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Abstract: Extracellular factors and growth conditions can affect the formation and development of
bacterial biofilms. The biofilm of Pseudomonas putida has been studied for decades, but so far, little
attention has been paid to the components of the medium that may affect the biofilm development in
a closed system. It is known that Fis strongly enhances biofilm in complete LB medium. However,
this is not the case in the defined M9 medium, which led us to question why the bacterium behaves
differently in these two media. Detailed analysis of the individual medium components revealed
that tryptone as the LB proteinaceous component maintains biofilm in its older stages. Although the
growth parameters of planktonic cells were similar in the media containing tryptone or an equivalent
concentration of amino acids, only the tryptone had a positive effect on the mature biofilm of the
wild type strain of P. putida. Thus, the peptides in the environment may influence mature biofilm
as a structural factor and not only as an energy source. Testing the effect of other biopolymers on
biofilm formation showed variable results even for polymers with a similar charge, indicating that
biopolymers can affect P. putida biofilm through a number of bacterial factors.
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1. Introduction

Biofilm is usually thought of as mucus-covered sessile bacteria, but it is a more complex
bacterial community that acquires new properties that no single cell has. More importantly,
biofilm is a dynamic phenotype that changes according to environmental conditions [1,2].

The biofilm of the cosmopolitan bacterium Pseudomonas putida has been studied for
decades because it is an agriculturally important soil organism that promotes plant growth.
P. putida protects plants from pathogens by colonising roots and stimulates plant growth
by producing plant hormones and mineralising soil phosphorus and metals. Colonisation
begins with attachment to plant roots followed by biofilm formation or migration on the
roots [3–7]. It is important to note that P. putida biofilm developed in closed systems
fluctuates under laboratory conditions during the first 24 h. The biofilm increases rapidly
during the first 4 to 6 h after inoculation, followed by a decrease to approximately half of
the maximum, which can be referred to as mature biofilm [8,9].

Depending on the strain of P. putida and the conditions, the biofilm matrix can contain
cellulose (enzymes encoded by bcs genes), exopolysaccharides A and B (pea and peb genes),
alginate (alg genes), DNA, and proteins [8,10–12]. The matrix components are substitutable,
and some of them are synthesised conditionally. For example, alginate biosynthesis is
turned on in water-limiting conditions, and one of the important adhesins, LapF, is ex-
pressed in the stationary phase [11,13]. However, when all genes encoding polysaccharides
or adhesins are deleted, biofilm is still formed, indicating the flexibility of the biofilm
formation [8,12]. On the other hand, the already formed P. putida biofilm is sensitive only to
certain types of enzymes; for example, DNase does not damage the biofilm, but proteinase
K significantly degrades it [8]. It seems that the proteinaceous component of the P. putida
matrix is essential for the integrity of the biofilm, especially as a structural component.
The two surface proteins LapA and LapF are responsible for attachment, initial biofilm

Microorganisms 2022, 10, 618. https://doi.org/10.3390/microorganisms10030618 https://www.mdpi.com/journal/microorganisms

https://doi.org/10.3390/microorganisms10030618
https://doi.org/10.3390/microorganisms10030618
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/microorganisms
https://www.mdpi.com
https://doi.org/10.3390/microorganisms10030618
https://www.mdpi.com/journal/microorganisms
https://www.mdpi.com/article/10.3390/microorganisms10030618?type=check_update&version=2


Microorganisms 2022, 10, 618 2 of 19

formation, and integrity of the mature biofilm. LapA is critical for attachment and biofilm
formation of these two adhesins, while LapF is characterised as an adhesin required for
cell–cell interaction in a mature biofilm [8,14–16].

Bacterial attachment to a surface can be conditionally divided into (i) specific attach-
ment by receptor-ligand binding, or (ii) non-specific attachment where the whole cell binds
to a surface. An example of a specific attachment is the Escherichia coli Fim pili, which use
the adhesin FimH to recognise mannose residues of mucin in the intestinal epithelium.
It is also interesting for E. coli attachment that shear stress is required for the solid attach-
ment [17,18]. For non-specific attachment, cell surface properties are essential: there is no
specific ligand(s), and only the hydrophobicity and electrostatic forces of the cell surface
are relevant for adhesion. P. putida probably utilises the second type of attachment, as it is
not yet known that a specific ligand is required to adhere to a surface.

LapA is the largest protein in P. putida (888 kDa), and LapF is the second-largest
protein (615 kDa) [19–21]. Because Lap proteins are located on the cell surface, both
proteins possibly regulate cell surface properties. Both lapF expression and cell surface
hydrophobicity coincide with a decrease in growth rate and the entry of planktonic cells
into the stationary growth phase [14]. In the absence of LapF, the cells no longer became
more hydrophobic in the stationary phase, and the cell surface is relatively hydrophilic,
similar to the cells in the exponential phase. LapA, on the other hand, is not known to alter
cell surface properties [14].

The transcriptional regulation of lapA and lapF is almost entirely described [13,22–25],
and the post-translational regulation is assumed to be similar to Pseudomonas fluorescens [26].
The global regulator Fis has a remarkable role in the complex transcriptional regulation of
lapA and lapF [13,22]. Fis has at least two binding sites in front of the lapA gene, which are
required to enhance lapA transcription. At lapF, Fis has one binding site which overlaps with
the RpoS-dependent promoter, and Fis binding there represses transcription of lapF [13,22].

