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Abstract
The outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) is spreading fast worldwide. There is a pressing need to understand how the virus counteracts host innate immune
responses. Deleterious clinical manifestations of coronaviruses have been associated with virus-induced direct dysregulation
of innate immune responses occurring via viral macrodomains located within nonstructural protein-3 (Nsp3). However, no
substantial information is available concerning the relationship of macrodomains to the unusually high pathogenicity of
SARS-CoV-2. Here, we show that structural evolution of macrodomains may impart a critical role to the unique
pathogenicity of SARS-CoV-2. Using sequence, structural, and phylogenetic analysis, we identify a specific set of historical
substitutions that recapitulate the evolution of the macrodomains that counteract host immune response. These evolutionary
substitutions may alter and reposition the secondary structural elements to create new intra-protein contacts and, thereby,
may enhance the ability of SARS-CoV-2 to inhibit host immunity. Further, we find that the unusual virulence of this virus is
potentially the consequence of Darwinian selection‐driven epistasis in protein evolution. Our findings warrant further
characterization of macrodomain-specific evolutionary substitutions in in vitro and in vivo models to determine their
inhibitory effects on the host immune system.

Introduction

Since the first reports of patients with atypical pneumonia or
coronavirus disease 2019 (COVID-19) in Wuhan, China in
late December 2019, the outbreak has now become a
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pandemic with global socioeconomic impact. Presently,
there is no vaccine or specific antiviral treatment for
COVID-19. On 7 January 2020, through genome sequen-
cing technology, a novel coronavirus (nCoV) was identified
as the causative pathogen, named as 2019-nCoV (also
referred as SARS-CoV-2) [1].

CoVs are commonly associated with respiratory and
gastrointestinal tract infections and constitute a phylogen-
etically diverse viral group, comprising of four genera:
alphacoronavirus (α-CoV), betacoronavirus (β-CoV),
gammacoronavirus (γ-CoV), and deltacoronavirus (δ-
CoVs) [2]. They are complex pathogens that are known to
infect multiple host species, including humans [3, 4]. Before
the emergence of COVID-19, six CoVs were known to
infect humans. For instance, HCoV‐NL63 (β-CoV), HCoV‐
229E (β-CoV), HCoV‐OC43 (α-CoV), and HKU1 (α-CoV)
can cause mild upper respiratory infections, whereas SARS‐
CoV (β-CoV) and MERS‐CoV (β-CoV) can infect the
lower respiratory tract of humans and cause severe
respiratory syndrome [5]. Severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) belonging to the group
of β-CoVs, is the seventh CoV to infect humans and the
third β-CoV to infect the lower respiratory tract. The mor-
tality rate of SARS (9.6%) and MERS (34%) is reportedly
higher than that of COVID-19 (3–6%) [6]. However, the
spread of SARS-CoV-2 infection is remarkably wide and
rapid [7].

Comparative genomics has revealed that SARS-CoV-2
possesses a genome architecture typical of CoVs, com-
prising of a ~29.8 kilobase (kb) single‐stranded positive‐
sense RNA (+ssRNA) that contains 14 ORFs encoding for
27 proteins. The 5′-terminus of the genome encodes for two
long polyproteins, pp1ab (7096 amino acids) and pp1a
(4405 amino acids) [1]. These polyproteins are processed by
virally encoded proteases to produce 10 nonstructural pro-
teins (nsp1–nsp10), and, in addition, pp1ab uniquely pro-
duces nsp13 to nsp16 and pp1a uniquely produces nsp11.
The 3′-terminus of the SARS-CoV-2 genome encodes for
four main structural proteins: spike (S), membrane (M),
envelope (E), nucleocapsid (N), and eight accessory pro-
teins [8].

