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Abstract (200/200 words) 18 

Temperature shapes the distribution, seasonality, and magnitude of mosquito-borne disease 19 

outbreaks. Mechanistic models predicting transmission often use mosquito and pathogen thermal 20 

responses from constant temperature experiments. However, mosquitoes live in fluctuating 21 

environments. Rate summation (nonlinear averaging) is a common approach to infer performance 22 

in fluctuating environments, but its accuracy is rarely validated. We measured three mosquito traits 23 

that impact transmission (bite rate, survival, fecundity) in a malaria mosquito (Anopheles 24 

stephensi) across temperature gradients with three diurnal temperature ranges (0, 9 and 12°C). We 25 

compared thermal suitability models with temperature-trait relationships observed under constant 26 

temperatures, fluctuating temperatures, and those predicted by rate summation. We mapped results 27 

across An. stephenesi’s native Asian and invasive African ranges. We found: 1) daily temperature 28 

fluctuation significantly altered trait thermal responses; 2) rate summation partially captured 29 

decreases in performance near thermal optima, but also incorrectly predicted increases near 30 

thermal limits; and 3) while thermal suitability characterized across constant temperatures did not 31 

perfectly capture suitability in fluctuating environments, it was more accurate for estimating and 32 

mapping thermal limits than predictions from rate summation. Our study provides insight into 33 

methods for predicting mosquito-borne disease risk and emphasizes the need to improve 34 

understanding of organismal performance under fluctuating conditions.  35 
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Introduction 36 

Malaria remains one of the biggest global public health burdens, despite substantial control efforts. 37 

In 2022 alone, there were 249 million cases and 580,000 deaths worldwide, mostly of children 38 

under five years of age (76% of deaths) and occurring in Africa (94% of cases)1. Further, global 39 

climate change and land use change are altering the environments where malaria is transmitted, 40 

shifting the times of year and geographic regions that are environmentally suitable for malaria 41 

transmission2–7. Over the past 20 years, we have gained substantial mechanistic insight into how 42 

key abiotic environmental variables–including temperature–shape malaria risk2,6,8–12. Because 43 

mosquitoes are ectothermic, temperature has strong effects on the vital rates of both the mosquito 44 

and the parasite. These effects shape mosquito population dynamics, the ability of the mosquito to 45 

become infected and transmit, and the parasite development rate, all of which in turn influence 46 

malaria transmission dynamics. Thus, a mechanistic determination of how temperature will alter 47 

the distribution and abundance of mosquito vectors, as well as people’s potential exposure to 48 

malaria-infectious mosquitoes, will be critical for accurately anticipating how the environmental 49 

suitability for malaria transmission will respond to current and future global change. 50 

Previous empirical work has focused on characterizing the effects of temperature on 51 

mosquito and parasite traits that are relevant for transmission across a diversity of mosquito-borne 52 

disease systems4. In general, temperature-trait relationships have a kinetic profile akin to an 53 

enzymatic reaction13,14. Performance is constrained by a lower and upper temperature threshold 54 

(Tmin and Tmax, respectively) and gradually increases with temperature to an optimal value (Topt) as 55 

enzymatic and biochemical processes become more efficient. Performance then declines as 56 

temperatures warm away from the Topt, presumably because enzymatic reactions become less 57 

efficient as protein stability declines, followed by performance failure or organism death as 58 
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temperatures approach the Tmax15–18. Collectively, these responses give us temperature-trait 59 

relationships known as thermal performance curves (TPCs) that have been used extensively across 60 

diverse organisms to infer ecological and evolutionary outcomes. These TPCs are typically 61 

characterized by estimating a trait (e.g. bite rate, mortality rate, development rate) across a gradient 62 

of constant temperatures in a controlled laboratory study13. For modeling mosquito-borne diseases, 63 

the TPCs are then often incorporated either into standard formulae for the pathogen’s basic 64 

reproduction number (R0; defined as the number of secondary cases arising from a primary case 65 

introduced into a fully susceptible population) to predict overall thermal suitability for 66 

transmission2,8,9,19, or into mechanistic dynamical models used to predict human incidence or the 67 

final epidemic size20,21. These approaches have generated many important insights, including: 1) 68 

warming at northern latitudes or high elevations has increased and will continue to increase 69 

suitability for transmission due to longer and more intense transmission seasons, resulting in the 70 

potential for large epidemics3,7; 2) areas of the world that are currently suitable for transmission 71 

may become less environmentally suitable as temperatures warm beyond the optimum3,22; 3) 72 

disease intervention efforts (e.g. vector control, vaccination, drug coverage) will need to be more 73 

expansive in areas of the world and times of year that are most suitable for transmission3,23,24; and 74 

4) climate change could shift disease burden from malaria to arboviruses in Africa 25. 75 

Although controlled laboratory studies have provided insight into the effects of temperature 76 

on mosquito life history, mosquito-pathogen interactions, and overall transmission potential, the 77 

temperatures that organisms experience in the field are highly variable, fluctuating diurnally, 78 

seasonally, annually, and on other timescales 26. A consequence of the mathematical fact known 79 

as ‘Jensen’s inequality’ is that when temperature impacts performance non-linearly, then the time-80 

average of performance across a thermally fluctuating environment is not equal to the performance 81 
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measured at the average temperature27–29. Specifically, thermal fluctuations should increase 82 

performance in accelerating (convex) portions of a TPC and decrease performance in decelerating 83 

(concave) portions (Figure 1B), simply based on the time spent at each temperature and the 84 

associated performance predicted by the TPC. This theoretical prediction is supported by a 85 

growing body of empirical research across diverse taxa30–34, including mosquitoes35–37, 86 

demonstrating that trait performance under fluctuating temperatures can differ substantially from 87 

performance at constant temperatures.  88 

Unfortunately, it is logistically infeasible to experimentally evaluate every possible 89 

fluctuating temperature regime that an organism might experience. Accordingly, studies typically 90 

use ‘non-linear averaging’ or ‘rate summation’ to quantitatively predict the average trait 91 

performance as temperature fluctuates over time27,30,38–41 (Equation 1). 92 

      Eq. 1 93 

Here, <f> is the average performance of a trait, and is calculated from f, the trait performance as 94 

a function of temperature (T), which in turn is a function of time (t) from t=1 to t=n. This 95 

approach has been adopted widely to account for the impact of temperature variation on the 96 

thermal suitability of transmission in many vector-borne disease systems10,35,42–48. 97 

However, rate summation makes two simplifying assumptions that are likely to be 98 

violated in many biological systems: 1) traits always exhibits the same value at a given 99 

temperature in both fluctuating and constant environments; and 2) performance changes 100 

instantaneously with temperature (i.e., no acclimation period). First, performance in fluctuating 101 

environments can differ from in the equivalent constant temperatures due to the inherent effects 102 

of thermal fluctuations on organismal performance49, including acclimation to thermal 103 

stress13,50,51, accumulation of damage associated with thermal stress52,53, and processes to repair 104 
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damage incurred at extreme low or high temperatures during time spent at more favorable 105 

temperatures (e.g. production of heat shock proteins) that cause hysteresis effects51,54,55. Second, 106 

time lags and other thermal acclimation effects are common and varied in their impact on 107 

performance56. Although the accuracy of rate summation has been assessed in other 108 

organisms28,30,39,49, it has not been evaluated for vector-borne disease systems. Furthermore, 109 

because rate summation has mixed success in predicting performance of traits, it is unclear 110 

whether rate summation can accurately predict suitability for mosquito-borne disease 111 

transmission. Evaluating the ability of rate summation to capture the thermal suitability of 112 

realistically fluctuating conditions has important implications for understanding how mosquito 113 

populations and their transmission dynamics will play out in natural field settings, as well as in 114 

response to future climate change. 115 

In this study, we use experimental data and modeling (Figure 1) to better understand the 116 

use of rate summation to predict the thermal suitability for malaria transmission by Anopheles 117 

stephensi, an important mosquito vector of urban malaria in South Asia and now Africa. 118 

