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Abstract

Developing high yielding rice varieties that are tolerant to drought stress is crucial for the

sustainable livelihood of rice farmers in rainfed rice cropping ecosystems. Genomic selec-

tion (GS) promises to be an effective breeding option for these complex traits. We evaluated

the effectiveness of two rather new options in the implementation of GS: trait and environ-

ment-specific marker selection and the use of multi-environment prediction models. A refer-

ence population of 280 rainfed lowland accessions endowed with 215k SNP markers data

was phenotyped under a favorable and two managed drought environments. Trait-specific

SNP subsets (28k) were selected for each trait under each environment, using results of

GWAS performed with the complete genotype dataset. Performances of single-environment

and multi-environment genomic prediction models were compared using kernel regression

based methods (GBLUP and RKHS) under two cross validation scenarios: availability (CV2)

or not (CV1) of phenotypic data for the validation set, in one of the environments. Trait-spe-

cific marker selection strategy achieved predictive ability (PA) of genomic prediction up to

22% higher than markers selected on the bases of neutral linkage disequilibrium (LD). Toler-

ance to drought stress was up to 32% better predicted by multi-environment models (espe-

cially RKHS based models) under CV2 strategy. Under the less favorable CV1 strategy, the

multi-environment models achieved similar PA than the single-environment predictions. We

also showed that reasonable PA could be obtained with as few as 3,000 SNP markers, even

in a population of low LD extent, provided marker selection is based on pairwise LD. The

implications of these findings for breeding for drought tolerance are discussed. The most

resource sparing option would be accurate phenotyping of the reference population in a

favorable environment and under a managed drought, while the candidate population would

be phenotyped only under one of those environments.
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Hamadoun T-V, Kumari N, Frouin J, Kumar A, et al.

(2019) Selection of trait-specific markers and

multi-environment models improve genomic

predictive ability in rice. PLoS ONE 14(5):

e0208871. https://doi.org/10.1371/journal.

pone.0208871

Editor: Frank Alexander Feltus, Clemson University,

UNITED STATES

Received: November 19, 2018

Accepted: April 15, 2019

Published: May 6, 2019

Copyright: © 2019 Bhandari et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The genotypic

datasets generated and analysed during the current

study are available in hapmap format at the

following address http://tropgenedb.cirad.fr/

tropgene/JSP/interface.jsp?module=RICE, in the

tab “STUDIES” then selecting for “Genotypes” in

Study type and for “GS-Ruse". All other relevant

data, including the phenotypic data, are within the

manuscript and Supporting Information files.

http://orcid.org/0000-0003-0072-6285
https://doi.org/10.1371/journal.pone.0208871
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0208871&domain=pdf&date_stamp=2019-05-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0208871&domain=pdf&date_stamp=2019-05-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0208871&domain=pdf&date_stamp=2019-05-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0208871&domain=pdf&date_stamp=2019-05-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0208871&domain=pdf&date_stamp=2019-05-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0208871&domain=pdf&date_stamp=2019-05-06
https://doi.org/10.1371/journal.pone.0208871
https://doi.org/10.1371/journal.pone.0208871
http://creativecommons.org/licenses/by/4.0/
http://tropgenedb.cirad.fr/tropgene/JSP/interface.jsp?module=RICE
http://tropgenedb.cirad.fr/tropgene/JSP/interface.jsp?module=RICE


Introduction

Drought stress is a major constraint for rice production in rainfed rice growing ecosystems

that represent approximately 45% of rice growing areas [1]. It is estimated that 50% of world’s

rice production is vulnerable to drought [2]. To reduce yield losses of rice crops in rainfed low-

land areas and to increase overall rice production, rice cultivars with improved drought toler-

ance need to be developed. Early studies reported low selection efficiency for improving grain

yield under drought stress [3–4]. Consequently, initial breeding efforts targeted secondary

traits such as root architecture, leaf water potential, panicle water potential, osmotic adjust-

ment and relative water content [5–7]. However, these traits do not always have higher broad-

sense heritability than grain yield under drought and are not always highly correlated with

grain yield [8–9]. Several studies in the last decade have documented the effectiveness of direct

selection for grain yield under drought stress [10, 11]. A number of quantitative trait loci

(QTL) involved in response of rice grain yield to drought stress have been identified [12] and

successfully transferred to elite materiel through marker-assisted selection [13–14]. However,

the complex genetic architecture of grain yield under drought hampers the objective of reduc-

ing the rice yield loss under drought and achieving higher genetic gain for grain yield under

drought.

Genomic selection (GS) has recently emerged as an alternative option to conventional

marker-assisted selection targeting mapped QTLs [15–17]. By shifting the plant breeding para-

digm from “breeding by design” to a “genome-wide-approach”, GS provides genomic esti-

mated breeding values (GEBV) based on all available marker data, instead of focusing on a

limited set of markers that tag putative genes or QTLs. In the last few years, successful proof of

GS concept has been reported in maize [18–20], wheat [21–25], barley [26–28] and oats [29].

In rice, moderate to high predictive ability (PA) of GEBV has been reported for a variety of

quantitative traits in experiments with the progeny of bi-parental crosses and in diverse germ-

plasm collections [30–35]. In particular, it was shown that rice diversity panels provide accu-

rate genomic predictions for complex traits in the progenies of biparental crosses involving

members of the panel [36].