P. putida fis-overexpression strain F15 was used to establish the role of Fis in the
regulation of lapA and lapF expression and biofilm development due to the lethality of the
fis knock-out mutation for P. putida. Moreover, clones with a reorganised genome tended to
arise when a downregulated fis-expression strain was constructed. Despite Fis’ potential
influence on global cell physiology, it had a specific hydrophobicity effect through a binding
site in front of the lapF gene [3,13,22]. When this binding site was mutated, the surface
hydrophobicity of the cells changed similarly to the wild type strain, indicating that the
overexpression strain is usable with proper controls [13,22]. P. putida growing in LB with the
induced expression of fis had a positive epistatic effect on mature biofilm, in contrast to the
cells with a native amount of Fis, whose biofilm degraded to approximately half-maximum.
It is remarkable because Fis effectively represses lapF transcription, reducing cell surface
hydrophobicity, which should be a prerequisite for biofilm formation [11,14,15].

Under certain conditions, LapF is required for biofilm formation, indicating the critical
role of environmental factors. P. putida requires LapF adhesin to form a biofilm in a defined
M9 medium with glucose or a highly diluted LB medium, but not in the complete LB
medium [8,16]. It appears that the components in the medium may determine the ability of
P. putida to form biofilm. Another contradiction is that the surface of planktonic P. putida
becomes hydrophobic in the stationary phase and under the influence of stressors; thus,
P. putida is thought to tend to form a biofilm in response to stress or having a hydrophobic
surface [14,27,28]. It is contradicted by studies of the dynamics of P. putida biofilm devel-
opment that show more biofilm at the beginning of active growth, which could reflect the
exponential growth of planktonic cells [8,9]. Thus, all these results indicate that the forma-
tion of P. putida biofilm is more complex and may depend on environmental conditions
such as growth media components.

The variants of defined growth medium M9 and complete medium LB are the mainly
used media for P. putida biofilm formation studies. In this manuscript, we focused on
biofilm formation of P. putida in the defined M9 supplemented with 0.2% of glucose and
0.2% CAA (M9-0.2CAA) and complete LB media. The main aim was to ascertain why
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P. putida forms biofilm effectively in LB and ineffectively in the M9-0.2CAA medium. Our
results indicated that extracellular peptides as architectural factors might have a crucial
role in maintaining P. putida mature biofilm.

2. Material and Methods
2.1. Bacterial Strains and Media

In the study, P. putida wild type strain PSm (Smr) and fis-overexpression strain
F15 (Gmr) were used [3]. Bacteria were grown at 30 ◦C. Gentamicin at 10 µg/mL or
streptomycin at 200 µg/mL were used as antibiotics for inoculum. Biofilms were assessed
in media without antibiotics, and 1 mM IPTG was used to overexpress fis from the Ptac
promoter in P. putida F15.

Bacteria were grown in a complete LB medium containing 10 g/L tryptone (LabM,
Heywood, UK), 5 g/L yeast extract (LabM, Heywood, UK), and 5 g/L NaCl, or in me-
dia based on M9 buffer [29]. All M9 media contained M9 buffer [30], 2.5 mL/L of mi-
croelements [31], 2 g/L of glucose, and different amounts of CAA (casamino acid; Difco,
Detroit, MI, USA) with tryptophan. The medium M9-0.2CAA contained 2g/L CAA and
0.01 g/L tryptophan, and M9-1.4CAA contained 14 g/L CAA and 0.07 g/L tryptophan.
M9-0.2CAA was supplemented with tryptone (LabM, Heywood, UK), gelatin peptone
(Sigma-Aldrich, St. Louis, MO, USA), soybean peptone (Acros Organics, Geel, Belgium),
bacteriological peptone (Amresco, Solon, OH, USA), or bacteriological tryptone (Amresco,
Solon, OH, USA) at 10g/L. Alternatively, M9-0.2CAA was amended with polypeptides
(0.4 mg/mL poly-L-lysine (1000–5000 Da); 0.4 mg/mL poly-L-glutamic acid (1500–5500 Da);
and 0.4 mg/mL poly-DL-alanine (1000–5000 Da)) or biopolymers, with sodium salt of car-
boxyl methylcellulose (Sigma-Aldrich, St. Louis, MO, USA), PGA (poly-galacturonic acid),
and salmon sperm DNA or BSA (bovine serum albumin) at 0.4 g/L.

To identify components needed for the biofilm-enhancing effect of Fis, M9-0.2CAA was
amended with LB components one by one: 10 g/L tryptone (LabM, Heywood, UK), 5 g/L
yeast extract (LabM, Heywood, UK), and 5 g/L NaCl and vice versa. LB was amended
with components of M9-0.2CAA one by one: M9 buffer, 2.5 mL/L of microelements, 2 g/L
of glucose, and 2 g/L of CAA and 0.01 g/L tryptophan.