Specifically, we ask: 1) Do field-relevant diurnal temperature fluctuations alter the relationships 119 

between temperature and adult mosquito life history traits compared to those characterized across 120 

constant temperatures? 2) Can rate summation accurately predict these temperature-trait 121 

relationships in environments that diurnally fluctuate? 3) How do these various temperature-trait 122 

relationships scale up to impact predicted thermal suitability for malaria transmission? Our results 123 

show that temperature fluctuations significantly alter the thermal responses of adult mosquito 124 

traits, that rate summation largely fails to predict the performance of these traits, and that this 125 

discrepancy impacts the predicted thermal limits for malaria transmission. We discuss reasons for 126 

why rate summation might fail to predict performance in a fluctuating environment and the 127 
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implications for using this technique in mechanistic modeling frameworks that predict vector-128 

borne disease transmission. 129 

 130 

Study and Suitability Model Overview 131 

We modeled the effects of diurnal temperature fluctuation on predicted thermal suitability 132 

for transmission of malaria, S(T), using a trait-based mechanistic model based on a standard 133 

derivation of R0 for malaria (Equation 2, see Methods). We focused on the impacts of three adult 134 

mosquito traits that we directly measured across temperature gradients in both constant and 135 

fluctuating conditions: daily female bite rate (a), lifetime egg production (B), and lifespan (lf). 136 

Data for other traits required to calculate S(T)–larval survival (pEA), development rate (MDR), 137 

vector competence (bc), and extrinsic incubation period (EIP)–were taken from previous 138 

experimental studies with constant temperature gradients19,36. Trait thermal performance curves 139 

(TPCs) were fitted using either a symmetric (quadratic) or asymmetric (Brière) function, chosen 140 

by comparing Deviance Information Criterions (DIC)67. 141 

We generated five versions of the S(T) model (Figure 1) parameterized with TPCs for traits 142 

either fit to data from three different temperature fluctuation regimes (diurnal temperature range 143 

[DTR] = 0, 9, or 12°C) or calculated via rate summation (RS).  144 

1. TPCs fit to trait data from across a range of constant temperatures (‘constant’). 145 

2. TPCs fit to trait data from fluctuating conditions for the focal traits with empirical data (a, B, 146 

and lf), combined with TPCs fit to trait data from constant temperatures for traits measured in 147 

other studies (pEA, MDR, bc, and EIP; ‘empirical fluctuating’). 148 
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3. TPCs generated by applying rate summation to the TPCs from constant temperatures for the 149 

focal traits (a, B, and lf); as in version 2, other traits (pEA, MDR, bc, and EIP) used unmodified 150 

TPCs from constant temperatures (‘trait-level RS - 3 traits’). 151 

4. Similar to version 3 above, but rate summation was applied to the TPCs from constant 152 

temperatures for all traits (‘trait-level RS - all traits’). 153 

5. Rate summation applied to the TPC for S(T) generated from traits measured across a range of 154 

constant temperatures (i.e, the output of constant model 1 above) to generate a new TPC for 155 

S(T) (‘S(T)-level RS’).  156 

We used these five versions of S(T), generated for both fluctuating DTRs (9 and 12°C) where 157 

applicable, to assess the following questions: A) how thermal suitability is likely affected by 158 

temperature fluctuations (model 1 versus model 2); B) if rate summation can adequately predict 159 

suitability in fluctuating temperature regimes (model 2 versus model 3); and C) how the level at 160 

which rate summation is calculated (on the component traits or on suitability itself) impacts 161 

predictions (model 4 versus model 5). 162 

 163 

Results 164 

Diurnal fluctuation alters the thermal responses of mosquito traits 165 

All three focal traits (bite rate [a], lifespan [lf], and lifetime egg production [B]) responded 166 

strongly to mean temperature (Figure 2). The shape of the thermal response was relatively 167 

consistent for each trait across fluctuation treatments (diurnal temperature range [DTR] = 0, 9, or 168 

12°C). Lifespan (lf) always responded symmetrically and was best fit with a quadratic function, 169 

while bite rate (a) always responded asymmetrically and was best fit with a Brière function. 170 

Lifetime egg production (B) was fit similarly by both functions (ΔDIC < 2.0 for all fluctuation 171 
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treatments); we elected to always use a quadratic function to be consistent and because it had a 172 

slightly lower DIC for two of three fluctuation treatments (Table S1). 173 

Fluctuating temperatures significantly altered the thermal performance curves (TPCs) for 174 

each trait (Figure 2, Tables 1, S2, and S3). These changes were reflected by shifts in TPC 175 

characteristics as well as the magnitude of performance in each environment. Diurnal temperature 176 

fluctuations caused downward shifts in three key TPC parameters (Topt, Tmax, and Tbreadth) and the 177 

magnitude of these shifts depended on the trait. For all three parameters, the shifts were largest for 178 

bite rate (a), followed by lifespan (lf), and then lifetime egg production (B). TPCs characterized 179 

under temperature fluctuations resulted in cooler predicted thermal optima (Topt), ranging from 180 

1.2-4.2°C cooler, and thermal maxima (Tmax), ranging from 2.5-5.2°C cooler, depending on the 181 

trait. We were unable to detect any shifts in the thermal minima (Tmin). Consequently, we also 182 

observed a narrowing in thermal breadth (Tbreadth) that ranged from from 2.3-4.5°C depending on 183 

the trait. Differences in TPCs based on the magnitude of fluctuation (i.e., DTR 9°C vs. DTR 12°C) 184 

were only significant for lifespan (lf). 185 

Fluctuating temperatures also decreased absolute performance for all traits at their thermal 186 

optima and warmer temperatures, relative to trait performance at constant temperatures (Figure 2, 187 

Table 1). Maximum predicted performance [i.e., trait value at the thermal optimum, f(Topt)] 188 

decreased more for bite rate (a; 23.5-25.1% lower) than for lifespan (lf; 2.7% lower to 10.7% 189 

higher) or egg production (B; 7.9-14.8% lower). For lifespan (lf), fluctuating temperatures 190 

increased performance relative to constant temperatures at 16°C, which increased the maximum 191 

predicted performance for DTR 12°C only. 192 

 193 

Rate summation fails to predict thermal responses in fluctuating environments 194 
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 Overall, rate summation failed to accurately predict trait performance in a diurnally 195 

fluctuating thermal environment. Rate summation did not predict the observed shifts in three TPC 196 

parameters (Topt, Tmax, and Tbreadth) or the maximum predicted performance (Figure 3, Table 1). In 197 

fact, for two of the parameters (Tmax, and thus also Tbreadth), rate summation predicted that 198 

temperature fluctuations would change performance in a different direction than what was 199 

observed (i.e., it predicted warmer/wider shifts instead of cooler/narrower shifts relative to 200 

performance in constant temperature conditions). Rate summation also predicted small decreases 201 

in Tmin under fluctuations, which we did not detect in the TPCs fit to empirical data from fluctuating 202 

conditions. 203 

Rate summation overestimated the Tmax for bite rate (a), lifespan (lf), and to some degree 204 

lifetime egg production (B, for DTR 12°C) (Figure 3, Table 1). It predicted increases in the 205 

thermal maxima (Tmax) for all three traits relative to mosquitoes housed in constant temperatures 206 

(2.6-5.4°C warmer). In contrast, mosquitoes housed in fluctuating conditions had cooler Tmax for 207 

all traits relative to those housed under constant temperature conditions (2.5-5.2°C cooler). As a 208 

result, rate summation overpredicted the overall thermal breadth (Tbreadth) of trait performance 209 

relative to mosquitoes housed in constant temperatures (5.0-12.0°C warmer), instead of the more 210 

constrained thermal breadth observed for mosquitoes in thermally fluctuating environments (2.3-211 

4.5°C cooler).  212 

Rate summation generally overestimated the Topt in mosquitoes housed in fluctuating 213 

environments and failed to predict differences compared to those housed in constant temperature 214 

conditions (Figure 3, Table 1). This trend was strongest (minimal overlap in credible intervals) 215 

for the daily bite rate (a) at DTR 9°C and lifespan (lf) for both DTR 9°C and 12°C treatments. For 216 

bite rate (a), rate summation underestimated the decrease in the Topt that was observed in 217 
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mosquitoes housed under fluctuating thermal conditions relative to constant temperature 218 

conditions (1.0-1.8°C cooler predicted by rate summation vs. 2.4-4.2°C cooler from empirical 219 

data). For lifespan (lf) and lifetime egg production (B), rate summation predicted essentially no 220 

change in the Topt from mosquitoes housed at constant temperatures, in contrast to observed 221 

decreases in the Topt in mosquitoes housed under temperature fluctuations (1.2-2.1°C cooler). 222 