The availability of SARS-CoV-2 genome sequence data
has initiated efforts to design diagnostic tests and potent
therapies [9]. Furthermore, there is an urgent need to
explore the evolutionary origin and phylogenetics of SARS-
CoV-2 with the potential implication that it will further our
understanding of disease pathogenesis and spread
[1, 10, 11]. Traditionally, inference of evolutionary rela-
tionships among CoVs has relied heavily on comparisons of
whole genome sequence data or of their critical structural
genes, such as the S gene, which encodes the spike protein
[1]. Nucleotide datasets comprised of multiple distinct
genes exhibiting heterogeneity in their mode and rate of

sequence evolution can adversely affect phylogenetic
reconstruction [12]. Evading this problem is particularly
challenging in CoVs. Comparative analysis has revealed a
heterogeneous rate of evolution of portions of the genome
of CoVs, with ~60% shared identity within nsp coding
regions and only ~40% shared identity in the remaining
one-third of the genome coding for structural proteins. This
heterogeneity in substitution rates in coding regions of
CoVs can potentially complicate attempts to reconstruct the
evolutionary history of CoVs [13]. Specifically, the rapid
rate of evolution of structural genes (such as the S gene)
may cause a gene-based analysis to blur the history of the
taxa [14]. In contrast, pp1ab is a large, slow-evolving
domain in SARS-COV-2 capable of circumventing the
potential pitfalls of using genomic-based approaches to
reconstruct the history of SARS-CoV-2 [5]. Here, based on
completely sequenced genomes of SARS-CoV-2, covering
at least 39 distinct global territories, we conducted an in-
depth comparative analysis of the 7096-aa replicase poly-
protein pp1ab, comparing it to the corresponding homo-
logous polyproteins of 83 related CoVs [15]. To best of our
knowledge, this is the first attempt to use the full-length
pp1ab polyprotein to predict SARS-CoV-2 relatedness to
other members of the Coronavirinae subfamily. We next
focused on macrodomains encoded within Nsp3 of pp1ab to
investigate their structural evolution in light of previous
associations between macrodomains and virulence, and the
potential of these associations in designing a novel ther-
apeutic strategy for the treatment of SARS-CoV-2 -induced
severe infections.

Materials and methods

Sequence collection

The amino acid and coding sequences of ORF1ab gene from
four genera of the subfamily Coronavirinae; Alphacoronavirus,
Betacoronavirus, Gammacoronavirus, and Deltacoronavirus
were retrieved from GenBank (http://www.ncbi.nlm.nih.gov)
[16], 2019 Novel Coronavirus Resource of CNCB/NGDC
[15, 17] and the GISAID databank (https://www.gisaid.org/)
[18]. In total 247 sequences from four genera of subfamily
Coronavirinae were used in this study (Supplementary Tables
S1, S2; Supplementary Alignment File).

Phylogenetic and sequence analysis

The sequence alignment of 121 Coronavirinae polyprotein
pp1ab sequences was performed using CLUSTALW
(default parameters) [19]. The phylogenetic tree of the
subfamily Coronavirinae, including SARS-CoV-2 was
reconstructed in MEGA 5.05 by the maximum likelihood
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(ML) method with the Whelan and Goldman (WAG)
amino-acid substitution model [20, 21] The phylogenetic
tree with the upmost log likelihood scores was selected. A
neighbor-joining (NJ) tree was also reconstructed using
uncorrected proportion (p) distance and the Jones, Taylor,
and Thornton method (as amino-acid substitution model) to
calculate evolutionary distances between coronaviruses
[22, 23]. Topological reliability of the NJ and ML tree was
tested by bootstrap analysis (1000 pseudoreplicates) [23].

All proteins encoded by the ORF1ab gene were aligned
for SARS-CoV-2 (YP_009725299.1), bat-RaTG13
(QHR63299.1), bat-ZC45 (AVP78030.1), bat-ZXC21
(AVP78041.1), and SARS-CoVBJ01 (AAP30028.1)
using MAFFT and Clustal Omega [24, 25]. Amino acids
substitutions unique to SARS-CoV-2 were identified by
manual inspection of the alignments (Supplementary Table
S3). A sequence similarity plot was produced (sliding
window with 5 amino acid-step) using the Plotcon software
available in the EMBOSS software suite [26].