2.2. Assessment of Biofilm and Growth Parameters of Planktic Cells

Biofilm formation was monitored in flat-bottom microtiter plates (Greiner Bio-One In-
ternational; 96-well cell culture plate Cat-No 655180) according to the Fletcher method [32],
with some modifications [3]. LB medium with digested peptides was prepared as follows:
LB was treated with 1 U/mL proteinase K at 37 ◦C for 2 h. Proteinase K was inactivated by
heating the medium at 121 ◦C for 20 min. Residual proteinase K activity was assessed by
degradation of 1 mg/mL BSA in treated medium maintained at 37 ◦C with BSA for 2 h.
No proteinase K treatment was performed for the controls.

The method of Lopez-Sanchez et al. [9] was used to assess biofilm formation over
24 h. In short, the procedure is based on the decimal dilution of inoculum, which delays
biofilm formation. Every subsequent dilution gives so-called younger biofilm, and after
intercalation of biofilm yields a planktic growth curve, it is possible to assess the biofilm
dynamics [9].

The fresh medium was inoculated overnight with bacterial culture to an initial calcu-
lated density of 0.1 (A580). From the first inoculation, 10-fold dilutions up to 108-fold were
made. To measure biofilm with sufficient frequency over time, P. putida PSm biofilm at 6,
13, 14, 15, and 24 h and F15 biofilm at 6, 16, 17, 18, 19, and 24 h were evaluated. Assessing
the growth of planktic cells from the same dilutions, the biofilm was intercalated to the
growth curve based on the shift in the exponential growth initiation point on the growth
curves of the decimal diluted cells.

To determine growth parameters, P. putida was grown overnight in the appropriate
medium for inoculum. The fresh medium was inoculated overnight with bacterial culture
to an initial calculated density of 0.1 (A580). P. putida was grown in flat-bottom microtiter



Microorganisms 2022, 10, 618 4 of 19

plates (Greiner Bio-One International; 96-well cell culture plate Cat-No 655185) to a final
volume of 150 µL per well at 30 ◦C. If necessary, 1 mM IPTG was added. The optical
density of the bacterial culture was measured every 7 min for 24 h. Bacterial growth rate (µ)
and maximal absorbance (maxOD) values were estimated from the growth curves using
the Gompertz model [33]. The mean of growth rate and maxOD were calculated from
8 individual parallels.

2.3. Western Immunoblot Assay

Western immunoblot analysis was carried out to detect the amount of Fis from the
crude lysates of P. putida F15. Crude cell lysates were prepared from 18-h-old cells grown
in 5 mL LB, M9-0.2, M9-1.4, or M9-Trp media. Then 1 mM IPTG was used in media if it
was needed. The cells were collected by centrifugation and suspended in the RIPA buffer
described previously [8].

The total amount of protein in the cleared supernatant was measured spectrophoto-
metrically by the content of tryptophan [34]. For Western blotting, 10 µg of total protein
was loaded per well and separated by 12% Tricine-SDS-PAGE [35]. Fis was detected by
mouse anti-Fis as previously described [8].

2.4. Statistical Analysis of the Results

Factorial ANOVA was used to assess the variability of data in experiments. The mul-
tiple comparisons of means were conducted following Bonferroni’s test for unequal n.
For statistical tests, the significance level was set at p < 0.05. Homogenous groups with
the same letter indicate similarity of the arithmetic mean (p ≥ 0.05). Using the General
Linear Model, the dynamics of P. putida biofilm grown in all four media were compared.
The "medium "and "IPTG" were set as categorical factors and "time" as a continuous factor.
Spearman correlation analysis was used for growth parameters, biofilm, IPTG, and tryptone
for P. putida strains PSm and F15. Tryptone was defined as “1” for LB and M9-tryptone
media and “0” for M9-0.2CAA and M9-1.4CAA media. The average value of every media
biofilm was used for analysis, as the number of measurements was different for biofilm
and growth parameters of planktic cells. The calculations were performed using Statistica
13 software.

3. Results

The biofilm of Pseudomonas is a dynamic feature and can depend on extracellular
factors and the physiological state of bacteria [8,36]. We have studied P. putida biofilm
formation and observed that the growth medium and the age of bacterial culture strongly
affect biofilm formation [3]. The current study aimed to determine extracellular factors that
are involved in P. putida biofilm formation. We used P. putida wild type strain PSm and an
artificial strain F15, a fis-overexpression derivate of PSm [3]. The biofilm of both strains,
PSm and F15, was assessed in different media to ascertain extracellular factors that affect
its formation.

The biofilm was assessed in microtiter plates containing LB or M9 medium with 0.2%
glucose and 0.2% casamino acids with tryptophan (M9-0.2CAA) in the absence or presence
of 1 mM IPTG. The IPTG was used to induce the fis gene from the Ptac promoter in F15.
As expected, P. putida strains’ biofilm grown without IPTG was 1.6–1.8 times higher in LB
medium than M9-0.2CAA medium (Figure 1A). However, surprisingly, overexpression
of fis by IPTG did not enhance P. putida biofilm in the M9-0.2CAA medium (Figure 1A).
The overexpression of fis by 1 mM IPTG was confirmed by immunoblot analysis (Figure 1B).
Thus, the possibility that F15 has lost the enhanced biofilm in M9-0.2CAA (or M9-1.4CAA,
see below) due to the inability to induce fis expression in F15 by IPTG was ruled out.
Therefore, we focused on the possibility that extracellular factors modulate Fis’ capacity to
enhance biofilm formation.
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Figure 1. The biofilm of P. putida and fis-overexpression in strain F15. (A) The biofilm of P. putida
strains PSm (wt) and F15 (fis-overexpression strain) grown in the LB and M9-0.2CAA media in
the presence or absence of 1 mM IPTG. The arithmetical averages of at least two independent
measurement sets are shown. Brackets show the 95% confidence intervals, and the homogenous
groups are shown above the columns by the lower-case letters. Identical letters denote non-significant
differences (p ≥ 0.05) between averages of biofilm. (B) Overexpression of fis in P. putida F15 by
immunoblotting using monoclonal anti-Fis antibodies. A total of 10 µg of total protein obtained from
P. putida F15 grown in LB, M9-0.2CAA, M9-1.4CAA, or M9-0.2CAA+tryptone media was loaded on a
12% SDS-PAA gel. The supplementation of 1 mM IPTG is shown by "+" above the lane. A total of
45 nanograms of purified Fis (6His) was used as a positive control. An asterisk indicates proteolytically
cleaved Fis. Protein marker band sizes are indicated.