In many cases, rate summation also failed to accurately predict absolute trait performance 223 

in fluctuating environments (Figure 3, Table 1). In the most extreme example, for daily bite rate 224 

(a), rate summation predicted substantially higher maximum trait performance [f(Topt)] for both 225 

DTR treatments (predictions 16.1-21.1% higher than empirical observations). For lifetime egg 226 

production (B) and lifespan (lf) in DTR 9°C, rate summation was fairly accurate at predicting small 227 

decreases in maximum trait performance [f(Topt); predictions all within 3.7% of empirical 228 

observations]. However, for lifespan (lf) in DTR 12°C, rate summation predicted small decreases 229 

in absolute trait performance at cooler temperatures, when TPCs fit to observations yielded 230 

increases in absolute trait performance relative to constant temperatures. 231 

 232 

Diurnal temperature fluctuation impacts the predicted suitability for transmission 233 

The effects of fluctuating temperatures on the three adult mosquito traits measured here 234 

lowered the predicted suitability for transmission, S(T), at warmer temperatures (Figure 4A, Table 235 

2). As a result, model 2 (empirical fluctuating) lowered the predicted Topt by 1.2-1.4°C, Tmax by 236 

0.8-1.8°C, thermal breadth by 0.8-1.2°C, and predicted amount of suitability at Topt by 32.0-33.8% 237 

(Table 2) compared to model 1 (constant). Applying rate summation to the trait TPCs to predict 238 

performance of the three adult mosquito traits in thermally fluctuating environments (model 3: 239 

trait-level RS - 3 traits) did not capture these effects (Figure 4B). This model predicted much 240 
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smaller changes in Topt (0.1-0.2°C lower), no change in Tmax or the thermal breadth, and smaller 241 

reductions in suitability at Topt (10.0-17.1% lower) (Table 2), therefore overestimating suitability 242 

near and above the thermal optimum compared to model 2 based on empirical observations. 243 

Finally, the level at which the rate summation calculation was performed (on all seven traits prior 244 

to calculating suitability [model 4: Trait-level RS - all traits] or directly on the suitability curve 245 

[model 5: S(T)-level RS]) visually impacted the curves for predicted suitability (Figure 4C), but 246 

had little impacts on the key values of the TPCs (Tmin, Topt, Tmax, Tbreadth) or the predicted reduction 247 

in suitability at Topt (18.1-32.0% lower) (Table 2). Performing rate summation on the S(T) curve 248 

yielded a TPC that was wider and predicted higher suitability at temperatures near the thermal 249 

margins (Figure 4C). However, this difference was not reflected in the values for Tmin or Tmax, 250 

which were identical for a given level of diurnal temperature variation (DTR), because the 251 

suitability curves for model 5 approached the x-axis extremely gradually. Additionally, the 252 

predicted optimum (Topt) and the magnitude of transmission near the optimum was very similar 253 

for both versions of suitability (Trait-level RS: 0.2-0.4°C cooler than constant temperatures, S(T)-254 

level RS: 0.1°C warmer or cooler than constant temperatures; Figure 4C, Table 2).  255 

 The sensitivity and uncertainty analyses provide insight into which traits determine key 256 

characteristics of the TPC for suitability (Tmin, Topt, and Tmax) and drive uncertainty across the 257 

temperature gradient (Figures S1, S2 and S3). For all suitability models, as temperature increases, 258 

lifespan (lf) is most important for lowering Topt while bite rate (a) and development rate (MDR) 259 

are most important for raising Topt (Figures S1 and S2). Together, these traits most strongly 260 

influence the optimal temperature for transmission (Topt), consistent with previous studies4. In 261 

model 1 (constant), Tmin and Tmax are both determined by larval traits not measured in this study 262 

(larval survival [pEA] and development rate [MDR], respectively). The TPC for development rate 263 
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[MDR] has very little uncertainty in its Tmax, which leads to similarly low uncertainty for the Tmax 264 

of suitability. Most of the uncertainty in model 1 is generated by lifetime egg production (B) near 265 

Topt and by vector competence (bc) near both thermal margins (Figure S3). 266 

By contrast, in model 2 (empirical fluctuating), Tmax for suitability is determined primarily 267 

by the effects of temperature on mosquito lifespan (lf), and then lifetime egg production (B), as the 268 

Tmax for both of those traits decrease below the Tmax for development rate (MDR; Figures S1 and 269 

S2). Larval survival (pEA) still determines Tmin and uncertainty in vector competence and lifetime 270 

egg production (B) are still most important near the lower thermal limit and optimum, respectively. 271 

However, near the upper thermal limit, most of the uncertainty is now due to lifetime egg 272 

production (B) and lifespan (lf; Figure S3). Model 3 (trait-based RS - 3 traits) retains the effects 273 

of the unmodified TPCs for larval survival (pEA) and development rate (MDR) from model 1 274 

(constant), which again determine Tmin and Tmax, respectively (Figures S1 and S2). Models 4 (trait-275 

level RS - all traits) and 5 (S(T)-level RS) preserve the importance of these two larval traits for 276 

determining Tmin and Tmax, but the rate summation calculation changes the specific temperature at 277 

which Tmin and Tmax occur. Models 3, 4, and 5 also retain the uncertainty patterns from model 1: 278 

lifetime egg production (B) is most important near Topt and vector competence (bc) is most 279 

important near both thermal margins (Figure S3). 280 

 281 

Mapping predicted suitability for transmission 282 

Differences in the predicted thermal suitability can be visualized on maps showing the 283 

number of months predicted to have temperatures suitable for transmission, S(T) > 0.001, in both 284 

the native zone (Central and South Asia; Figure 5 left column) and introduced zone (Africa; 285 

Figure 6 left column) for An. stephensi. The constant temperature model for suitability (model 1), 286 
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predicts that India is suitable for malaria transmission year round (Figures 5A), as is much of 287 

Africa (Figure 6A). The empirical fluctuations model for suitability (model 2) shows a slightly 288 

shorter transmission season in Northern India and Pakistan (Figure 5B) and in Northern Africa 289 

(Figure 6B), due to its cooler Tmax value (Table 3). Both suitability models based on rate 290 

summation calculations (model 4: trait-level RS and model 5: S(T)-level RS) yielded Tmin values 291 

that were much cooler than models 1 and 2 (Table 3), and thus produced maps with predicted 292 

year-round transmission across all of India (Figure 5C-D) and nearly all of Africa (Figure 6C-293 

D). Compared to the constant and empirical fluctuating models, both rate summation models 294 

predicted much longer transmission seasons in Northern India, Pakistan, and Iran (Figure 6C-D), 295 

as well as in Northern and Southern Africa (Figure 7C-D). Overall, the predictions from the 296 

constant temperature model were more like those from the empirical fluctuating model, while the 297 

predictions from both rate summation models diverged more (Figures 5 and 6 left columns, Table 298 

3).  299 

Both suitability models based on rate summation calculations (model 4: Trait-level RS and 300 

model 5: S(T)-level RS) yielded nearly identical results for S(T) > 0.001 (Figures 5 and 6). 301 

However, even though the Tmin and Tmax of thermal suitability is predicted to be the same across 302 

both models, there are clearly differences in the rate at which temperatures increase from or 303 

decrease toward the Tmin and Tmax, respectively, across models. When we use a higher threshold 304 

S(T) > 0.5, for where the thermal suitability is relatively high (Figures 5 and 6 right columns), 305 

performing rate summation on the TPC for suitability (model 5, Figure 5D and 6D) predicts more 306 

areas with relatively high thermal suitability year-round than performing rate summation on the 307 