One major feature of all the above-mentioned genomic prediction studies is the use of phe-

notypic data from only one environment, usually non-stressed. The main reason for such

focalization was the lack of appropriate statistical framework that model G×E interactions for

the purpose of genomic prediction. A number of such frameworks have recently been pro-

posed. First, the single-trait single-environment genomic best linear unbiased prediction

(GBLUP) model was extended to multi-environment context [37]. Then a GBLUP-type model

using marker × environment interactions (M×E) was proposed [38]. The M×E based approach

was further developed, using a non-linear (Gaussian) kernel and an empirical Bayesian

method to model the G×E [39], and extended using Bayesian ridge regression priors that pro-

duce shrinkage [40]. The latest models go beyond the extension of single environment models

and propose multi-environment prediction models in which the genetic effects are modeled

by the Kronecker product of the variance-covariance matrix of genetic correlations between

environments with the genomic relationship between lines, using GBLUP or RKHS methods

[41]. Application of these multi-environment models to data from multilocal trials of CIM-

MYT’ maize and wheat breeding programs confirmed their superiority over the single envi-

ronment models. Multi-environment prediction models were also reported to be better than

single environment models when used with rice phenotypic data from managed environments

representing two water management systems: continuous flooding and alternate watering and

drying [42]. However, the differences between the PA of different categories multi-environ-

ment models were not significant. Likewise, it was shown that single-step, best linear unbiased

Genomic selection for drought tolerance in rice

PLOS ONE | https://doi.org/10.1371/journal.pone.0208871 May 6, 2019 2 / 21

Funding: This work was funded by Agropolis

Foundation (http://www.agropolis-fondation.fr/)

and Cariplo Foundation (http://www.

fondazionecariplo.it/), Grant no 1201-006. The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0208871
http://www.agropolis-fondation.fr/
http://www.fondazionecariplo.it/
http://www.fondazionecariplo.it/


prediction-based reaction norm models using data from non-genotyped and genotyped proge-

nies, can enhance PA in rice recurrent genomic selection [43].

Another feature shared by almost all genomic prediction studies is the use of unsorted

markers or markers selected on the base of variety of criteria except association with the target

trait. In accordance with the infinitesimal model of the genetic architecture of traits [15], the

prediction models are trained and GEBV are computed using the same set of markers for all

the phenotypic traits targeted by the breeding programs, whatever their genetic architecture.

Zhang et al. [44] computed the PA of different genomic prediction methods trained with a

relationship matrix built with markers of equal effect (infinitesimal model) and with the same

set of markers with weighted effects. The markers’ weight was derived from the result of a

ridge regression best linear unbiased prediction or from BayesB prediction for different phe-

notypic traits. Genomic prediction with markers of weighted effect had higher PA. Similar

improvement of the PA of genomic prediction of complex traits was reported, when a trait

specific relationship matrix was built using the results of genome wide association studies

(GWAS) available in the literature [45].

Here, we report the results of our investigations on the effectiveness of trait-specific marker

selection and of multi-environment prediction models in improving the PA of genomic pre-

dictions for drought tolerance in rice. We disposed of a large genotypic dataset of 215 k SNP

for the reference population (280 accessions) of the rainfed-lowland rice breeding program of

the International Rice Research Institute (IRRI), and of phenotypic data of the same popula-

tion under one normal and two managed drought growth conditions. Subsets of trait and envi-

ronment-specific markers (28k SNP) were selected for each trait under each of the three

growth environments, using results of GWAS performed with the complete genotypic dataset.

Performances of single-environment and multi-environment genomic prediction models were

compared using kernel regression based methods (GBLUP and RKHS).

Material and methods

Rice populations studied

The plant material was a diversity panel of 280 accessions (S1 Table), of which 245 belong to

the four major subgroups of the indica genetic group and 35 to the aus group [46]. Landraces

originating from South and South-East Asia represented the largest share of the panel (215).

The remaining 65 accessions were improved lines. The 280 accessions were selected for their

potential interest for the IRRI rainfed lowland rice breeding program, among the 3,000 rice

accessions recently re-sequenced [46]. Seeds of the plant material for the present study were

provided by the IRRI Gene-bank.

Phenotyping and analysis of phenotypic data

Field experiments. The field experiments took place at the experimental station of the

International Rice Research Institute (IRRI; 14.18˚N, 121.25˚E), in the framework of the

research activity of Dr. Arvind Kumar, in charge of lowland rice breeding at IRRI, the Philip-

pines. Three independent experiments were conducted in the 2015 dry season, to evaluate the

performances of the 280 accessions under three managed environments, E1, E2 and E3. E1

corresponded to the standard lowland rice cultivation, without stress, i.e. transplanting crop

establishment in puddled soil and continuous flooding (anaerobic conditions) throughout the

crop cycle. E2 corresponded to standard lowland rice cultivation associated with application of

drought stress at the reproductive stage (see below). E3 corresponded to standard cultivation

of upland rice (crop establishment by direct seeding in well-drained soil with continuous aero-

bic conditions during the crop cycle) with drought stress applied at the reproductive stage.

Genomic selection for drought tolerance in rice
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Drought stress at the reproductive stage was applied following the procedure described in

[13]. Briefly, in the E2 experiment, the field was drained 30 days after transplanting and irriga-

tion was withheld until severe leaf rolling was observed in at least 75% of the accessions. Fields

were thereafter re-irrigated by sprinklers and the water was again drained after 24 hours in

another cycle of drought stress. This cyclic pattern was continued until harvest. In the E3

experiment, drought stress was started 45 days after sowing, by withholding sprinkler irriga-

tion until the soil water tension fell below –50 kPa at a depth of 30 cm. Thereafter, drought

stress was applied in a cycle of sprinkler-irrigation and drainage 24 hours later until harvest.

The experimental design in E1 was an augmented randomized complete block, with 16

checks, in single row plots with rows 5 m in length. The E2 and E3 experiments were planted

in an Alpha-lattice design with 2 replications and 16 checks, in two-row plots with rows 5 m

and 3 m in length, respectively.

Three traits were measured or computed for each individual plot. Days to flowering (DTF,

day) as the number days between sowing and visual estimation of 50% exerted panicles of the

plot. Plant height at maturity (PH, cm), was measured as the mean height from the soil surface

to the tip of the panicle of the main tiller of three randomly chosen plants. Grain yield (GY,

kg/ha), was computed from the grain weight at 12.5% moisture of five plants harvested at phys-

iological maturity.