3.1. Biofilm in Mixed LB and M9-0.2CAA Media

There are two possibilities for how the growth media components could affect the
biofilm: either the M9 components inhibit or the LB components promote biofilm forma-
tion, especially the emergence of the enhanced biofilm of F15 by IPTG. To identify the
extracellular factor that could affect biofilm formation, we mixed components of LB and
M9-0.2CAA media. Each medium was supplemented one by one with individual compo-
nents of the other medium in their original concentrations. Tryptone, yeast extract, and
NaCl were added to M9-0.2CAA; and phosphate buffer, glucose, CAA, and microelements
were added to LB (Figure 2).

The supplementation of M9-0.2CAA by tryptone increased the biofilm of P. putida
wild type strain PSm by 1.3 times (p = 0.029) and reproduced the fis-overexpression effect
on F15 biofilm, as seen when bacteria were grown in LB (Figure 2A). Notably, in the
presence of IPTG, the biofilm of F15 was increased 2.9 times (p < 0.0001) compared to
the absence of IPTG in the M9-0.2CAA+tryptone medium (Figure 2A). Yeast extract also
increased F15 biofilm in the fis-overexpression background, but the effect was weaker
(1.6-fold increase upon IPTG addition, p < 0.0001), and the yeast extract did not affect the
biofilm of PSm (Figure 2A). Additional NaCl in the M9-0.2CAA medium did not have a
remarkable effect on the biofilm of PSm.
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Figure 2. The biofilm of P. putida strains PSm and F15 in media supplemented with individual
components. (A) Biofilm formation in M9-0.2CAA supplemented with single components of LB,
and (B) biofilm formation in LB medium supplemented with single components of M9-0.2CAA.
The arithmetical averages of at least four independent measurement sets are shown. Brackets
show the 95% confidence intervals, and the homogenous groups are shown above columns by the
lower-case letters. Identical letters denote non-significant differences (p ≥ 0.05) between averages
of biofilm.

The presence of M9-0.2CAA components in LB did not significantly affect the biofilm
of P. putida wild type strain PSm. However, CAA and microelements reduced the biofilm
of PSm 1.3 times compared to the biofilm measured from LB without supplementa-
tion, but the effect was statistically insignificant (Figure 2B). Despite M9-0.2CAA com-
ponents in the LB medium, overexpression of fis increased the biofilm of F15 in the LB
medium (Figure 2B).

In conclusion, adding tryptone to the M9-0.2CAA medium increased the biofilm of
P. putida wild type strain PSm and restored the biofilm enhancement by fis-overexpression in
the F15 strain to similar levels as observed in LB (Figure 1) [3]. The M9-0.2CAA components
in LB did not meaningfully affect P. putida biofilm. Thus, it seems that the proteinaceous
factor in media increases P. putida biofilm.
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3.2. P. putida Biofilm in Proteinase K Treated LB Medium

LB contains proteinaceous components from tryptone and yeast extract. To investigate
whether these are responsible for Fis-mediated biofilm enhancement, LB was treated
with proteinase K. Before inoculation of the treated medium with cells, proteinase K was
thermally inactivated to prevent the action of protease K on the forming biofilm (Figure 3).
Both studied strains of P. putida formed less biofilm in the proteinase K-treated LB medium
than without the treatment (Figure 3A). Moreover, the Fis-enhancing effect on F15 biofilm
was missing in the proteinase K-treated LB (Figure 3A). These results indicated that the
proteinaceous component in the LB medium is responsible for enhanced biofilm formation
when fis is overexpressed.

Figure 3. The effect of LB proteinaceous component for P. putida biofilm. (A) The biofilm of P. putida
strains PSm and F15 in LB medium and the proteinase K-treated LB medium. Biofilm of P. putida
strains. The arithmetical averages are shown. Brackets show the 95% confidence intervals, and the
homogenous groups are shown above columns by the lower-case letters. Identical letters denote
non-significant differences (p ≥ 0.05) between averages of biofilm. (B) SDS-gel electrophoresis LB
medium supplemented with BSA. Lane 1, protein marker; lane 2, 10 µL of LB medium; lane 3, 10 µg
of BSA; lane 4, LB medium + BSA without proteinase K treatment; lane 5, LB medium + BSA after 2 h
proteinase K treatment; lane 6, proteinase K-treated LB medium amended with 10 µg of BSA after
incubation in 121 ◦C and incubated at 37 ◦C for 2 h.