TPCs of the component traits (model 4, Figure 5C and 6C). For this higher threshold, performing 308 

rate summation at the trait-level produced maps that were quite like both empirical models 309 
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(constant and fluctuating), while performing rate summation directly on the suitability TPC did 310 

not (Figures 5 and 6 right columns, Table 3). 311 

 312 

Discussion 313 

 This study measured and analyzed adult mosquito life history traits (lifespan, bite rate, and 314 

lifetime reproductive output) for the urban Asian malaria vector Anopheles stephensi across a 315 

temperature gradient under three daily temperature range (DTR) regimes (0, 9, and 12°C). We 316 

used these data to determine if standard modeling techniques could accurately predict the impact 317 

of biologically relevant daily temperature fluctuations on mosquito performance and 318 

environmental suitability for malaria transmission. We found that: 1) daily temperature fluctuation 319 

significantly altered the thermal responses for these critical mosquito traits involved in pathogen 320 

transmission; 2) rate summation (RS), a non-linear averaging approach used to estimate the effect 321 

of temperature fluctuations using thermal performance curves (TPCs) characterized in constant 322 

temperature environments, did not accurately predict trait thermal responses in diurnally 323 

fluctuating temperature environments; and 3) while thermal suitability predictions constructed 324 

with responses from constant temperature conditions did not capture the impact of real-world 325 

temperature variation on mosquito traits, they were substantially more accurate for predicting and 326 

mapping the thermal limits of malaria transmission than predictions constructed using rate 327 

summation calculations. This result stems from a general property of performing rate summation 328 

on TPCs that cut-off at the x-axis, as is often the case for biological traits that cannot take negative 329 

values. Thus, we conclude that while daily-scale temperature fluctuations have important impacts 330 

on organismal performance, for some applications it may be better to use thermal responses fit 331 

under constant temperature environments than to try to incorporate the impact of fluctuating 332 
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temperatures using non-linear averaging. Additionally, it is vital to improve methods of estimating 333 

the physiological effects of temperature fluctuation in real-world situations to accurately predict 334 

the thermal suitability for transmission of vector-borne diseases under realistic temperature 335 

regimes. 336 

  Daily temperature fluctuations significantly altered the thermal responses for all three adult 337 

mosquito traits studied here, primarily by reducing performance at temperatures near and above 338 

the thermal optimum. The reduced performance at warmer temperatures resulted in cooler upper 339 

thermal limits (Tmax) and thermal optima (Topt), and narrower thermal breadths, without a detectable 340 

impact on lower thermal limits (Tmin) (Figure 2, Table 1). Fluctuations also increased lifespan in 341 

our coldest mean temperature treatment (16°C). Our results contribute to a growing body of 342 

literature demonstrating that daily temperature fluctuations affect the life history of ectothermic 343 

organisms in ways not captured by constant mean temperature gradients28,30–32,39,49,51,57–59, 344 

including for mosquitoes and their associated pathogens26,35–37,60–62. The effect of temperature 345 

fluctuations on performance depends strongly on the mean temperature over which the fluctuation 346 

is occurring. Typically, fluctuations impair processes at the warmer end of the reaction norm and 347 

boost processes at the cooler end, resulting in cooler temperatures for both the Topt and Tmax, similar 348 

to our results. This general pattern is supported by three meta-analyses28,57,58 and frequently 349 

observed (albeit with some exceptions) in studies from medically important mosquitoes35–37,61 and 350 

other host-parasite systems31,47 (see Table 4). Collectively, these results suggest that whether 351 

fluctuations rescue or decrease performance is dependent on the mean temperature and the duration 352 

of time an organism remains beyond its thermal limits. Overall, our findings reinforce the pattern 353 

found in these previous studies: while fluctuations often reduce performance at warmer 354 

temperatures and increase it at cooler temperatures, there are also frequent exceptions to this rule. 355 
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Rate summation (RS) did not accurately predict trait values in diurnally fluctuating 356 

temperature environments in our study. Rate summation did predict reductions in performance 357 

near the thermal optima, but in many cases only captured a small proportion of the observed 358 

decrease (i.e. the direction of the effect was correct, but the magnitude was too small) (Figure 3, 359 

Table 1). Rate summation also predicted increases in performance near the thermal margins, 360 

yielding wider thermal breadths than what was observed, with both warmer Tmax and cooler Tmin 361 

values (i.e., the wrong direction of effect on Tmax). Finally, for our coldest mean temperature (16°C) 362 

and highest DTR (12°C), we observed lifespans that were higher than the maximum value 363 

observed for constant temperatures (i.e., at the Topt), something that is impossible to occur using 364 

rate-summation predictions. Few studies have quantitatively tested the predictions made by rate 365 

summation for how temperature fluctuation will alter organismal performance. One study using a 366 

green alga found that rate summation accurately predicted population growth rates in fluctuating 367 

conditions30. However, three studies on animals found that nonlinear averaging did not accurately 368 

predict performance of larval development and growth in frogs39, of short-term and long-term 369 

growth rates in tobacco hornworms49, and of development rate in coffin flies28. Alternatively, some 370 

studies compare their results qualitatively (i.e., did fluctuations increase or decrease performance) 371 

with general predictions based on Jensen’s Inequality and the concavity of the TPC. These studies 372 

typically find that the predicted change in trait value successfully matches the observed direction 373 

of trait change51,63 (but there are exceptions59). Thus, our findings once again reinforce general 374 

patterns from the literature: trait values measured under fluctuating conditions often qualitatively 375 

match the predicted changes compared to constant temperatures based on Jensen’s Inequality and 376 

the concavity of TPCs, but they rarely quantitatively match the specific values predicted by rate 377 

summation calculations. 378 
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Predicted thermal suitability for malaria transmission varied substantially among our four 379 

models (Figure 4, Table 3). These differences mirrored the trait-level results: empirical 380 

fluctuations (model 2) decreased Topt and Tmax compared to constant temperatures (model 1), while 381 

rate summation (models 4 and 5) predicted little change in Topt, increases in Tmax, and decreases in 382 

Tmin. Although rate summation appeared to predict the decrease in suitability at Topt quite accurately 383 

(Table 3), we note that our empirical model only accounts for the impact of fluctuations on our 384 

three focal traits, while the rate summation models simulate the impact of fluctuations on all seven 385 

traits. Thus, rate summation may still be only partially capturing the impact of fluctuating 386 

temperatures near the thermal optimum. We also found that the level at which rate summation was 387 

conducted had a large impact on predicted suitability near both thermal limits (i.e., on component 388 

traits versus on the TPC for suitability, model 4 versus model 5, respectively; Figure 4C). Studies 389 

on mosquito-borne disease generally perform rate summation on component traits42–44,46 or have 390 

ambiguously written methods48, but a recent study on temperature-dependent transmission of 391 

schistosomiasis performed rate summation directly on the TPC for R047. 392 

The variation in the suitability models’ thermal limits generated substantial differences in 393 

the predicted length of transmission seasons and geographic areas predicted to be suitable for year-394 

round transmission (Figures 5 and 6, left columns). For our main mapping approach (number of 395 

months with S(T) > 0.001), constant temperatures (model 1) approximated empirically fluctuating 396 

temperatures (model 2) extremely well, since those models had the same thermal minima (Tmin). 397 

By contrast, both rate summation models (4 and 5) overpredicted the geographic area with year-398 

round suitability for transmission due to their much cooler Tmin. The models’ upper thermal limits 399 

(Tmax) were not important here, since current monthly mean temperatures did not exceed them; 400 

however, they could begin to limit suitability under future climate change projections. 401 
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To our knowledge, this study is the first to attempt to validate the accuracy of rate 402 

summation in predicting the effects of thermal variation on mosquito and pathogen life history, 403 

and to explore the implications for predicted transmission. Unfortunately, our results suggest that 404 

these studies are likely overestimating transmission near Tmax, and possibly near Tmin as well. These 405 

areas of the TPC correspond to locations where the impacts of climate change on transmission are 406 

predicted to be felt most strongly, as cooler areas become newly suitable and hotter areas become 407 

unsuitable3,7. We found two studies that used rate summation to estimate the thermal response of 408 

transmission under multiple diurnally fluctuating conditions. Similar to our study, one predicted 409 

that fluctuations would increase the Tmax of transmission48, contrary to the decreases in Tmax 410 

observed in our study and that better correspond to the broader literature (Table 4). The other 411 

study provided results for a limited range of temperatures that stopped well below Tmax (at 28°C) 412 

and could not be compared10. 413 

Overall, our suitability results are concerning: they demonstrate that rate summation 414 

calculations can systematically distort the thermal limits of TPCs and increase their thermal 415 

breadth, and yet many predictive models for mosquito-borne diseases use it to account for the 416 

impacts of temperature fluctuations on mosquito and pathogen traits that are important for 417 

transmission10,35,42–46,48. We recommend caution when applying rate summation to organismal 418 

performance and models for disease transmission (or other processes) in cases where empirical 419 

responses to fluctuating temperatures are not available. Rate summation more accurately estimates 420 

absolute levels of performance or transmission near the thermal optimum, which can be important 421 

for capturing the overall intensity of transmission. However, TPCs measured in constant 422 

temperature conditions may provide more accurate estimates of the thermal limits, which is 423 
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important for estimating seasonality and the current and future geographic areas suitable for 424 

transmission. (This accuracy likely depends on the specific TPC function used: see below). 425 