Analysis of phenotypic data. The drought stress applied in E2 and E3 experiments

proved to be too severe for a number of accessions that did not reach the reproductive stage or

did not produce any grain. The three traits could consequently only be measured properly in

230 accessions in E2 and in 226 accessions in E3, of which 204 were common to the two exper-

iments. Consequently, data analyses were run for 280 and 204 accessions in E1 and for 204

accessions in the E2 and E3.

The phenotypic data were analyzed using the PROC MIXED procedure of SAS v9.0 (SAS

Institute Inc., Cary NC, USA).

For each experiment and trait, the following model was used to adjust phenotypic measure-

ments:

Yijk ¼ mþ Cj þ bk þ Ni � aik þ εijk

where Yijk is the phenotype of either the ith accession or the jth check in the kth block, μ the

overall mean, Cj the checks effect considered as fixed, ßk the block effect considered as random,

Ni a covariate that amounted one for accessions and zero for checks entrees in each block, αik
the random effect of the ith accession in the kth block and εijk is the residual considered as ran-

dom. The block effects were estimated using data from the 16 checks.

The variance component was estimated using the restricted maximum likelihood method.

Finally, Yadj values were extracted for each genotype and were used in genomic prediction

models.

For each trait, broad sense heritability was calculated using the ratio H2 = σ2
g / σ2

p, where

σ2
g is the genotypic variance obtained from the experimental data and the phenotypic variance

σ2
p = σ2

g + σ2
e, where σ2

e is the residual variance obtained from the model.

Genotyping and analysis of genotypic data

Genotypic data. The genotypic data for the 280 accessions were obtained from the Inter-

national Rice Informatics Consortium database for the 3,000 rice genomes project (http://iric.

irri.org/). It corresponded to the 962k Core-SNP dataset. Filtering of the 962k loci for missing

data (threshold of� 20%), the frequency of the minor allele (MAF, threshold of� 2%), and

for the rate of heterozygosity (Ho, threshold of� 5%), resulted in a working set of 215,242
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SNP. The average rate of missing data per locus for the 280 accessions was 4.1%. The rate of

missing data per accession ranged from 1.5 to 17.3%. Heterozygoty (Ho) per accession was 0.2

to 10.5, average 1.0%. The average minor allele frequency was 14.6%. The missing data were

imputed using Beagle v4.0 [47]. The final matrix of 280 accessions and 215,242 SNP is hereaf-

ter referred to as the “215k SNP” marker set.

The SNP x accession matrix after imputation is available for download at http://tropgenedb.

cirad.fr/tropgene/JSP/interface.jsp?module=RICE as GS-Ruse datasets “GS-Ruse_IRRI-Refer-

ence-Population_150K” and “GS-Ruse_IRRI-Reference-Population_28K”.

Characterization of population structure and linkage disequilibrium. The population

structure was investigated with 2,859 SNP with no missing data, using the sNMF software

[48]. Once the likely number of subpopulations was determined, each accession was assigned

to one of those subpopulations, if the proportion of its inferred ancestry derived from a sub-

population was above 0.80%. Otherwise, the accession was considered as admixed. A distance-

based clustering method was also implemented using the same genotypic data: First pairwise

dissymmetry between genotypes was computed using simple matching information and an

unweighted neighbor-joining tree was built using Darwin software v6 [49]. Then the tree

topology was visualized using FigTree v1.4.3. [50].

Pairwise linkage disequilibrium (LD) between SNP loci was calculated at the level of the

individual chromosome, using the working genotypic datasets and the r2 estimator proposed

for non-phased genotypic data [51].

Marker selection for genomic prediction. Taking advantage of the large number of

markers available, two marker-selection approaches were tested, with the aim of (i) identifying

the minimum marker density while maintaining the highest possible PA of genomic predic-

tions and (ii) of analyzing the performances of trait-specific marker selection.

In the first approach, five LD thresholds (r2� 0.25, r2� 0.50, r2� 0.75, r2� 0.90, and r2� 1)

combined with three MAF thresholds (� 2%,� 5% and� 25%) were considered based on the

following procedure. The complete pairwise r2 matrix for each chromosome was computed on

the 215k SNP dataset. Then for each chromosome, single loci or clusters of loci with pairwise LD

with other loci below the threshold were identified. All singletons (LD with other loci below the

given threshold) were kept. For the clusters of loci, one locus with the fewest missing data before

imputation and the highest MAF was randomly selected to represent the cluster. Lastly, the three

thresholds of MAF were applied to each of the five levels of LD, leading to 15 genotypic matrices,

the smallest composed of 2,859 SNP (S2 Table). Comparison of PA of genomic predictions

obtained with each of these matrices, using phenotypic data from E1 environment, (see below

and results section) identified the matrix with 28,091 SNP (r2� 0.5 and MAF� 5%), hereafter

referred to as 28k SNP dataset, as the best compromise.

In the second approach, the selection criterion was the degree of association of the SNP loci

with the target phenotypic trait, as measured by genome-wide association analysis (GWAS).

Taking the results of the first selection into account, marker selection was performed as fol-

lows: (i) the 215k SNP dataset was filtered for MAF� 5%. (ii) The resulting set of 148,916 SNP

was used for GWAS, for each trait, under each of the three environments (E1, E2 and E3),

using the standard mixed linear model (MLM) under Tassel v5.2.48 [52]. MLM uses a geno-

type based kinship matrix (K) jointly with population structure (Q). We computed K and Q

using the dataset of 2,859 SNP corresponding to the LD and MAF thresholds of r2� 0.25 and

MAF� 20% respectively. Q corresponded to the estimate of the individual ancestry coeffi-

cients for the most likely number of subpopulations. (iii) For each trait, under each drought

management, 28,091 SNP with the smallest P-value of trait-marker association were extracted

to serve in genomic prediction experiments. All GWAS experiments were implemented with

accessions that were not included in the corresponding model training process for the

Genomic selection for drought tolerance in rice
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genomic prediction experiments, i.e. with 80% of the total number of accessions. The objective

was to avoid the overfitting of the training model. The practical implication was the need to

select a new set of 28k SNP for each of the replicates of each genomic prediction experiment

(see below). Hereafter, we refer to the first marker selection approach as LD-derived marker

selection, and to the second approach as GWAS-derived marker selection.