3.3. Biofilm and Growth of P. putida in M9 Medium with Different Concentrations of CAA

Tryptone is a trypsin hydrolysate of casein or some other protein and contains oligopep-
tides in different lengths and smaller amounts of amino acids [37,38]. Therefore, tryptone
can affect P. putida growth as an additional C- and N-source. To distinguish whether the
effect of tryptone relies on peptides in particular or the extra nutrients it provides, we used
an equivalent amount of casamino acid + tryptophan as a control (Figure 4). Casamino
acid (CAA) is an acid hydrolysate of casein, mainly containing amino acids, except for
tryptophan and a minor amount of short peptides [38,39]. Roughly 1.4% of CAA+Trp
should provide the same amount of amino acids as tryptone of LabM (Heywood, UK)
added to LB [40,41].
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Figure 4. The biofilm of P. putida strains PSm and F15 in M9 media was amended with different
amounts of CAA. The arithmetical averages of at least two independent measurement sets are shown.
Brackets show the 95% confidence intervals, and the homogenous groups are shown above the
columns by the lower-case letters. Identical letters denote non-significant differences (p ≥ 0.05)
between averages of biofilm.

Biofilm was measured in M9 0.2% glucose medium amended with 0.05%, 0.1%, 0.2%, 0.4%,
0.8%, 1.4%, and 2% of CAA+Trp for 24 h (Figure 4). The amount of CAA+Trp in the M9 medium
did not affect the biofilm of the wild type strain PSm (Figure 4). More importantly, the F15 had
no biofilm-enhancing effect by IPTG at any concentration of CAA in M9 (Figure 4).

Thus, taking together, the proteinaceous component per se, as peptides in the medium,
enhances the biofilm formation of P. putida.

3.4. The Dependence of P. putida Biofilm on Growth Parameters

Next, we asked whether it is possible to evaluate biofilm using planktonic bacteria’s
growth parameters (e.g., growth rate and maximum OD). The growth parameters vary
broadly depending on the bacteria’s growth medium and genetic background. The growth
rate reflects the speed of biomass formation from the nutrients in the medium, and max-
imum OD (maxOD) indicates the conversion efficiency of nutrients to biomass. In the
current study, we were interested in whether the presence of tryptone could influence
growth rate, maximum OD, or biofilm (Figure S1 and Table 1). The growth rates and
maxOD of bacteria grown in M9-1.4CAA and M9-0.2CAA+tryptone were of particular
interest. These media contained similar amounts of amino acids, and therefore we expected
that the growth parameters could be more similar to LB than to M9-0.2CAA.

Table 1. The Spearman correlation analysis for growth parameters, biofilm, IPTG, and tryptone for
P. putida strains PSm and F15. P-values are shown in brackets.

Strain Growth Rate maxOD IPTG Tryptone 1

PSm 2
biofilm 3 −0.526 (9.4 × 10−6) 0.547 (3.5 × 10−6) 0.084 (0.510) 0.873 (1.2 × 10−20)

growth rate −0.865 (6.7 × 10−20) −0.154 (0.229) −0.243 (0.055)
maxOD 0.217 (0.088) 0.253 (0.045)

F15 2
biofilm 3 −0.099 (0.476) −0.081 (0.551) 0.306 (0.022) 0.873 (1.8 × 10−18)

growth rate −0.543 (2.2 × 10−5) −0.378 (0.005) −0.031 (0.823)
maxOD −0.415 (0.001) 0.051 (0.707)

1 The tryptone was defined as “1“ (LB and M9-tryptone) and “0“ (M9-0.2CAA and M9-1.4CAA). 2 P. putida strains,
PSm and F15, were analysed separately. 3 The average value of every media biofilm was used for analysis as the
number of measurements was different for biofilm and growth parameters of planktic cells.

Indeed, the growth rate and maxOD of the wild type strain PSm depended on amino
acid concentration in the growth medium (Figure S1). The presence of tryptone or ex-
tra CAA in the medium (LB, M9-0.2CAA+tryptone and M9-1.4CAA) increased maxOD
and decreased the growth rate of PSm, differing remarkably from growth parameters in
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M9-0.2CAA (Figure S1). The effect of IPTG on the growth rate or maxOD of P. putida wild
type strain PSm was absent in most cases; only the growth rate in M9-0.2CAA+tryptone
was slightly lower in the presence of IPTG (Figure S1). The media’s high amino acids
component affected the maxOD and growth rate of F15 differently, but most importantly,
IPTG decreased the growth rate and maxOD of F15 in all media, except in M9-1.4CAA,
where the growth rate was not affected by IPTG (Figure 4). The growth rates and maxOD
of F15 grown in M9-1.4CAA were more similar to the growth parameters obtained in
M9-0.2CAA+tryptone than M9-0.2CAA (Figure S1).