Many different factors could affect the accuracy of rate summation for predicting 426 

performance under fluctuating temperature conditions. First, the function chosen to fit the TPC 427 

over the constant temperature gradient will strongly influence any predictions from rate summation 428 

because the calculations are very sensitive to the shape and concavity of the thermal response, as 429 

illustrated by Jensen’s Inequality27,40. Many thermal responses are truncated at zero (including the 430 

quadratic and Brière responses used here) because negative values for traits like lifespan and 431 

fecundity are not biologically meaningful. This truncation, however, inherently creates 432 

accelerating (i.e., convex) portions of the curve, that in turn leads to higher predicted performance 433 

in fluctuating versus constant temperatures for mean temperatures near the thermal margins. TPCs 434 

that are not truncated below zero, such as the Eppley curve used in the study on population growth 435 

for a green alga, do not always predict an increase at the thermal margins using rate summation30. 436 

Second, traits that are rate-based (i.e., measured per unit time like development rate, foraging rate, 437 

daily fecundity, etc.) are more likely to show an asymmetrical thermal response4 and may be more 438 

likely to match the assumptions required for rate summation than traits that are integrated over an 439 

organism’s lifetime (e.g., longevity or lifetime fecundity). Third, traits that depend on discrete 440 

events may be determined by the temperatures an organism experiences shortly after those events 441 

occur. For example, the time of day mosquitoes are exposed to Plasmodium falciparum parasites 442 

and the portion of the DTR experienced after this exposure significantly alters the proportion of 443 

Anopheles mosquitoes that become infectious with malaria60. Finally, certain taxa may more 444 

closely match predictions from rate summation than others. For instance, rate summation may 445 

work better in single-celled organisms30 than in larger, multicellular organisms with more complex 446 
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tissue-specific responses to temperature stress32. From a molecular and cellular biology 447 

perspective, discrepancies between observed performance and predictions from rate summation 448 

may occur due to acclimation/hardening processes or the accumulation of thermal stress and the 449 

energetic costs of repairing damage from extreme hot or cold temperatures32,50,52,54. 450 

Organismal performance is consistently observed to differ in thermally fluctuating 451 

environments relative to constant temperature environments, thus developing a validated 452 

predictive framework that can accurately approximate trait performance in a fluctuating 453 

environment is essential. Future work should continue characterizing organismal responses in 454 

thermally fluctuating environments, in order to uncover potential patterns related to the type of 455 

trait and organism under study26. Additionally, we need more work that integrates phenomena 456 

across biological scales to mechanistically understand the cellular and molecular responses to 457 

thermal acclimation and stress that dictate the temperature constraints on organismal performance. 458 

Finally, while this study investigated the impact of thermal fluctuations on a single strain of 459 

mosquitoes in the adult stage, more work is needed to investigate how other environmental factors 460 

(e.g., food resources, competition, humidity) and genetic variation (e.g., thermal plasticity) affect 461 

organismal performance in thermally variable environments6,50,64,65. 462 

In conclusion, realistic temperature fluctuations over the daily cycle can have significant 463 

impacts on organismal performance, including for mosquito vectors of human parasites like 464 

malaria. However, current approaches for quantitatively modeling the effect of temperature 465 

fluctuations using nonlinear averaging often fail to adequately predict performance under 466 

fluctuating conditions. Our thermal suitability model based on data from constant temperatures 467 

was more accurate for mapping the thermal limits for malaria transmission than the model 468 

parameterized via rate summation. Thus, for some applications it may be better to simply use 469 
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thermal responses fit under constant temperature environments than to try to incorporate the impact 470 

of fluctuating temperatures using non-linear averaging. Future studies should carefully consider 471 

whether nonlinear averaging is likely to improve the accuracy of their results based on their 472 

specific goals. Meanwhile, more work is needed to improve methods for estimating the 473 

physiological effects of temperature fluctuation in real-world situations to more accurately predict 474 

organismal performance and disease transmission under realistic temperature regimes. 475 

 476 

Materials & Methods 477 

Mosquito husbandry 478 

 Anopheles stephensi mosquitoes (urban type form originally sourced from Walter Reed 479 

Army Institute of Research, Silver Spring, MD, USA) were reared at standard insectary conditions 480 

(27°C ± 0.5°C, 80% ± 5% relative humidity, and a 12L:12D photoperiod) prior to the life table 481 

experiment, as described previously 8. Briefly, we hatched immature mosquito larvae from eggs 482 

and placed 110 individuals into plastic trays (6 Qt., 12.4 cm x 34.6 cm x 21.0 cm) containing 483 

500mL of distilled water. Food (100mg ground TetraMin fish flakes) was provided daily until 484 

most individuals reached the pupal stage. Pupae were rinsed and transferred to water-containing 485 

cups placed inside adult mosquito mesh cages for eclosion. For adult colony maintenance, An. 486 

stephensi were provided 5% dextrose and 0.05% para-amino benzoic acid (PABA) and fed whole 487 

human blood (O+, healthy male < 30 years, Interstate Blood Bank, TN, USA) via water-jacketed 488 

hog intestine membrane feeders to support reproduction.  489 

 490 

Experimental design 491 
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We adopted a similar experimental design as in 8, where we previously measured An. 492 

stephensi (urban type form) life history traits at six constant temperatures (16ºC, 20ºC, 24ºC, 28ºC, 493 

32ºC, and 36ºC). Here, we programmed incubators (Percival; Perry, Iowa) to follow a Parton-494 

Logan model 66 for hourly diurnal temperature ranges (DTR) that are relevant for P. falciparum 495 

transmission in a natural setting (DTR of 9°C or 12°C) around five of the mean temperatures 496 

(16°C, 20°C, 24°C, 28°C, 32°C ± 0.5°C) explored previously 8 (see SI Methods). All other 497 

incubator settings (80% ± 5 RH, and 12L:12D photoperiod) and experimental procedures were the 498 

same to allow for direct comparison between results. All experimental work for both studies was 499 

conducted during 2016-2018 at the University of Georgia (USA). 500 

To generate a cohort of age-matched individuals, we collected pupae present at day nine 501 

post-hatch (when most immature mosquitoes reached the pupal stage) and placed them in an 502 

eclosion container within an adult cage for 24hr. We provided a sugar solution (5% dextrose and 503 

0.05% para-amino benzoic acid) to co-housed age-matched adults for three days prior to starting 504 

the lifetable experiment to permit mating. The lifetable experiment was initiated by providing 505 

females with an initial blood meal for 15 min, randomly sorting 300 blood-fed females into 506 

individual housing (16oz. paper cup with mesh top), and then randomly assigning 30 individuals 507 

to each temperature treatment. 508 

Each day until found dead, individuals were provided with a whole human blood meal for 509 

15 minutes and inspected visually for imbibed blood. Oviposition sites (secured petri dish 510 

containing water saturated cotton and filter paper) within each individual housing were rehydrated 511 

and checked daily for eggs; if present, eggs were removed and counted. We terminated the 512 

experimental block when either all mosquitoes had died or when at most four mosquitoes remained 513 

alive at 16ºC. The life table experiment for each fluctuation regime was performed two 514 
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independent times resulting in data from a total of 600 individuals. Life table data collected across 515 

constant temperatures from the previous study by our group consisted of 390 individuals across 516 

six constant temperatures 8. 517 

 518 

Fitting Thermal Performance Curves (TPCs) 519 

 For each combination of trait (lifetime measures of bite rate [a], lifespan [lf], and egg 520 

production [B]) and fluctuation regime (constant, DTR 9°C, and DTR 12°C), we used a Bayesian 521 

framework to fit either a symmetric (quadratic: -c(T-Tmin)(T-Tmax)) or an asymmetric (Brière: cT(T-522 