Statistical methods for genomic prediction

Single environment models. Two kernel regression models were used to predict GEBV

in each drought stress experiment: the genomic best linear unbiased prediction (GBLUP) and

the reproducing kernel Hilbert spaces regressions, RKHS, [53]. The implementation proce-

dures of the two models is detailed in [42]. Briefly the GBLUP method that hypothesizes a

strictly additive determinism of the genetic effects [54] was implemented using the genomic

matrix G = M�M’ (M being the genotypic matrix) and the Expectation-Maximization conver-

gence algorithm with the R package KRMM [55]. The RKHS method that captures more com-

plex genetic determinism [56] was also implemented using the KRMM.

Multi-environment models. To predict the GEBV with data from the three environments

(E1, E2 and E3), hereafter referred to as multi-environment prediction, we used the statistical

models described above with extensions to include environmental effects. In the extended

GBLUP model, the effects of environments and markers are separated into two components: the

main effect of the markers for all the environments and the effect of markers for each individual

environment [38]. For RKHS, we used the extended models incorporating G×E corresponding

to the “Empirical Bayesian–Genotype × Environment Interaction Model” proposed in [39].

Implementation of the models. Analyses were performed in the R 3.4.2 environment

[57] with the R packages BGLR 1.0.5 [58] and MTM 1.0.0 [59]. For both packages, 25,000 itera-

tions for the Gibbs sampler were used after 5,000 burn-ins were removed. The analyses were

supported by the CIRAD—UMR AGAP HPC Data Center of the South Green Bioinformatics

platform (http://www.southgreen.fr/).

Assessing predictive ability of genomic prediction. In the single environment model,

80% of the accessions (i.e. 224 and 163 for the population of 280 and 204 accessions, respec-

tively) were used as the training set and the remaining 20% (56 and 41, for the population of

280 and 204 accessions, respectively) was used as the validation set.

The multi-environment models were implemented for the three possible 1x1 combinations

of the three environments [E1(E2), E1(E3), E2(E1), E2(E3), E3(E1), and E3(E2)] and the three

possible 2x1 combinations, [E1(E2+E3), E2(E1+E3) and E3(E1+E2)]. In each case, the PA was

assessed with two different cross-validation schemes. The first method (CV1), which resem-

bled what was done in the single environment, used 80% of the observations as a training set

and the remaining 20% as the validation set and assumed that phenotypic observations for the

two or three environments were available for the individuals serving as training set, and that

no phenotypic data were available for the individuals in the validation set. CV1 corresponds to

the situation in which the phenotypes of newly generated individuals have to be predicted

based only on their genotypic information [38]. The second method (CV2) also used 80% of

the observations as a training set and the remaining 20% as the validation set but assumed that

at least one observation in one environment was available for the individuals in both the train-

ing set and the validation set [38]. The same proportions of the training set and validation set

(i.e. 80% and 20%, respectively) were kept when the prediction model combined data from the

three environments.

Under both single and multi-environment models, one hundred replicates were computed

for all random partitioning in the training and validation sets. The PA of each partition was
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calculated as the Pearson correlation coefficient between predictions and phenotypes in the

validation set. The resulting estimates of PA were averaged and the associated standard error

was calculated. For the multi-environment models, the correlation was calculated within each

environment. For each trait (DTF, GY and PH) and each statistical method (GBLUP, RKHS),

the same partitions were used to compute the PA. The number of replicates under GWAS-

derived marker selection method was limited to 20.

The correlation coefficient data of all prediction experiments were transformed into a Z-

statistic using the equation: Z = 0.5{ln[1 + r]−ln[1 − r]} and analyzed as a dependent variable

in an analysis of variance. After estimation of confidence limits and means for Z, these were

transformed back to r variable. In each case, ANOVA was performed to partition the variance

of PA into different sources, with all effects declared as fixed.

Results

Phenotypic characteristics of the populations

Box-plots of the adjusted means of the three phenotypic traits under the three environments

are presented in Fig 1. As expected, average DTF increased under the drought environments

E2 and E3. Conversely, GY and PH decreased. Drought also affected phenotypic variances,

which decreased for GY and PH, and increased for DTF. However, in all cases, the distribution

of each trait in each environment was reasonably symmetric. The mean phenotypic perfor-

mances of the improved lines were not significantly different from the mean phenotypic per-

formances of the landrace varieties.

Correlation between the adjusted means under non-drought (E1) and drought environ-

ments (E2 and E3) was above 0.50 and highly significant for DTF and PH, close to zero for GY

(Table 1). Correlations between the adjusted means under E2 and E3 ranged between 0.50 for

GY and 0.74 for PH. Overall, the pattern of these correlations suggests significant G×E interac-

tions for response to drought (E2 and E3 compared to E1), much less G×E interactions

between lowland and upland drought (E2 compared to E3).

Fig 1. Boxplot of phenotypic variables within the rice population. E1c and E1: data from non-stressed lowland environment with 280 and 204 accessions, respectively.

E2 and E3: data from lowland-drought and upland-drought environments, respectively, with 204 accessions.

https://doi.org/10.1371/journal.pone.0208871.g001
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Partitioning of the observed phenotypic variation into different sources of variation via the

mixed model analysis is shown in Table 1. Whatever the trait or drought environment, the

genotype contributed significantly to the phenotypic variation. The highest contribution of the

genotype effect to the phenotypic variation, relative to residual, was observed for PH under E1

and for DTF under E3. Whatever the environment, the genotype effect contributed the least to

GY variations. The broad-sense heritability H2 was rather high even for GY. H2 ranged from

0.75 to 0.86 for DTF, from 0.68 to 0.91 for GY, and from 0.81 to 0.96 for PH. Given the differ-

ences in the experimental design in the three environments, combined analysis of data was

performed using accessions’ adjusted mean from each environment. The genotype effect was

highly significant for the three traits. This was also the case for the residual variance that

included the phenotypic variance due to G×E interactions.