Thermodynamic state function, the ΔΔG (Gibbs free
energy) of a substitution from ancestral protein to its altered
version was predicted by employing the conformationally
constrained environment-specific substitution tables [27].
The putative physicochemical impact of each substitution
on protein structure and function was estimated using the
BLOSUM-62 substitution matrix [28].

Ancestral sequence reconstruction

The ML method implemented in MEGA was used to
reconstruct ancestral sequences of SARS-CoV-2 and bat-
RaTG13/ZC45/ZXC21 based on amino-acid substitutions
identified in the WAG model [20, 21, 29]. Separately, we
also inferred the ancestral sequence using the PRANK
program that accepted insertions and deletions as distinct
evolutionary events [30]. The consensus of PRANK and
MEGA ancestral sequence of SARS-CoV-2 and bat-
RaTG13/ZC45/ZXC was used in this current study.
Sequence alignments for ancestral reconstruction were
performed using MUSCLE and MAFFT (default para-
meters) [24, 31]

Structural analysis

After the divergence from Bat-CoV-RaTG13, the SARS-
CoV-2 nonstructural protein-3 (Nsp3) accumulated a
greater number of substitutions compared to any other
nonstructural protein encoded by the SARS-CoV-2 ORF1ab
gene. To determine the functional effects of these
Nsp3 substitutions in SARS-CoV-2, we performed a 3D
structural analysis that examined all relevant protein struc-
tures using a homology modeling approach in Modeler
[32, 33]. For the structural analysis, we based template

selection on high sequence homology and amino-acid
length/coverage and obtained the following templates
from RCSB databank [34]: 2WCT, 2JZF, 2KQV, 2ACF,
6MEA, and 5DUS. Protein structures were predicted using
the Discrete Optimized Protein Energy score, followed by
implementation of the energy minimization protocol in
PyMOL to maximally improve the quality of the modeled
structures [35]. The quality of the predicted protein struc-
tures were further validated by Rampage Ramachandran
plot analysis [36]. Superimposition of the modeled protein
structures was performed with PyMOL, and root mean
square deviation values were assessed [35, 37]. Further-
more, sequence-based secondary structure elements were
determined using the PSIPRED server [38].

For comparative binding analysis of Mac-1 to ADPr,
crystallographic structures of MERS-CoV (5DUS), SARS-
CoV (2FAV), and SAR-CoV-2 (6W02) Mac-1 (within
Nsp3) were obtained from the RCSB databank [34].
AutoDock [39] was used to perform an induce-fit docking
(IFD) protocol with 30 conformers, while keeping the rest
of the parameters default. IFD modeling offers mutual
conformational adaptations of a protein receptor to a ligand,
which enables for better accuracy than docking to a rigid
target [40]. The best docking complexes were selected
based on docking score. ADPr (ADP-ribose) and Mac-1
superimposition between CoVs were visualized in PyMOL.
Interactions of the key residues of Mac-1 with ADPr protein
was obtained and visualized in PyMOL. To confirm the
differences in binding affinities of Mac-1 (for ADPr) of
MERS-CoV, SARS-CoV, and SAR-CoV-2, DoGsitescorer
(https://proteins.plus/) was used to calculate volume, sur-
face area and druggability scores of binding cavities [41].

Results and discussion

ML and NJ trees exhibited similar topologies, where the
cluster of δ-CoVs and γ-CoVs was the first to diverge,
followed by α-CoVs, β-OC43-CoVs, β-MERS-CoVs, and
β-SARS-CoVs, respectively (Fig. 1; Supplementary Figs.
S1, S2). Tree topology confirms the direct grouping of
SARS-CoV-2 with batCoV-RaTG13, which diverged from
a cluster of batSLCoVZC45 and batSLCoVZXC21.This
pattern places the SARS-CoV-2 and the three batSL-CoVs
in a distinct phylogenetic group compare to SARS-CoVs
and other SARS-like coronaviruses (Fig. 1).