Tmin)(Tmax-T)1/2) non-linear unimodal function to generate a TPC predicting trait values across 523 

temperature (T, in degrees Celsius). From these functions, we can compare the predicted thermal 524 

limits (Tmin, Tmax) and optimum temperature (Topt) for each trait among the different DTR 525 

treatments, with c as a shape fit parameter. Both functions were restricted from becoming negative 526 

by assuming a trait value to be zero if T < Tmin or T > Tmax. The previous study8 analyzed only the 527 

constant temperature treatments and fit trait thermal responses to means from each experimental 528 

block using a truncated normal distribution. Here, we used the full dataset of three DTR treatments 529 

and fit the trait thermal responses to individual-level data, using different probability distributions 530 

for each trait based on the data type and observed distribution. For bite rate (a), we used a normal 531 

distribution truncated at zero; for lifespan (lf), we used a gamma distribution; for lifetime egg 532 

production (B), we used a negative binomial distribution (see SI Methods for model 533 

specifications).  534 

For each trait, we selected the best-fitting functional form (quadratic or Brière) using the 535 

Deviance Information Criterion (DIC)67. For each parameter in the mean response function (i.e., 536 

c, Tmin, Tmax) and the additional parameter required to specify each probability distribution (i.e., 537 
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the variance for the truncated normal distribution, the rate parameter for the gamma distribution, 538 

and the r parameter for the negative binomial distribution), we assumed low-information uniform 539 

priors (Tmin ~ uniform (0, 20), Tmax ~ uniform (28, 45), c ~ uniform (0, 10), variance ~ uniform 540 

(0,1000), rate ~ uniform (1,100), r ~ uniform (1,100)) that restricted the range of parameters to 541 

biologically or statistically meaningful values. TPCs were fitted in R using JAGS/R2jags68,69, 542 

which implements Markov Chain Monte Carlo (MCMC). Posterior draws were obtained from 543 

three concurrent Markov chains. In each chain, a 5,000-step burn-in phase was followed by 20,000 544 

samples of the stationary chain, for a total of 60,000 posterior samples. These samples were thinned 545 

by saving every eighth sample (yielding 7,500 samples) to reduce autocorrelation in the chain. For 546 

each TPC, we used the posterior distributions for the parameters to generate posterior distributions 547 

over a temperature gradient from 0-45°C at 0.1°C intervals, which we then used to calculate the 548 

mean, median, and 95% credible intervals. 549 

To test for the statistical significance of fluctuation treatment, we used the Deviance 550 

Information Criterion (DIC) output from JAGS. For each trait, we compared: 1) the sum of DIC 551 

values for the three models fit separately to data from each treatment (constant, DTR 9°C, and 552 

DTR 12°C) and 2) the DIC of a model fit to the combined data from all treatments. Fluctuation 553 

treatment is significant if the sum of the separate models is >= 2 DIC units lower than the DIC 554 

value for the combined model. 555 

 556 

Generating TPCs with rate summation 557 

 To calculate the trait thermal responses predicted by rate summation (Equation 1) we used 558 

the 7,500 posterior samples from the Bayesian fitted TPCs for each trait measured at constant 559 

temperatures. First, we used a Parton-Logan model66 to calculate a temperature profile for each 560 
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mean temperature spanning 0-50°C with 0.1°C increments, assuming a DTR of 9 or 12°C across 561 

a 24-hour period (see SI Methods). Second, we calculated predicted trait values at each hour using 562 

the TPC for trait performance at constant temperatures. Third, a daily mean value for each trait 563 

was calculated by averaging the predicted hourly values for that trait over the 24-hour period for 564 

each mean temperature. When fluctuating temperatures extended beyond the range of our constant 565 

temperature TPCs (0°C ≥ T ≤ 45°C), we used the trait value predicted at the corresponding edge 566 

temperature, which was always equal or approximately equal to zero. Lastly, since rate summation 567 

was conducted for each posterior sample, we calculated the mean, median, and 95% credible 568 

interval of the resulting rate summation estimates for each mean temperature.  569 

 570 

Predicting thermal suitability, S(T) 571 

Following previous work8, we use a modified expression for the relative pathogen basic 572 

reproductive number (relative R0), a metric of pathogen transmission potential in a given thermal 573 

environment. This metric incorporates the thermal responses of mosquito and parasite traits to 574 

evaluate the combined effects of temperature and temperature fluctuation on the predicted thermal 575 

suitability [S(T), Equation 2] of An. stephensi to transmit Plasmodium falciparum8. A scaled 576 

version of R0(T), called S(T), is proportional to the number of new cases expected to arise from a 577 

single case assuming a fully susceptible population, and is dependent on environmental 578 

temperature, T (°C). Further, because values for mosquito life history traits change as mosquitoes 579 

age, we have adopted the use of the S(T) expression that more precisely captures lifetime 580 

transmission potential8 (Equation 2). 581 

  Eq. 2 582 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 23, 2024. ; https://doi.org/10.1101/2024.09.20.614098doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.20.614098
http://creativecommons.org/licenses/by-nc/4.0/


27 

 

The parameters of S(T) include: daily per capita bite rate (a), vector competence (bc; the 583 

proportion of infectious mosquitoes), lifetime egg production (B), probability of egg-to-adult 584 

survival (pEA), mosquito development rate (MDR), and adult mosquito lifespan (lf). Further, the 585 

S(T) formulation uses the Gompertz function over daily adult survival and the extrinsic incubation 586 

period (EIP, the inverse of the parasite development rate [PDR-1]) to calculate the proportion of 587 

mosquitoes surviving the latency period (ϒ) as described in 8. We fit thermal responses for these 588 

additional traits (pEA, MDR, and bc) using previously published data measured across constant 589 

temperature gradients 19,36. For ϒ, we combined data for PDR measured across a constant 590 

temperature gradient 19 with our new lifespan (lf) data in constant and fluctuating conditions, and 591 

fit a TPC for each of our three fluctuation treatments (DTR = 0, 9, and 12°C). In all cases, we used 592 

the same methods as for the focal trait data collected here (described above), with a truncated 593 

normal distribution. We calculated thermal suitability using the full posterior distributions for each 594 

trait TPC over the temperature gradient from 0-45°C at 0.1°C intervals, yielding posteriors for 595 

suitability over that same gradient, with the same number of samples (7500). We then used these 596 

distributions to calculate the mean, median, and 95% credible intervals. 597 

Absolute R0(T) is influenced by additional factors that we do not incorporate in this study 598 

including rainfall, humidity, mosquito habitat quantity and quality, infection status, and 599 

heterogeneity in contact rates, individuals, or genotypes. Thus, we instead describe the thermal 600 

suitability of pathogen transmission, S(T), where S(T) is scaled to range between 0 and 1 at the 601 

respective minimum and maximum values for the median thermal response. We scaled all 602 

versions of the S(T) model using the maximum value from model version 1 (‘constant’, see 603 

Suitability Model Overview) in order to be able to visually compare differences in the predicted 604 

magnitude of thermal suitability between model versions. The additional R0 parameters r (human 605 
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recovery rate) and N (density of humans) are evaluated as arbitrary constants, as they are 606 

assumed to be temperature independent. Thus, a threshold of S(T) > 0 implies that the thermal 607 

conditions are suitable for the transmission of P. falciparum based solely on the temperature-608 

dependent physiological responses of An. stephensi. Differences in the predicted critical 609 

temperatures at which S(T) reaches 0 (Tmin and Tmax) and 1 (Topt) can then be compared across 610 

diurnal temperature ranges. 611 

 612 

Sensitivity and uncertainty analysis 613 

We performed two types of sensitivity analysis and an uncertainty analysis on each version 614 

of the suitability model to determine which traits were most important for determining the thermal 615 

optimum and limits for transmission and how each trait contributed to the uncertainty in S(T). 616 

First, we used a partial derivative approach, calculating ∂S/∂x·∂x/∂T across the temperature (T) 617 

gradient for each trait (x). This approach only works for the models without rate summation (i.e., 618 

model 1: constant and model 2: empirical fluctuating) because it uses the derivatives of the 619 

quadratic and Brière functions and their fitted parameters (Tmin, Tmax, and q) for each trait. Second, 620 

we held each trait constant while allowing all others to vary with temperature. Finally, we 621 

calculated the HPD interval (highest posterior density interval, the smallest interval of predicted 622 

trait value encompassing 95% of the probability density in the posterior distribution) across the 623 

temperature gradient for S(T) using the full posterior distributions for all traits (i.e. full uncertainty) 624 

and for S(T) with each trait given its mean value (i.e. removing the uncertainty for one trait at a 625 

time). We then compared the relative size of the HPD in both conditions for each trait. 626 