Genotypic characteristics of the population

Within the 215k genotypic dataset, the average marker density along the 12 chromosomes was

one marker every 1.95 kb. However, the SNP loci were unevenly distributed (S1 Fig). The 28k

genotypic dataset represented an average marker density of one marker every 13.7 kb. How-

ever, 426 pairs of adjacent loci had distances above 100 kb, the largest distance being 427 kb.

The distribution of MAF was skewed toward low frequencies in both 215k and 28k datasets.

The MAF was below 10% for 50% and 37% of loci in 215k and 28k datasets, respectively.

The average LD was rather low, 0.123 and 0.063 in the 215k and 28k datasets, respectively.

The decay of LD along physical distance is presented in the (S2 Fig). For between-marker dis-

tances of 0 to 25 kb, the average r2 value was 0.145 and 0.103 in the 215k and 28k datasets,

respectively. These r2 dropped to half their initial level at a mean distance between markers of

around 600 kb and 250 kb, in the 215k and 28k datasets, respectively.

Table 1. Sources of phenotypic variation and derived summary statistics of days to flowering (DTF), grain yield (GY) and plant height (PH) under three drought

environments, E1, E2 and E3.

Single environment analysis

Phenotypic variances Phenotypic correlation

Trait Environment Mean SD Fixed effects Random effects Total H2 SE E1-E2 E2-E3 E1-E3

Genotype Residual

DTF E1 86.7 9.53 0.38 70.27 23 93.64 0.75 0.05 0.71�

E2 85.84 38.3 0 211.17 67.41 278.58 0.76 0.03 0.58�

E3 90.19 32.44 0 348.52 54.55 403.07 0.84 0.01 0.68�

GY E1 4.98 1.68 4.26 3,425.56 1,578.10 5,007.92 0.68 0.07 -0.18�

E2 0.18 0.19 2.14 50.22 40.15 92.51 0.54 0.05 0.50�

E3 0.43 0.62 1.77 137.38 11.98 151.12 0.91 0.08 -0.16�

PH E1 106.56 21.2 0 469.94 21.71 491.65 0.96 0.01 0.64�

E2 68.57 12.38 0.84 199.19 83.17 283.2 0.71 0.03 0.74�

E3 73.62 13.03 0.84 194.98 45.36 241.18 0.81 0.02 0.59�

Combined analysis of the three environments

Phenotypic variance ZValue ProbZ

Genotype Residual(1) Genotype Residual Genotype Residual

DTF 274.58 274.58 9.16 28.55 < .0001 < .0001 0.76 0.05

GY 208.38 208.38 7.06 28.55 < .0001 < .0001 0.71 0.06

PH 178.74 178.74 9.6 28.55 < .0001 < .0001 0.96 0.01

SD: Standard deviation; Fixed effects: Bloc (Rep); H2: Broad sense heritability for single environment analysis; SE: Standard error for H2.

�: p-value of correlation <0.01. In the combined; (1): The residual variance includes the genotype by environment interaction.

https://doi.org/10.1371/journal.pone.0208871.t001
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Analysis of population structure did not provide a clear-cut indication on the number of

sub-populations. We opted for five subpopulations, as the estimate of individual ancestry coef-

ficient derived with K = 5 provided the most congruent assignment of the accessions with the

group assignment provided by the International Rice Informatics Consortium (S1 Table).

Four subpopulations corresponded to the four subgroups of the indica group and the fifth

assembled accessions from aus group. The distance-based analysis of diversity also confirmed

the assignment of the accessions to indica and aus groups as well as the presence of subgroups

within the indica group (S3 Fig).

Effect of LD and MAF based marker selection on the predictive ability of

genomic prediction

The effect of LD and MAF-based marker selection was analyzed using the phenotypic data of

the reference population of 280 accessions, under the E1 environment. The 90 cross validation

experiments involving five levels of LD, three levels of MAF, two prediction methods and

three phenotypic traits yielded mean PA of genomic prediction ranging from 0.417 to 0.586

(Fig 2 and S3A Table). Among these sources of variation, only the effects of phenotypic trait

and LD were significant as well as the interaction between those factors (S3B Table). The high-

est average PA was observed for DTF (r = 0.566) and the lowest for GY (r = 0.427). The Fisher

least significant difference (F-LSD) indicated that, whatever the trait, genotypic matrices with

LD value of r2� 0.25 led to significantly higher PA than the ones with r2 > 0.25, except for

DTF. In the latter case, the difference in PA between r2� 0.25 and r2� 0.5 was not significant

(S3B Table). Given these results, and the fact that the next steps of our study dealt with pheno-

typic data from three environments, we took the conservative decision of using the 28k SNP

dataset (r2� 0.50, MAF� 5%).

Effect of trait and environment-specific marker selection on the predictive

ability of genomic prediction

The effect of trait specific selection of the 28k markers on the predictive ability of genomic pre-

diction was analyzed in the reference population of 280 accessions under the E1 environment.

GWAS-derived markers led to significantly higher PA than LD-derived markers for the three

traits considered (Tables 2 and S4). Compared to LD-derived markers, the GWAS-derived

markers led to average PA gain of 16% for DTF, 26% for GY and 24% for PH.