Thus, knowing that the growth of planktic bacteria is dependent on the presence of
a proteinaceous factor on media, it was essential to understand how this affects biofilm
formation (Table 1). The most substantial correlation with the biofilm of P. putida wild
type strain PSm appeared with the presence of tryptone, indicating that the presence of
tryptone is linked to more biofilm. At the same time, tryptone is weakly correlated with
growth rate and maxOD. These results indicated that tryptone has a positive effect on
biofilm per se and excluded a possible effect of tryptone as the compound of extra C-
and N-sources (Table 1). However, the PSm growth rate was negatively correlated with
both biofilm and maxOD; and the maxOD and biofilm were positively correlated (Table 1).
Thus, when P. putida PSm grows slower but can produce more biomass, it probably forms
more biofilm. As expected, the IPTG correlation with growth rate, maxOD and biofilm of
P. putida PSm was insignificant, indicating that IPTG does not influence the growth or life
form of wild type strain (Table 1).

Similarly to P. putida wild type strain PSm, the most significant correlation was ascertained
between tryptone and biofilm of F15 (Table 1). While the presence of tryptone in the medium
affected the F15 biofilm positively, IPTG had a similar positive effect (Table 1). However, the
growth rates of F15 and maxOD were negatively correlated, which was also the case with the
wild type strain PSm (Table 1). Unlike the wild type strain, the addition of IPTG to the growth
medium affected the maxOD and growth rate of F15 negatively (Table 1).

Taken together, the growth parameters of P. putida planktic cells did not describe
entirely the ability of P. putida to form a biofilm, but tryptone did. The 24-h-old biofilm
depends on extracellular tryptone that probably is not used only for metabolism.

3.5. Dynamics of P. putida Biofilm

The growth rate in combination with IPTG may affect biofilm formation; for example,
the presence of IPTG in the F15 growth medium may delay biofilm formation as it decreases
the growth rate of F15 (Table 1). Therefore the 24-h-old biofilms of F15 grown with and
without IPTG may not be comparable to each other. Thus, we assessed the biofilm formation
over 24 h by the method of Lopez-Sanchez et al. [9]. The procedure is based on the decimal
dilution of inoculum, which delays biofilm formation. Every subsequent dilution gives
so-called younger biofilm, and after intercalation of biofilm results in the planktic growth
curve, it is possible to assess the biofilm dynamics [9].

Using the General Linear Model, the dynamics of PSm biofilm grown in all four media
were compared. The "medium "and "IPTG "were set as categorical factors and "time" as a
continuous factor. Firstly, from the three main effects, only “medium” had a statistically
significant impact on PSm biofilm (p = 7.7 × 10−14), while “IPTG” (p = 0.498) and “time”
(p = 0.332) were insignificant. Thus, the most critical differences in wild type strain PSm
biofilm were caused by media but not by IPTG or time (Figure 5). Secondly, from the
second level of interactions, only "medium+time" had a statistically significant effect on the
biofilm of PSm (p = 1.8 × 10−8); the rest of the second level or the third level of interactions
were statistically insignificant. Consequently, PSm biofilm changes over time in the evalu-
ated medium (Figure 5). According to the follow-up Bonferroni test, biofilms formed in
media containing tryptone (LB and M9-tryptone) compared to biofilms formed in media
without tryptone (M9-0.2CAA and M9-1.4CAA) were significantly different (any media
with tryptone versus any media without tryptone p < 0.0001; LB vs. M9-0.2CAA+tryptone
p = 0.160; M9-0.2CAA vs. M0-1.4CAA p = 1).
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Figure 5. The biofilm dynamics and growth curves of P. putida wild type strain PSm grown in
(A) M9-0.2CAA, (B) M9-1.4CAA, (C) M9-0.2CAA+tryptone, and (D) LB media with and without
1 mM IPTG supplementation. (E) The average mature biofilm of PSm was calculated from timepoints
8 to 24 h. The arithmetical averages are shown. Brackets show the 95% confidence intervals, and the
homogenous groups are shown above the columns by the lower-case letters. Identical letters denote
non-significant differences (p ≥ 0.05) between averages of biofilm.
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The quick formation of biofilm and the dispersion of young biofilm were only observ-
able in the media without tryptone (M9-0.2CAA and M9-1.4CAA; Figure 5A,B). However,
the early biofilm was not measurable from media containing tryptone for technical reasons.
In all cases, bacteria formed stable biofilm after 8 h (Figure 5); thereby, 24-h-old biofilm
reflects stable, mature biofilm in all used conditions.

Additionally, the average of mature biofilms was calculated from the biofilms obtained
in 8 to 24 h and compared by multifactorial ANOVA (Figure 5). The effect of tryptone
was evident similarly to the previous analysis; tryptone in media (LB and M9-tryptone)
increased the average biofilm of PSm compared to the average biofilm formed in media
without tryptone (M9-0.2CAA and M9-1.4CAA; Figure 5E). Indeed, despite the same
amount of C- and energy sources in media (compare M9-1.4CAA and M9-tryptone), wild
type P. putida formed a more mature biofilm in the presence of tryptone.

The biofilm of P. putida strain F15 was similarly assessed to the wild type strain
PSm. All main effects had a statistically significant impact on the Fis biofilm (medium:
p = 4.0 × 10−10; IPTG: p = 7.4 × 10−10; time: p = 2.3 × 10−8), indicating that the biofilm of
F15 changes over time in the presence of IPTG (by an elevated amount of Fis; Figure 6).
The second level interaction “IPTG+medium” (p = 1.3 × 10−6) and “medium+time”
(p = 2.8 × 10−5) had a statistically significant impact on the biofilm of F15, showing that
the effect of Fis on F15 biofilm depends on the medium where biofilm formed and the
development of F15 biofilm is time-dependent in different media (Figure 6). The rest of the
interactions were statistically insignificant.