Phylogenetic separation of SARS-CoV-2 from SARS-
CoVs suggests that after their origin from the Hp-βCoV/
BM48-31-like common ancestor, these two distinct linea-
ges of CoVs were subjected to different genetic selection
pressures. This may have led to notable differences in their
infectivity, transmissibility, pathogenesis, and host tropism.
This speculation prompted us to elucidate the putative
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functional uniqueness of SARS-CoV-2 using a pp1ab-
based analysis. In SARS-CoV-2 genomes sampled from
multiple, distinct geographic locations, we searched for
amino-acid substitutions in the 7096-aa long pp1ab
sequence by comparison with the closely related batSL-
CoVs (RaTG13/ZC45/ZXC21) and the distantly related
representatives of the β-CoV lineage (Fig. 2a–c; Supple-
mentary Tables S1, S2). Inspection of comparative data
revealed a total of 90 replacements/insertions/deletions in
pp1ab of SARS-CoV-2 (Supplementary Fig. 3; Supple-
mentary Table S3). Among these, 53 amino-acid

differences were found to be fixed in pp1ab of SARS-CoV-2,
as compared with batSL-CoVs (Supplementary Table S3).
The Nsp3 within pp1ab appeared to be crucial to the evo-
lutionary diversification of SARS-CoV-2, harboring 31 of
the 53 fixed substitutions (Supplementary Table S3).
Fixation of 31 amino-acid replacements within Nsp3 of
SARS-CoV-2 was further validated through analysis of
representative sequence data from seven distinct clades
of SARS-CoV-2 (G, GH, GR, L, O, S, and V) reported in
GISAID (https://www.gisaid.org) [18] (Supplementary
Table S4; Supplementary Alignment File). Nsp3 is the
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Fig. 1 Phylogenetic characterization of SARS-CoV-2 based on the
7096-aa polyprotein pp1ab. Phylogenetic tree demonstrating the
relationship of SARS-CoV-2 to other CoVs. Phylogenetic analysis
involved 121 pp1ab sequences from the subfamily Coronavirinae,
including representatives of four genera; α-CoV, β-CoV, γ-CoV, and
δ-CoV. The color codes distinguish between various groups/types of

coronaviruses. The phylogenetic tree was reconstructed using the
maximum likelihood method with the WAG substitution model.
Bootstrap values ≥50% are shown along the branches. Scaled phylo-
gram of this tree with branch lengths reflecting the amount of genetic
change is provided in Supplementary Fig. S1.
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largest multi-domain protein produced by CoVs, playing
many important roles in the viral life cycle. In particular,
macrodomains encoded within Nsp3 of CoVs have been
demonstrated as critical in counteracting the host innate
immune response [42].

Given their roles in virulence and pathogenesis, macro-
domains of SARS-CoV-2 were subjected to further scrutiny
through sequence, structural, and evolutionary analysis.
Macrodomains located in Nsp3 were found to be particu-
larly enriched with fixed amino-acid replacements specific
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Fig. 2 Identification of sequence divergence at the polyprotein
pp1ab locus in SARS-CoV-2. a Schematic of SARS-CoV-2 genome.
Genomic organization of SARS-CoV-2 with numbering above the
block referring to nucleotide positions. Structural proteins, including
spike (S), envelope (E), membrane (M), and nucleocapsid (N) proteins,
as well as nonstructural proteins (nsps) translated from ORF1ab and
accessory proteins are indicated. b Schematic of 7096-aa replicase
polyprotein pp1ab with its 15 sub-proteins (nsp1–nsp10 and
nsp12–nsp16). c Comparative sequence analysis of the pp1ab domain
for completely sequenced genomes of SARS-CoV-2 from at least 39
distinct global territories. SARS-CoV-2 sequences were compared to