The effect of trait and environment specific selection of the 28k markers on the predictive

ability of genomic prediction was analyzed within the population of 204 accessions pheno-

typed under three drought environments, E1, E2 and E3. Whatever the phenotypic trait, the

environment and the genomic prediction method, GWAS-derived markers resulted in signifi-

cantly higher PA than their LD-derived counterpart (Fig 3 and Table 2). Significant interac-

tions between the marker selection method and the environment were observed only for the

DTF trait (S5 Table). The average gain in PA, over LD derived markers was of 11% under E1,

10% under E2 and 6% under E3 (Fig 3 and Table 2). The F-LSD values indicate that the gains

of PA for DTF (12% in average) were significant under each of the three environments. For

PH, the PA gains (9% in average) were significant only under E1 and E3. For GY, the PA gains

(6% on average) were not significant under any of the three environments. It is noteworthy

that, whatever the marker selection method, the standard deviation of genomic predictions for

GY in the population of 204 accessions, was almost systematically higher (average

STD = 0.149) than the ones observed for DTF (average STD = 0.091) and PH (average

STD = 0.071).
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The two prediction methods GBLUP and RKHS (overall average PA of 0.560 and 0.562,

respectively), performed similarly. Whatever the environment, the size of the population, and

the trait, the differences in PA between the two methods did not exceed 2%.

Predictive ability of multi environment genomic prediction

Comparisons of the PA of the multi-environment genomic predictions for the three traits

under the two cross validation strategies, three drought environments and two prediction

methods are summarized in Fig 4. PA ranged from 0.226 to 0.809. Analysis of the sources of

variation of PA revealed a significant effect of all the factors considered, ranked in decreasing

importance: the cross-validation strategy, the trait, the environment, the type of model, and

the statistical method. Interactions between the factors were also significant (Table 3). Given

these interactions, for each trait, each multi-environment prediction was compared to its sin-

gle environment counterpart, using Student’s test (S6 Table).

Fig 2. Predictive ability of genomic prediction for combinations of five levels of linkage disequilibrium (LD) and three levels of minor allele frequency (MAF) in

cross validation experiments in the rice population of 280 accessions, under non-stress condition (E1), for days to flowering (DTF), grain yield (GY) and plant

height (PH), obtained with 2 statistical methods, GBLUP and RKHS.

https://doi.org/10.1371/journal.pone.0208871.g002
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Whatever the trait or the environment, the multi-environment models combined with the

CV2 strategy provided the highest average PA of 0.630, and outperformed single environment

models, with an average gain of 22% for DTF, of 6% for GY and 15% for PH. Under CV2, the

multi-environment models using interaction between the non-stressed environment E1 and

one of the drought environments E2 or E3, to predict the phenotypic performance in E2 or E3

(i.e. E2(E1) or E3(E1)), resulted in similar PA to single environment models. Conversely, the

multi-environment model E2(E3) and E3(E2) resulted in PA gains of 22% and 13% respec-

tively compared to single environment model. The multi-environment models predicting phe-

notypic performances in one of the drought environments, using data from the non-stressed

environment and the remaining drought environment (i.e E2(E1+E3) and E3(E1+E2)),

resulted in PA gains of 24% over the corresponding single environment model.

Performances of the multi-environment prediction models combined with the CV1 strat-

egy (average PA of 0.408) did not significantly differ from their single environment model

counterpart, whatever the trait and the environment and the prediction method considered.

Multi-environment models predicting performances in drought stressed environments from

E2(E1+E3) and E3(E1+E2) or from E2(E1) and E3(E1) did not result in significantly different

PA either.

Among the multi-environment prediction models, RKHS, with average PA of 0.600 per-

formed systematically slightly better than the GBLUP, average PA of 0.566.

Discussion

The drought stress applied in this study was so severe that 25% of the accessions did not reach

the flowering stage. However, the stress corresponded to the drought severity that rice crops

are often facing in the drought-prone rainfed lowland ecosystem of South Asia [60]. Despite

the severity of the drought stress, the broad-sense heritability observed for the three pheno-

typic traits was reasonably high, and the distribution of the three phenotypic traits in each of

Table 2. Predictive ability (PA) of GBLUP and RKHS statistical models obtained with 28,091 SNPs selected based on linkage disequilibrium (LD), and based on

association with target trait detected by genome wide association study (GWAS).

Environment & size of the population

280 accessions 204 accessions

E1 E1 E2 E3

LD GWAS LD GWAS LD GWAS LD GWAS

GBLUP DTF PA 0.540 b 0.618 a 0.599 b 0.653 a 0.450 b 0.519 a 0.579 b 0.635 a

STD 0.084 0.067 0.082 0.071 0.129 0.108 0.098 0.097

GY PA 0.389 b 0.489 a 0.345 b 0.398 b 0.420 b 0.476 b 0.672 b 0.682 a

STD 0.09 0.061 0.115 0.124 0.12 0.162 0.122 0.133

PH PA 0.505 b 0.623 a 0.558 b 0.595 a 0.648 b 0.679 b 0.673 b 0.703 a

STD 0.087 0.086 0.085 0.046 0.087 0.049 0.073 0.057

RKHS DTF PA 0.539 b 0.633 a 0.585 b 0.662 a 0.466 b 0.553 a 0.554 b 0.628 a

STD 0.081 0.062 0.09 0.071 0.114 0.110 0.098 0.089

GY PA 0.387 b 0.490 a 0.352 b 0.391 b 0.435 b 0.479 b 0.668 b 0.695 b

STD 0.089 0.054 0.106 0.127 0.113 0.683 0.149 0.132

PH PA 0.501 b 0.625 a 0.547 b 0.595a 0.646 b 0.683 a 0.675 b 0.711 a

STD 0.09 0.088 0.084 0.046 0.078 0.051 0.075 0.060

DTF: days to flowering; GY: grain yield PH: plant height (PH); E1: lowland non-stress environment; E2: lowland stressed; E3: upland stressed. AP of GWAS-derived

markers predictions that are followed by different letters than their LD-derived counterpart are significantly different at α<0.05.

https://doi.org/10.1371/journal.pone.0208871.t002
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the three environments was reasonably symmetric, once the accessions that did not reach the

flowering stage were discarded.