 627 

Mapping thermal suitability predictions 628 
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We created maps to compare the spatial distribution of months of thermal suitability for 629 

transmission predicted by the different versions of our model, S(T). For simplicity, we only 630 

mapped model versions 1, 2, 4, and 5 (constant, empirical fluctuating, trait-level RS fluctuating - 631 

all traits, and S(T)-level RS fluctuating, respectively) for one level of DTR (12°C) where 632 

applicable. As with previous mapping for thermal suitability of transmission 5,8,23,42,70, for each 633 

version of S(T) we determined the temperature range (at 0.1°C resolution) where S(T) > 0.001 634 

with a posterior probability >97.5%. This conservative threshold minimizes type I error 635 

(inclusion of unsuitable areas). Here, we also calculated the temperature range at which each 636 

model exceeded an additional threshold of suitability,  S(T) > 0.5. This threshold shows where 637 

thermal suitability is relatively high (rather than simply present), and allows us to illustrate 638 

quantitative differences between model versions 4 and 5 (i.e. rate summation performed on the 639 

trait TPCs versus on the suitability TPC), which had similar Tmin and Tmax but different shapes 640 

otherwise. For calculating the mapping thresholds, we scaled the 97.5% lower CI prediction from 641 

each model between 0 and 1 so that relative suitability was based on the maximum predicted 642 

suitability for that specific model. 643 

Global gridded long-term average modeled baseline monthly mean temperatures at a 5 644 

arcminute resolution (approximately 10 km2 at the equator), were downloaded from 645 

WorldClim.org (version 1.0). The number of months (0-12) of thermal suitability under each 646 

combination of model and suitability threshold was calculated at the pixel level, and masked to 647 

countries described as the ‘endemic’ range for An. stephensi (India, Pakistan, Iran, Kuwait, 648 

United Arab Emirates, and Oman), and for all countries in the continent of Africa, where it is 649 

currently invading and establishing. All raster calculations and mapping output were conducted 650 
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in R (version 4.3.1), using packages ‘raster’ ‘terra’ ‘sf’ ‘tidyverse’ ‘ggplot2’ ‘maptools’ 651 

‘mapdata’ ‘ggthemes’, in RStudio 2024.04.0 Build 735. 652 

 653 

Data Availability 654 

 The mosquito trait data are currently available on the project GitHub repository: 655 

https://github.com/JoeyBernhardt/anopheles-rate-summation. Upon acceptance, these data will 656 

also be submitted to Dryad Data Repository, and the associated citation will be provided here.  657 

 658 

Code Availability 659 

The code for this analysis is available on the project GitHub repository: 660 

https://github.com/JoeyBernhardt/anopheles-rate-summation. 661 
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Figure Captions (max 350 words each) 679 

Figure 1: Conceptual figure summarizing the study. A) We measured three adult mosquito 680 

traits (bite rate [a], lifespan [lf], and lifetime egg production [B]) in constant and fluctuating 681 

conditions (diurnal temperature range [DTR] = 0, 9, and 12°C) across a range of mean 682 

temperatures (mean temperatures = 16, 20, 24, 28, and 32°C for all DTR treatments; 36°C for DTR 683 

= 0°C only). B) For each trait, we fit thermal response curves (TPCs) to the data from each DTR 684 

treatment. Additionally, we used rate summation (RS) to predict performance in fluctuating 685 

environments based on the TPC fitted to data from constant environments. Compared to constant 686 

temperatures with the same mean (dark gray points), in fluctuating temperatures (solid arrows) 687 

rate summation will predict a decrease in performance over decelerating portions of a TPC (e.g., 688 

near the optimum) and an increase in performance over accelerating portions of a TPC (dashed 689 

arrow and green points). C) We compared five versions of a model predicting thermal suitability 690 

for transmission, S(T), parameterized with different trait TPCs. Model 1 (‘Constant T’) used TPCs 691 

fit to trait data from constant temperatures. Model 2 (‘Empirical Fluctuating T’) used TPCs fit to 692 

trait data from fluctuating temperatures. Models 3 and 4 used TPCs generated by applying rate 693 

summation to constant temperature TPCs for either the 3 focal traits measured here (model 3: 694 

‘Trait-level RS Fluctuating T - 3 traits’) or all traits in the model (model 4: ‘Trait-level RS 695 

Fluctuating T - all traits’). Model 5 (‘S(T)-level RS Fluctuating T’) applied rate summation directly 696 

to the TPC for suitability generated in model 1. Dashed arrows denote RS calculations and solid 697 

arrows denote parameterizing the suitability model with trait TPCs. 698 

 699 
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Figure 2: Empirically measured thermal responses for three adult Anopheles stephensi traits 701 

in constant and diurnally fluctuating temperatures. Traits include: bite rate (a, left column), 702 

lifespan (lf, center column) and lifetime egg production (B, right column). Colors denote daily 703 

temperature range (DTR) treatment: 0°C (gray), 9°C (green), and 12°C (purple). A-C) 704 

Summarized data and thermal performance curves (TPCs). TPC contours show posterior 705 

distribution medians, with 95% credible intervals as shaded areas. Points and error bars display 706 

block means and standard errors for visual comparison between treatments. (TPCs were fit to 707 

individual-level data.) D-F) Key temperature values from the TPCs: thermal optimum (Topt), 708 

thermal minimum (Tmin), and thermal maximum (Tmax). Points display posterior distribution 709 

medians and error bars display 95% credible intervals. 710 

 711 

  712 
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Figure 3: Thermal performance based on empirical observations or predictions generated 713 

by rate summation for Anopheles stephensi performance in diurnally fluctuating 714 

temperature environments. Left column: bite rate (a), center column: lifespan (lf), right column: 715 

lifetime egg production (B). Top row (green): daily temperature range (DTR) 9°C, bottom row 716 

(purple): DTR 12°C. Darker hues and solid lines show thermal performance curves (TPCs) fit to 717 

empirical data collected from mosquitoes housed in diurnally fluctuating temperature conditions. 718 

Light hues and dashed lines show predictions generated by rate summation. TPCs fit to empirical 719 

data collected from mosquitoes housed across constant temperature conditions shown in gray for 720 

comparison. 721 

 722 

 723 
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Figure 4: Thermal suitability for transmission of malaria by Anopheles stephensi predicted 725 
for constant and diurnally fluctuating temperature conditions. A) Model versions 726 
parameterized with TPCs fit to empirical data collected from constant temperature (T) conditions 727 
(model 1, constant T) and fluctuating conditions (model 2, empirical fluctuating T). B) Model 728 
versions parameterized with TPCs fit to empirical data collected from fluctuating conditions 729 
(model 2, empirical fluctuating T) and TPCs predicted by rate summation performed on trait TPCs 730 
for focal traits only (model 3, trait-level RS - 3 traits). C) Model versions comparing rate 731 
summation performed on the TPCs for traits (model 4, trait-level RS - all traits) and on the TPC 732 
for suitability itself (model 5, S(T)-level RS). The numbers in the legends below refer to model 733 
numbers, see Methods for model details. 734 
 735 
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Figure 5: Months of thermal suitability, S(T), for transmission of malaria by Anopheles 737 

stephensi in its native range in Central and South Asia predicted by models parameterized 738 

using constant and fluctuating temperatures. Left column: total months where S(T) is predicted 739 

to exceed 0.001 (i.e. when transmission is possible). Right column: total months where S(T) is 740 

predicted to exceed 0.5 (i.e. when transmission is relatively favored by temperature). Darker hues 741 

indicate more months. Top row: model 1 (constant T) uses trait TPCs fit to data across a range of 742 

constant temperatures; second row: model 2 (empirical fluctuating T) uses trait TPCs fit to data 743 

across a range of fluctuating temperatures; third row: model 4 (trait-level RS - all traits), uses trait 744 

TPCs generated by applying rate summation to TPCs fit to data from constant temperatures for all 745 

traits; bottom row: model 5 (S(T)-level RS), applies rate summation to the TPC for suitability 746 

generated from traits measured across a range of constant temperatures (i.e. the output of version 747 

1). Fluctuating temperature models used a daily temperature range (DTR) = 12°C. 748 

 749 
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Figure 6: Months of thermal suitability, S(T), for transmission of malaria by Anopheles 751 

stephensi in its invading range in Africa predicted by models parameterized using constant 752 

and fluctuating temperatures. Left column: total months where S(T) is predicted to exceed 0.001 753 