the corresponding homologous sequence from batSL-CoVs and
SARS-CoVBJ01. Macrodomains within Nsp3 are demarcated by red
arrow. Y axis depicts similarity scores between CoVs and the X axis
refers to the relative residue position. Lower scores signify low
sequence conservation, with trough corresponding to the least con-
served regions. d Macrodomains sequences encoding Mac-1, Mac-2,
and Mac-3 proteins exhibiting exceptional divergence in SARS-CoV-2
relative to bat-RaTG13/ZC45/ZXC21 and SARS-CoVBJ01. Green,
red, and blue circles, respectively, differentiate between Mac-1, Mac-
2, and Mac-2 specific substitutions.
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to SARS-CoV-2 (Fig. 2d). In total, eight substitutions were
fixed in the macrodomains of SARS-CoV-2 (Supplemen-
tary Table S5). These eight substitutions, though divergent
from corresponding homologous positions in closely related
bats (RaTG13/ZC45/ZXC21), are otherwise exceptionally
constrained; not a single amino-acid difference was noted
among the 39 SARS-CoV-2 genomes at these sites (Sup-
plementary Fig. S4). Conceivably, these substitutions are
the consequence of accelerated rates of sequence evolution,
which may have been driven by positive Darwinian

selection after the divergence of SARS-CoV-2 and batSL-
CoVs and prior to its first reported outbreak. Among the
identified set of macrodomain-specific fixed substitutions,
three were found to reside within macrodomain 1 (Mac-1),
four in macrodomain 2 (Mac-2), whereas only a single
amino-acid substitution was found to be fixed in macro-
domain 3 (Mac-3) of SARS-CoV-2 (Fig. 3a).

Next, we further determined the impact of the fixed
amino-acid substitutions identified within the macro-
domains of Nsp3 of SARS-CoV-2 by predicting the
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Fig. 3 Protein structural analysis of macrodomains examining the
effects of specific fixed substitutions within Nsp3 of SARS-CoV-2.
a Protein structure of SARS-CoV-2 Nsp3 depicting types and loca-
tions of fixed amino-acid substitutions within distinct macrodomains.
The fixed amino-acid replacements are shown as spheres and labeled
with the amino-acid position in Nsp3 protein. b Comparison of the
three-dimensional (3D) conformations of the macrodomains (Mac-1,
Mac-2, and Mac-3) within Nsp3. SARS-CoV-2 (YP_009725299.1)
macrodomains were also compared to the corresponding homologous
protein regions of bat-RatG13 (QHR63299.1), SARS-CoVBJ01
(AAP30028.1), and the predicted ancestral macrodomain of SARS-

CoV-2 and bat-RaTG13/ZC45/ZXC21. Structural deviations in terms
of backbone torsion angles (Φ°, Ψ°) are represented in red color and
were examined by RMSD (root mean square deviation) values. c–e
Close-up of 3D conformations of SARS-CoV-2 Mac-2 with corre-
sponding homologous domains from predicted ancestor (aforemen-
tioned; left panel), bat-RatG13 (middle panel), and SARS-CoV
(AAP30028.1; right panel). Comparisons of 3D conformations for
Mac-1 is provided in Fig. 4 and sequence secondary structural
level details for comparisons in b–e are given in Supplementary
Tables S6, S7.
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thermodynamic state function. For this we determined the
ΔΔG (Gibbs free energy) of a substitution in SARS-CoV-2
relative to the ancestral protein (ΔΔGances→CoV2) [27]. All of
the eight fixed replacements appeared to have significant
destabilizing effects on protein structure (ΔΔG < 0.0) (Sup-
plementary Table S5). Since mutations that modulate
enzymatic functions or ligand binding are often destabiliz-
ing [43], the thermodynamic effects of the substitutions
unique to SARS-CoV-2 macrodomains support their adap-
tive significance. In addition, examination of physico-
chemical property changes resulting from amino-acid
substitutions in the SARS-CoV-2 macrodomains predict
that, with respect to their effects on protein structure and
function, all fixed replacements in macrodomains of SARS-
CoV-2 are of radical type, implying their biological sig-
nificance (Supplementary Table S5).