Effect of markers selection on the predictive ability of genomic prediction

The promise of GS to improve response to selection in populations that are under artificial

selection is often presented as depending on the availability of high-density genotypic data to

maximize the number of QTLs in LD with at least one marker [15–17], and a large training

population to accurately estimate marker effects. However, high-density SNP genotyping may

be too expensive for many plant breeding programs, especially when it comes to genotyping

the selection candidates in each breeding cycle. Regarding the size of the population, for a

Fig 3. Predictive ability of genomic prediction in cross validation experiments implemented with 28,091 SNP derived using two marker selection methods: Linkage

disequilibrium (LD) between markers, white boxes. Genome wide association analysis with the target traits (GWAS), green boxes. The three traits, days to flowering

(DTF), grain yield (GY) and plant height (PH), were phenotyped under three environments: rainfed lowland (E1), rainfed lowland with drought stress (E2) and upland

with drought stress (E3). For each box, the mean (x) and median (horizontal bar) values are represented.

https://doi.org/10.1371/journal.pone.0208871.g003
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given amount of resources, breeders can choose between evaluating more individuals less

accurately or fewer individuals more accurately. Simulation studies have shown the feasibility

of using low-density genotypic data, with SNP markers evenly distributed along the genome

with no significant decrease in the PA of genomic predictions [61–62]. Empirical studies of PA

of genomic prediction in various plant species also showed very little, if any, effect of marker

densities, until very low marker densities were used [63]. The results of our analysis of the

effects of LD and MAF and the associated marker density confirmed these findings. The high-

est PA were observed with marker densities below one SNP every 15kb. On the other hand,

our results somewhat deviate from the rule of positive relationship between the PA of GEBV

and the size of the training set [63–65]. Indeed, we did not observe any significant differences

Fig 4. Predictive ability of genomic prediction experiment with single environment (SE), and multi-environment (ME) models obtained with the GBLUP, RKHS-1

and RKHS-2 statistical methods. Traits studied are days to flowering (DTF), grain yield (GY) and plant height (PH). The ME models are implemented with two cross-

validation strategies CV1 and CV2. Three environments are considered: lowland no-drought (E1, blue), lowland drought (E2, gray) and upland drought (E3, orange).

Environment in brackets contributed to the training of ME models. For each box, the mean (x) and median (horizontal bar) values are represented.

https://doi.org/10.1371/journal.pone.0208871.g004
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in PA between the populations of 280 and 204 accessions evaluated under the E1 environment.

The reasons for this deviation may be that (i) the rule applies mainly in across population pre-

dictions whereas we were performing cross-validation within each population; (ii) the reduc-

tion in size from 280 to 204 accessions was accompanied by a change in the structure of the

populations. Indeed, as all the discarded accessions belonged to the more drought susceptible

indica group, the proportion of aus accessions increased in the population of 204 accessions

from 12% to 17%.

Table 3. Analysis of factors that influence the variation in predictive ability of single and multi-environment prediction models. The effects of the statistical model

(GBLUP, RKHS-1 and RKHS-2), the trait (DTF, GY and PH), the cross-validation strategy (CV1 and CV2), drought stress environments (E1, E2 and E3) and different

combinations of training environment and their interactions were evaluated.

Analysis with only main effects

Source DF SS MS F-value ProbF

Model 10 309.728 30.973 1 773.667 < 0.0001

Error 32 389 565.595 0.017

Corrected Total 32 399 875.323

Trait 2 145.581 72.791 7 141.750 < .0001

Model 1 10.730 10.730 1 052.770 < .0001

Method 2 1.426 0.713 69.930 < .0001

CV 1 15.993 15.993 1 569.160 < .0001

Drought environment 2 134.409 67.204 6 593.650 < .0001

Training environment 2 1.588 0.794 77.880 < .0001

Analysis with main effects and all first-order interactions

Model 51 496.946 9.744 833.032 < 0.0001

Error 32 348 378.377 0.012

Corrected Total 32 399 875.323

Trait 2 145.581 72.791 7 141.750 < .0001

Model 1 10.730 10.730 1 052.770 < .0001

Method 2 1.426 0.713 69.930 < .0001

CV 1 15.993 15.993 1 569.160 < .0001

Drought environment 2 134.409 67.204 6 593.650 < .0001

Training environment 2 1.588 0.794 77.880 < .0001

Trait × Model 2 4.605 2.303 225.920 < .0001

Trait × Method 4 1.418 0.355 34.780 < .0001

Model × Method 2 1.812 0.906 88.910 < .0001

Trait × CV 2 1.882 0.941 92.330 < .0001

Model × CV 1 15.993 15.993 1 569.160 < .0001

Method × CV 2 1.627 0.814 79.820 < .0001

Trait × Drought 4 152.543 38.136 3 741.620 < .0001

Model × Drought 2 0.786 0.393 38.580 < .0001

Method × Drought 4 0.499 0.125 12.240 < .0001

CV × Drought 2 0.792 0.396 38.840 < .0001

Trait × Training environment 4 0.957 0.239 23.470 < .0001

Model × Training environment 2 1.588 0.794 77.880 < .0001

Method × Training environment 4 0.935 0.234 22.930 < .0001

CV × Training environment 2 1.782 0.891 87.440 < .0001

Drought × Training environment 4 1.686 0.422 41.350 < .0001

DF: Degree of freedom; SS: Sum of squares; MS: Mean square; ×: interaction between the factors.

https://doi.org/10.1371/journal.pone.0208871.t003
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Compared to LD-derived marker selection, GWAS-derived marker selection led, on

average, to 22% higher PA in cross validation experiments within the population of 280

accessions. The gains in PA were smaller (6%, on average) but still statistically significant,

in cross validation experiments within the population of 204 accessions. Similar results

were reported in a simulation-based comparison of GEBV obtained with the GBLUP

method using relationship matrices derived from trait-specific markers or from non-trait-

specific markers [43]. The difference in the gains of PA observed in E1 environment

between the populations of 280 and 204 accessions (12% on average), suggests that the size

of the population plays a determining role in the informativeness of the trait-specific mark-

ers. In other words, GWAS performed with 224 accessions (the size of the training set for

GWAS in the population of 280 accessions) is more informative than GWAS performed

with 163 accessions, the size of the training set in the population of 204 accessions. This is

in agreement with the well-known positive relationship between the size of the population

and the power of GWAS to accurately evaluate the effect of each marker [63]. These gains of

PA with GWAS-derived marker, despite the limited size of our training populations, sug-

gest that more substantial gains of PA could be achieved if more consolidated QTL informa-

tion was available. Such consolidated QTL information can be built from the large number

of publicly available QTL database and SNPs detected in different linkage mapping and

GWAS experiments. These QTLs’ information could serve building trait-specific genomic

relationship matrices, based on the modified VanRaden genomic relationship matrix, with

marker weights for each locus, proposed by [45].