(i.e. when transmission is possible). Right column: total months where S(T) is predicted to exceed 754 

0.5 (i.e. when transmission is relatively favored by temperature). Darker hues indicate more 755 

months. Top row: model 1 (constant T) uses trait TPCs fit to data across a range of constant 756 

temperatures; second row: model 2 (empirical fluctuating T) uses trait TPCs fit to data across a 757 

range of fluctuating temperatures; third row: model 4 (trait-level RS - all traits), uses trait TPCs 758 

generated by applying rate summation to TPCs fit to data from constant temperatures for all traits; 759 

bottom row: model 5 (S(T)-level RS), applies rate summation to the TPC for suitability generated 760 

from traits measured across a range of constant temperatures (i.e. the output of version 1). 761 

Fluctuating temperature models used a daily temperature range (DTR) = 12°C. 762 

 763 
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Table 1. Shifts in properties of thermal performance curves (TPCs) for adult mosquito 765 

traits due to temperature fluctuations. Differences in thermal optimum (Topt), thermal 766 

maximum (Tmax), and thermal breadth (Tbreadth), and percent change in the predicted trait value at 767 

Topt [ f(Topt) ]. TPCs fit to empirical data from fluctuating temperatures (Emp.) and TPCs 768 

calculated using rate summation (RS) are both compared to TPCs fit to data from constant 769 

temperatures. Diurnal temperature ranges (DTR) = 9 and 12°C. Differences calculated using 770 

median values. See Table S2 for the original parameter values for each model. 771 

 772 

Trait & 
Fluctuation 

Regime 

Emp. 
Topt 
(°C) 

Emp. 
Tmax 
(°C) 

Emp. 
Tbreadth 
(°C) 

Emp. 
f(Topt) 

RS Topt 

(°C) 

RS Tmax 

(°C) 

RS 
Tbreadth 
(°C) 

RS 
f(Topt) 

Bite rate (a)         
DTR 9 -4.2 -5.2 -4.5 -25.1% -1.0 +2.6 +5.0 -5.1% 
DTR 12 -2.4 -3.1 -3.4 -23.5% -1.8 +2.6 +5.0 -8.9% 

Lifespan (lf)         
DTR 9 -1.5 -3.1 -3.2 -2.7% 0.0 +4.1 +5.1 -3.0% 

DTR 12 -2.1 -3.9 -3.7 10.7% +0.1 +5.4 +6.4 -5.2% 
Lifetime 
eggs (B) 

        

DTR 9 -1.2 -2.5 -2.3 -7.9% +0.1 +4.0 +6.7 -6.5% 
DTR 12 -1.6 -2.9 -2.4 -14.8% +0.1 +5.3 +12.0 -11.5% 
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Table 2: Shifts in properties of thermal performance curves (TPCs) for models of predicted 774 

suitability of malaria transmission, S(T), due to temperature fluctuations. Differences in 775 

thermal optimum (Topt), thermal maximum (Tmax), and thermal breadth (Tbreadth), and the percent 776 

change in median S(T) predicted at Topt, compared to the constant temperature model (model 1). 777 

Fluctuating models are parameterized with trait TPCs fit from empirical data (model 2: 778 

“Empirical fluctuating”) or are calculated using rate summation (RS). Rate summation was used 779 

only for the three traits with empirical data (model 3: “Trait-level RS - 3 traits”), for all traits 780 

(model 4: “Trait-level RS - all traits”), or directly on the TPC for suitability, S(T), at constant 781 

temperatures (model 5: “S(T)-level RS”). Diurnal temperature ranges (DTR) = 9 and 12°C. 782 

Differences calculated using median values. See Table S3 for original parameter values for each 783 

model. 784 

 785 

Model & 
Fluctuation 

Regime 

Topt 

(°C) 

Tmax 

(°C) 

Tbreadth 

(°C) 
S(Topt) 

2) Empirical 
fluctuating - 3 
traits 

    

DTR 9 -1.2 -0.8 -0.8 -32.0% 
DTR 12 -1.4 -1.8 -1.2 -33.8% 

3) Trait-level RS - 
3 traits 

    

DTR 9 -0.1 0.0 0.0 -10.0% 
DTR 12 -0.2 0.0 0.0 -17.1% 

4) Trait-level RS - 
all traits 

    

DTR 9 -0.2 +4.0 +9.0 -18.1% 
DTR 12 -0.4 +5.3 +11.9 -30.6% 

5) S(T)-level RS     
DTR 9 -0.1 +4.0 +9.0 -19.9% 
DTR 12 +0.1 +5.3 +11.9 -32.0% 
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Table 3: Temperature thresholds used for mapping four models of thermal suitability. Four 787 

versions of the model for thermal suitability, S(T), parameterized with different trait TPCs or 788 

calculated using rate summation (RS): trait TPCs fit from empirical data under constant 789 

temperatures (model 1: “Constant”), trait TPCs fit from empirical data under fluctuating 790 

temperatures (model 2:  “Empirical Fluctuating”), RS at the trait-level for all traits (model 4: 791 

“Trait-level RS - all traits”), or RS directly on the TPC for suitability, S(T), parameterised under 792 

constant temperatures (model 5: “S(T)-level RS”).  All fluctuating models were for Diurnal 793 

temperature ranges (DTR) = 12°C only. Units are in °C. 794 

 795 

Model Range where 
S(T) > 0.001 

(°C) 

Range where 
S(T) > 0.5 

(°C) 

Constant (1) 15.8 - 35.8 21.1 - 31.9 
Empirical 
Fluctuating (2) 

15.8 - 33.1 20.3 - 30.2 

Trait-level RS - all 
traits (4) 

10.9 - 40.1 21.2 - 31.1 

S(T)-level RS (5) 9.3 - 41.1 18.7 - 34.7 
 796 
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Table 4: Summary of selected previous studies analyzing empirical data on the impact of 798 
temperature fluctuations on performance. When relevant, results include whether they match 799 
the general pattern of fluctuations improving performance at cooler temperatures and reducing 800 
performance at warmer temperatures. Tmean = mean temperature, Tmin = lower thermal limit, Topt 801 
= thermal optimum, DTR = diurnal temperature range. 802 
 803 

Study description and citation Key results or traits measured (matches general pattern) 

Meta-analyses  

Meta-analysis of 24 studies on 
development rate in all taxa28 

Fluctuations that went below Tmin all increased performance; 
fluctuations that went above Topt reduced performance, with one 
exception (yes); other studies were highly variable (unclear) 
 

Meta-analysis of 22 studies on 
egg incubation traits in 
reptiles57 

Fluctuations increased performance at cooler Tmeans and 
decreased performance at warmer Tmeans (yes); fluctuation size 
increased effect size 

Meta-analysis of 75 studies on 
all traits in all taxa58 

Fluctuations reduced performance at all temperatures, but 
reduction was greater at warmer temperatures (partial) 

Studies in medically important 
mosquitoes  

 

Larval, adult, and infection 
traits for rodent malaria in 
Anopheles stephensi at Tmean = 
18°C and 24°C37 

Parasite development rate (yes), vector competence (yes), larval 
development rate (yes), larval survival (yes), gonotrophic cycle 
duration (yes), adult survival (no: fluctuations changed survival 
curve shape at cool Tmean and increased survival at warm Tmean) 

Adult survival and vector 
competence for dengue virus in 
Aedes aegypti at Tmean = 26°C 35 

Adult survival (yes), vector competence (partial: reduced for % 
infection but no effect for % dissemination) 

Larval and adult traits in Aedes 
aegypti at Tmean = 16°C and 35-
37°C61 

Larval development rate (yes), larval survival (partial: increased 
at both Tmeans), proportion blood feeding (yes)  

Larval traits in Anopheles 
stephensi at various Tmeans36 

Larval development rate (yes), larval survival (yes); for 
survival, larger DTRs increased effect size at Tmean = 35°C  

Studies in other host-parasite 
systems 

 

Parasitoid wasps in drosophila 
hosts at Tmean = 20°C31 

Parasite development rate (yes), infestation rate (no effect), 
parasite success (yes) 

Snail hosts and schistosome 
parasites at  Tmean = 25°C47 

Fluctuations up to 2x typical DTR: snail egg production (no 
effect), snail growth (no effect), and parasite production (no 
effect). 
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