The globular Mac-1 of Nsp3 contains a conserved cleft
that binds ADP-ribose (ADPr). Mac-1 was found to possess
hydrolase activity that removes ADPr from target proteins, a
biochemical feature of SARS-CoV-2 that is considered
essential in counteracting the host antiviral response of
ADP-ribosylation [42]. Reducing the capacity for Mac-1 to
remove ADPr, especially in CoVs, results in an attenuation
of virulence and a greater sensitivity to host innate immune
responses [44–46]. Furthermore, the Macrodomain 2 and
Macrodomain 3 (Mac-2 and 3) of SARS-CoVs are known
to be indispensable for its replication or transcription, as
these macrodomains bind nucleic acids, with a preference
for purine-rich RNA sequences, such as G-rich stretches
[47]. mRNAs for host antiviral responses and apoptotic
signaling harbor long poly(G) stretches at their 3′ untrans-
lated regions, and thus are prime targets for Mac-2 and 3
mediated disruption of host immunity [48, 49]. Further-
more, it has been demonstrated that Mac-2 and 3, together
with the papain-like protease domain (PL2pro) of Nsp3,
interact with RCHY1(E3 ubiquitin ligase) and intensify
RCHY1-mediated ubiquitination, which consequently
induces p53 degradation. Hence, human SARS-CoVs via
their Mac-2 and 3 domains downregulate p53, a major
determinant of antiviral innate immunity, thus leading to
delayed activation of p53-targeted immunity genes [49].
Intriguingly, Mac-2 and 3 are specifically present in Nsp3 of
SARS-CoVs and highly related viruses (batSL-CoVs)
known to cause high levels of pathogenicity in humans, but
are not present in CoVs that cause mild infections [42].

Herein, we sought to evaluate the functional significance
of fixed amino-acid replacements specific to SARS-CoV-2
by modeling the macrodomains (Mac-1, 2, and 3) of SARS-
CoV-2 (YP_009725299.1), bat-RaTG13 (QHR63299.1),
and SARS-CoV-BJ01 (AAP30028.1). Furthermore, the
ancestral macrodomain protein sequence of SARS-CoV-2
and bat-RaTG13/ZC45/ZXC21 was also predicted and
modeled. The 3D superimposition of macrodomain

structures revealed that during the course of evolution,
SARS-CoV-2 macrodomains have had significant transi-
tions in various secondary structural elements (SSEs)
(Fig. 3b). A continuous transition from loops to core SSEs
was observed (Supplementary Table S6). For instance, the
macrodomains of SARS-CoV-2 contain about 62% of their
residues in SSEs (Supplementary Table S6). In contrast, the
macrodomains of SARS-CoV had about 41% of their total
residues occurring in loops and the remaining 59% were in
SSEs, such as α-helices and β-sheets (Supplementary Table S6).
Furthermore, multiple substitutions scattered across the
SARS-CoV-2 macrodomains were found to reposition
specific protein regions within Mac-1 and Mac-2, in three-
dimensional space (Figs. 3c–e, 4; Supplementary Table S7).
In particular, there were drastic changes in the conformation
of Mac-2 of SARS-CoV-2 (Fig. 3c–e). Structural evolution
of Mac-2 involves considerable alterations in sequence,
length, and conformation of core SSEs, implicating a
functional relevance of these substitutions (Supplementary
Table S7).