Predictive ability of multi-environment predictions

The PA of genomic predictions obtained with the multi-environment models were, on aver-

age, similar to their single environment counterparts under the CV1 cross-validation strategy,

and significantly higher under the CV2 cross-validation strategy. Gains in the PA of the multi-

environment models combined with CV2 were the highest in the two drought affected envi-

ronments, E2 and E3. The two multi-environment models tested (GBLUP, RKHS) led to sig-

nificantly different predictive abilities. Under GBLUP, the overall average gain in PA was 7%

and ranged from– 4% for GY to 15% for PH. These gains were significantly lower than the

30% gain reported in [38] comparing multi-environment and single environment GBLUP

models for GY in wheat. This was also the case for the gains in PA reported in [42] using rice

data from two managed environments, continued flooding and alternate watering and drying.

These authors reported gains of up to 29% for DTF compared with 22% in our case. The

RKHS multi-environment model enabled gains in PA of up to 32%. These gains are much

lower than those of up to 68% reported in [39] in wheat, similar to the ones reported by [42],

and in accordance with [41], higher than the GBLUP multi-environment model. The differ-

ences in the amplitude of gains of PA observed in our study and the ones reported in [39, 41]

are probably due to several factors, including the size of the population (599 wheat lines against

204 accessions in our case), the number of environments (larger number of environments that

were grouped in four target sets of environments versus three in our case), and the distinctive

features of those environments. While in the case of wheat, data from a multi-local trial across

a natural continuum of environments were grouped in four subsets, our data were produced

in a managed-environment trial with clear-cut treatments to assess the effect of drought stress

on rice development and yield. Overall, these results reinforce the conclusion drawn by [42]

that, multi-environment genomic prediction models that account for G×E interactions as eval-

uated from multi-local trials, are also of interest for breeding for tolerance to abiotic stresses,

including drought.
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Implications for breeding rice for drought tolerance

Improving resilience to drought during floral development and anthesis is an important target

for major cereal crops including rice [1, 66]. It is now widely accepted that the ability to predict

complex traits is better when using whole-genome marker prediction than using a few markers

that target a few quantitative trait loci [67, 68]. In the case of rice, several empirical studies embed-

ded in ongoing breeding programs have confirmed the potential of GS in accelerating genetic

gains [34, 36, 42]. Recently, a new generation of genomic prediction models was developed that

further improve the PA of genomic prediction by explicitly modeling G×E interactions in the

same way as in multilocal trials that all breeding program resort to [37–41]. The effectiveness of

such models in the context of breeding for tolerance to abiotic stresses was first documented in

rice [42] using data from managed-environment trials to evaluate the performances of a reference

population and a progeny population under two water management systems: alternate watering

and drying and conventional continuous flooding. These authors also reported gains in PA of up

to 14% compared to direct selection based on phenotypic correlation between the two water man-

agement systems. Likewise, they showed that the share of non-phenotyped individuals in the

CV2 prediction strategy could be increased up to 40% with no significant negative effect on PA.

In the present study, we showed that (i) reasonably high PA of genomic prediction can be

obtained with as few as 3,000 SNP markers, even in a population of limited LD extent, pro-

vided the markers are selected on the basis of LD. (ii) Trait-specific markers selection resulted

in higher PA of genomic prediction than markers selected on the basis of neutral LD, especially

when the size of the training population is large enough to allow the accurate estimation of the

effect of the markers. (iii) Tolerance to drought stress was better predicted by multi-environ-

ment models (especially RKHS) that accounted for G×E interaction (E being non-stressed low-

land and stressed lowland or upland, or both), than their single-environment model

counterparts, when associated with the CV2 prediction strategy. (iv) Finally, yet importantly,

even under the less favorable CV1 prediction strategy, multi-environment models achieved

similar PA to their single environment counterparts.

The final finding suggests the feasibility of a genomic breeding scheme aiming at simulta-

neous improvement of yield potential and drought tolerance. It requires a training population

carefully phenotyped under both favorable environmental conditions and managed drought,

while in the first step of selection, the candidate population would be phenotyped only under

favorable environments. The selected candidate would be phenotyped under managed drought

to ascertain their GEBV and to update the multi-environment prediction model for the next

breeding cycle [69–70]. The process can be implemented in the framework of the pedigree-

breeding of progeny of biparental crosses between members of the reference population of the

breeding program that is used as the training population [36; 42]. In the context of multi-envi-

ronment model-based genomic predictions, the effectiveness of trait-specific markers merits

investigations using a simulation approach. Nevertheless, breeders should consider including

a limited share of trait specific markers (especially for the most important target traits) when

genotyping their candidate populations.
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S1 Fig. Heat map for the genotypic matrices with 215,250 and 28,091SNP markers reveal-
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(TIF)

S2 Fig. Patterns of decay in linkage disequilibrium in the population of 280 accessions gen-

otyped with 28,091 SNP. The curve represents the average r2 according to pairwise distance

between markers among the 12 chromosomes and the bars represent the associated standard

deviation.

(TIF)

S3 Fig. Unweighted neighbor-joining tree based on simple matching distances constructed

from the genotype of 280 accessions, using 2,859 SNP markers. Green: accessions belonging
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project [45].
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Formal analysis: Jérôme Bartholomé, Tuong-Vi Cao-Hamadoun, Nourollah Ahmadi.

Funding acquisition: Nourollah Ahmadi.

Investigation: Aditi Bhandari.
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