Thus, the effect of fis-overexpression on F15 mature biofilm was prominent in the
presence of tryptone (Figure 6C,D) but not in the absence of tryptone (Figure 5A,B). In ad-
dition, the young F15 biofilm lacked the effect of fis-overexpression in tryptone-containing
medium (Figure 5C,D), being consistent with previously obtained F15 results in LB [8].

Evaluation of F15 mature biofilm in a biofilm dynamics study, with the mature biofilms
calculated as averages of the biofilms obtained in 8 to 24 h, confirmed the requirement
of tryptone for Fis-enhanced biofilm (Figure 1, Figure 2, and Figure 6E). Although much
less pronounced, a similar effect was seen in the M9-1.4CAA medium, probably due to the
small number of peptides that CAA could contain (Figure 6E).

In conclusion, tryptone in media with similar C- and energy sources promotes the
staying of P. putida cells in the mature biofilm. Thus, under the conditions evaluated, the
extracellular proteinaceous component appears to be another essential factor for biofilm
formation, not just a source of carbon and energy.
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Figure 6. The biofilm dynamics and growth curves of P. putida fis-overexpression strain F15 grown
in (A) M9-0.2CAA, (B) M9-1.4CAA, (C) M9-0.2CAA+tryptone, and (D) LB media in the presence
or absence of 1 mM IPTG. (E) The average mature biofilm of PSm was calculated from timepoints
8 to 24 h. The arithmetical averages are shown. Brackets show the 95% confidence intervals, and
the homogenous groups are shown above columns by the lower-case letters. Identical letters denote
non-significant differences (p ≥ 0.05) between averages of biofilm.
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3.6. Involvement of Polypeptides in the Biofilm of P. putida

Knowing that the presence of peptides in the M9-0.2CAA medium increases the mature
biofilm, the question arose as to whether adding a different mix of peptides could restore
the effect of tryptone used in our studies (purchased from LabM, Heywood, UK). Thus,
biofilm formation was monitored in M9-0.2CAA supplemented with peptones and tryptone
other than LabM (Heywood, UK), such as gelatin peptone (Sigma-Aldrich, St. Louis, MO,
USA), soy peptone (Acros Organics, Geel Belgium), bacteriological peptone (Amresco,
Solon, OH, USA), and bacteriological tryptone (Amresco, Solon, OH, USA). Because the
biofilm-enhancing effect of Fis was readily detectable, only the fis-overexpression strain
F15 was studied.

Surprisingly, the biofilm-enhancing effect of Fis was more variable when using mis-
cellaneous peptones. The F15 biofilm was independent of the level of expression of
fis when gelatin peptone (Sigma-Aldrich, St. Louis, MO, USA) was used (Figure S2).
The fis-overexpression resulted in a 1.7-fold higher biofilm in the presence of soybean
peptone (Acros Organics, Geel, Belgium) and a 2.3-fold higher biofilm when bacteriological
peptone (Amresco, Solon, OH, USA) was added to the medium compared to the corre-
sponding biofilm formed without the overexpression of fis (Figure S2). However, Amresco
(Solon, OH, USA) tryptone amplified the biofilm in the presence of IPTG 3.9-fold compared
to the biofilm formed without the addition of IPTG (Figure S2). Thus, these results suggest
that some peptides may be more suitable for a mature biofilm than others. When comparing
peptides obtained by treating pepsin and trypsin, these peptides differ in their terminal
amino acid. Pepsin treatment yields peptides with hydrophobic amino acids at the one end,
while trypsin treatment yields peptides with a positively charged amino acid [42–44]. This
knowledge encouraged us to replace tryptone in M9-0.2CAA+tryptone with differently
charged peptides. We were interested in whether the charge of the peptides could be
the cause of the enhanced biofilm. Therefore, three types of polypeptides were added
to the M9-0.2CAA medium: positively charged poly-L-lysine (pK), negatively charged
poly-L-glutamate (pE), and uncharged poly-DL-alanine (pA) at final concentrations
0.4 mg/mL. Initially, the poly-L-lysine in concentrations 0.13, 0.2, 0.4, and 1 mg/mL
was used to find the effect of the polypeptide on the biofilm (data not shown). Seeing
that a concentration of 0.4 mg/mL enhances the F15 biofilm the most stably when fis was
overexpressed, the same concentration was used for the rest of the polypeptides.

Of all the polypeptides used, only pK showed a prominent effect on the 24-h-old
biofilm (Figure 7A). Namely, the enhancing effect of Fis on the biofilm in the M9-0.2CAA medium
was observed only in the presence of poly-lysine. However, pK had no statistically significant
impact on the wild type strain PSm of P. putida (Figure 7A). In addition to poly-lysine, F15 also
had more biofilm in the presence of poly-glutamate, although without the Fis-effect (Figure 7A).
Thus, positively charged poly-lysine appeared to facilitate the biofilm when the amount of Fis
was increased by IPTG; at the same time, negatively charged poly-glutamate and uncharged
poly-alanine did not.