To further connect protein conformational changes with
functions of macrodomains, we used a molecular docking
approach to determine the binding affinity of ADPr to Mac-
1. Structural comparisons revealed that there is considerable
divergence in ADPr binding between SARS-CoV-2 and
other CoVs (Fig. 5b–d). ADPr binding to the Mac-1 domain
of SARS-CoV-2 (−9.46 kcal/mol) was found to be more
efficient than in the human SARS-CoV (−8.59 kcal/mol)
(Supplementary Table S8). Intriguingly, the binding affinity
of SARS-CoV-2 Mac-1 for ADPr was comparable to that of
MERS-CoV Mac-1 (−9.70 kcal/mol). This suggest that
SARS-CoV-2 may evade host antiviral ADPr activity
similar to that of the highly pathogenic MERS-CoV [50].

To gain insights into the molecular mechanisms behind
the similar ADPr binding affinities of SARS-CoV-2 and
MERS-CoV macrodomains, we investigated their binding
clefts. In MERS-CoV, Asp-20 within the α1-helix of Mac-1
has been shown to be critical for binding specificity; its side
chain forms a direct contact with ADPr through hydrogen
bonding with the N-6 atom of the pyrimidine ring in the
adenine moiety [51] (Fig. 5a, f, g). This residue is known to
be conserved among macrodomains of CoVs. It determines
the degrees of curvature at the adenine moieties within
binding pocket, and hence the binding affinity of ADPr [51]
(Fig. 5a). Previous reports that superposition the MERS-
CoV macrodomains showed that the same oxygen atom on
the Asp-20 side chain forms two hydrogen bonds; one with
the N-6 atom in a pyrimidine ring of ADPr and the other
with nitrogen in the Ile-22 backbone amide in the α1-helix.
This results in the displacement of the Asp-20 side chain
into the adenine cavity, which strengthens ADPr binding to
effectively limit host antiviral ADPr activity [51]. In con-
trast, the equivalent residue of SARS-CoV, Asp-23 forms a
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only single hydrogen bond with ADPr via an oxygen atom
in its side chain and binds to nitrogen atoms in Val-25 and
Lys-26 of the α1-helix via another hydrogen bond [51].
Intriguingly, inspection of equivalent hydrogen bonding
patterns in SARS-CoV-2 revealed a closer resemblance to
MERS-CoV than to SARS-CoV (Fig. 5e, f). For example,
in SARS-CoV-2, the oxygen atom on Asp22 side chain
forms two hydrogen bonds, one with the N-6 atom in a
pyrimidine ring of ADPr and the other with nitrogen in the
Val-24 of the α1-helix, which is similar to MERS-CoV,
and, accordingly, may displace the Asp22 side chain into
the adenine cavity (Fig. 5f). Furthermore, studies of MERS-
CoV provide evidence that the stabilization of ADPr in the
binding pocket of Mac-1 is mainly determined by
hydrogen-bond strength [51]. In the MERS-CoV the
hydrogen-bond lengths formed by the Asp-20 side chain
with ADPr and Ile-22 are 2.9 and 3.0 Å, respectively (Fig. 5f).
This is comparable to the SARS-CoV-2 hydrogen-bond
lengths formed by the Asp-23 side chain with ADPr and
Val-24, which for both is 2.9 Å (Fig. 5e, f). Conceivably,
the comparable affinities of MERS-CoV and SARS-CoV-2
macrodomains for ADPr may partly result from similarities
in the their hydrogen bonding patterns, hydrogen-bond
lengths/strength, and the positioning of the side chains of
Asp-20/Asp-22 with respect to cleft that holds the adenine
moiety. Thus, it appears that the biophysical and structural

aspects of ADPr binding site evolution may provide SARS-
CoV-2 and MERS-CoV with extraordinary adaptive abil-
ities, which enable these viruses to evade host innate
defense pathways. To further validate these findings, we
analyzed the druggability scores of ADPr binding pockets
of Mac-1 of SARS-CoV, MERS-CoV, and SARS-CoV-2
by using DoGSiteScorer web server [41]. Binding clefts of
MERS-CoV and SARS-CoV-2 depict high druggability
scores as compared to SARS-CoV (Supplementary Table
S9). Higher druggability scores are considered to reflect a
greater ability of protein pocket to bind to its target ligand
[41]. Thus, druggability assessment suggests that macro-
domains of MERS-CoV and SARS-CoV-2 are more drug-
gable and hence provide better binding cavities for
conformational optimization of ADPr as compared to
SARS-CoV.

