a reference. The effective
CG potentials were optimized through iterative loops, aimed to
reproduce both RDFs and the saturated area per lipid of the
bilayer.

The solvent-free CG force field drives a random lipid
dispersion into a fluid bilayer via self-assembly at the experi-
mental temperature. This shows that the bilayer phase is indeed
the thermodynamically stable state. In particular, this also
assures us that a bilayer will be stable under many kinds of
structural perturbations (open edges, inserted or adsorbed
proteins, strong curvature, fusion intermediates, etc.), meaning

Figure 17. Snapshots in equilibrium of a CG simulation of bilayer
with 288 POPC lipids for computing line tension, viewed along x- (left
panel), y- (center panel), and z-axes (right panel).

γ ) -1
2

〈σxx〉LyLz (24)

Σrupture ) 3(πKAγ2

2A0
)1/3

(25)

D ) lim
tf∞{1

4
d
dt

〈MSD2d(t)〉} ) lim
tf∞{ 1

4N
d
dt

〈 ∑
i)1

N

(∆ri)
2〉}

(26)

(∆ri)
2 ) {[ri(t) - rcm(t)] - [ri(0) - rcm(0)]}2

(27)

Figure 18. Two-dimensional mean-squared displacement from CG
simulation (red solid line). The blue dashed line represent a linear fit
from 2.5 × 104τ to 1.5 × 105τ.
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that one can venture to study such situations without having to
fear that the membrane, due to its exotic solvent free representa-
tion, will fall apart if not meticulously kept in a pristine bilayer
conformation. At the same time, the reproduction of a physically
meaningful line tension shows that our phenomenological
cohesion potential does not overstabilize the bilayer state.

To examine the performance of the solvent-free CG force
field, we explored many physical properties of the bilayer
membrane, including the cross-bilayer density profile, the P2

order parameter of each lipid bond, the pressure profile, and
the stretching and bending moduli. Comparison of these
properties with experiments and fully atomistic simulations
shows a quantitative or semiquantitative consistency, with the
notable caveat that elastic properties seem to be slightly too
soft. The speed-up factor derived from the reduced number of
degrees of freedom is approximately 1-2 orders of magnitude,
as determined from matching diffusion coefficients. Combined
with the more efficient integration of the equations of motion
this results in an overall speed-up of 3-4 orders of magnitude
compared to AA simulations while still keeping a large amount
of chemical specificity. This will be highly valuable for any
study that involves mesoscale membranes, or even their interac-
tions with equally coarse-grained proteins in implicit solvent.88-92
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