Previously, it was suggested that the differential binding
affinity of Mac-1 for ADPr may result from different amino-
acid compositions in the α1-helix [51]. Here, we showed
that, though the corresponding residues within the α1-
helices of SARS-CoV-2 and MERS-CoV are highly diver-
gent, their binding affinities for ADPr are similar (Fig. 5a;
Supplementary Table S8). Therefore, it is possible that the
evolved increase in binding affinity of SARS-CoV-2 Mac-1
for ADPr may have been facilitated by epistatic effects of
three fixed amino-acid substitutions located near the binding

SARS-CoV-2 ancestor deviated regions SARS-CoV-2 batRatG13 deviated regions

SARS-CoV-2 MERS-CoV deviated regionsSARS-CoV-2 SARS-CoV deviated regions
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Fig. 4 Comparisons of 3D
conformations of SARS-CoV-2
macrodomain 1. Comparisons
of 3D conformations of SARS-
CoV-2 macrodomain 1 with
corresponding homologous
domains from (a) predicted
ancestral macrodomain 1 (of
SARS-CoV-2 and bat-RaTG13/
ZC45/ZXC21), (b) bat-RatG13
(QHR63299.1), (c) SARS-CoV
(PDB entry: 2FAV), and (d)
MERS-CoV (PDB entry:
5HOL). Descriptions of color
codes are given in each panel.
Deviated residues in terms of
backbone torsion angles (Φ°,
Ψ°) are shown in red color.
Structural deviations were
examined by RMSD values.
Note: Primary sequence and
secondary structural level details
for comparisons in a–d are given
in Supplementary Tables S6, S7.
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cleft, but that do not contact the ADPr via direct hydrogen
bonding (Fig. 5a). Evolution by protein conformational
epistasis may play a significant role in differential binding
affinities of Mac-1 for ADPr [43]. Interestingly, differential
binding affinities of Mac-1 for ADPr have been associated
with the differences in the pathogenicity of coronaviruses
[45, 51]. Thus, the comparable affinities of SARS-CoV-2
and MERS-CoV macrodomains for ADPr fits well with the

notion that current mortality rates grossly underestimate the
threat posed by COVID-19 [6].

This study has revealed functionally unique amino-acid
replacements within the macrodomains of Nsp3, that are
likely to maximize SARS-CoV-2 activity against human
innate immune responses. The precise residue-level struc-
tural information in our study may benefit the design of anti-
SARS-CoV-2 drug treatments. Macrodomains have
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Fig. 5 Sequence and structural comparison of Mac-1 protein in SARS-CoV-2 to other CoVs and Mac-1 capacity to bind ADPr. a
Comparison of Mac-1 sequence of SARS-CoV-2 (YP_009725299.1) to that of MERS-CoV (PDB entry: 5HOL), SARS-CoV (PDB entry: 2FAV),
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previously been shown to be potent drug targets. For
instance, an AlphaScreen based assay has recently identified
a small molecule inhibitor, GeA-69 (a carbazole-based
compound) that targets the macrodomain of human PARP14
(poly-ADP-ribose polymerase 14), a pro-survival protein
associated with human inflammatory diseases and various
types of cancers [52]. In addition, the combination of
structure-based virtual screening and molecular dynamics
simulation approaches have been successful in identifying
potential inhibitors targeting viral macrodomains [53].
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