As the next step of our study, poly-L-lysine was replaced with spermine, a posi-
tively charged polyamine, in the M9-0.2CAA medium to examine the effect of positively
charged extracellular factors on the F15 biofilm. Spermine elicited a positive effect of
fis-overexpression on the F15 biofilm, similar to that observed in LB, M9-0.2CAA+tryptone,
and M9-0.2CAA+pK medium (Figures 6E and 7A). However, in contrast to pK, sper-
mine has a mild, statistically insignificant negative effect on the wild type strain PSm
biofilm (Figure 7A). These results indicated that tryptone could be substitutable for a
positively charged compound as poly-lysine or spermine for enhancing P. putida F15
biofilm formation.
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Figure 7. The biofilm of P. putida in M9-0.2CAA supplemented with biopolymers. (A) The biofilm
of P. putida strains PSm and F15 in the M9-0.2CAA medium supplemented with 0.4 mg/mL of
poly-L-lysine (pK), 0.4 mg/mL of poly-L-glutamate (pE), 1.4 mg/mL of poly-LD-alanine (pA), or
0.4 mg/mL of spermine. (B) The biofilm of P. putida in M9-0.2CAA supplemented with water-soluble
Na-cellulose, poly-galacturonic acid (PGA), salmon sperm DNA, and bovine serum albumin (BSA).
The arithmetical averages of at least three independent measurement sets are shown. Brackets
show the 95% confidence intervals, and the homogenous groups are shown above columns by the
lower-case letters. Identical letters denote non-significant differences (p ≥ 0.05) between averages
of biofilm.

3.7. The Biofilm of P. putida in Media Amended with Biopolymers

Inspired by the effect of positively charged peptides, we asked whether other possible
rhizosphere biopolymers could affect the P. putida biofilm. Due to rhizosphere factors,
especially in the vicinity of old parts of the roots, P. putida could be exposed to many
biopolymers, such as polysaccharides, DNA, and proteins, which are released into the
environment as a result of the breakdown of plant cells. Thus, water-soluble cellulose
sodium salt (negatively charged), polygalacturonic acid (PGA), DNA (salmon sperm DNA),
and BSA (bovine serum albumin) were added to M9-0.2CAA, and P. putida biofilm was
measured 24 h after inoculation.

The water-soluble cellulose in M9-0.2CAA significantly increased the biofilm of both
strains, PSm and F15 (Figure 7B). At the same time, no biofilm enhancement by Fis was
seen, indicating that cellulose has an overall positive effect on biofilm (Figure 7B, compare
F15 biofilm with and without IPTG).
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Similar to cellulose, the addition of DNA in the M9-0.2CAA medium produced more
biofilm than without the addition of DNA (Figure 7B). Compared to the effect of cellulose,
the impact of extracellular DNA on the biofilm was negligible, and the impact of PGA was
absent (Figure 7B). In contrast, the addition of BSA to the M9-0.2CAA medium was the
only biopolymer that elicited a Fis-dependent positive effect on the F15 biofilm. However,
the impact of BSA on the wild type biofilm was negligible (Figure 7B). Thus, negatively
charged biopolymers, such as cellulose and extracellular DNA, may also increase the
P. putida biofilm, but this does not appear to be Fis-dependent.

In conclusion, the biofilm of Pseudomonas putida is dependent on extracellular biopoly-
mers. Cellulose, DNA, proteins, and peptides all appear to affect biofilm positively, with
various mechanisms involved in enhancement. Therefore, it is essential to consider the
content of biopolymers in laboratory media when measuring P. putida biofilm, as this may
significantly affect the results.

4. Discussion

Bacterial biofilm formation is a highly complex feature and can be influenced by
various factors, both intra- and extracellular. Biofilm formation is commonly associated
with starvation and stressors. Indeed, stress, especially toxic substances, promotes cell
aggregation to collectively reduce the surface area exposed to the stressors. Under stress
conditions (stationary phase or exposure to harmful substances) and aggregation, the cell
surface becomes more hydrophobic. Thus, it is concluded that stress conditions promote
biofilm formation. We have noticed two inconsistent aspects with the general theory of
biofilm formation. First, P. putida biofilm is favoured in the early stages of its appearance,
when the environment should contain plenty of nutrients. Conversely, as the nutrients
are depleted in a closed system, the biofilm is reduced by dispersion [8,15,24]. Second,
P. putida can form biofilm efficiently when the cell surface is relatively hydrophilic. The need
for some factors, such as LapF, is conditional for biofilm formation depending on growth
media [8,14,16].

The results of measuring P. putida biofilm in LB and M9-0.2CAA were surprising (Figure 1).
Fis enhanced biofilm production only in one medium, and this raised the question, why. One
possible explanation could be that biofilm depends on the amount of C- and energy source as a
complex physiological outcome.

The biofilm is a collection of cells in a gel matrix, which provides homeostatic con-
ditions reducing stress and thereby energy loss for the bacterial population. The biofilm
matrix may consist of different components, but there are certainly biopolymers explicitly
produced for the matrix in addition to water. The production of biopolymers is energy-
intensive. For this reason alone, it can be expected that biofilm will grow on a nutrient-rich
medium and that little development will be possible under conditions where the source
of C- and energy is limiting. In other words, to form a biofilm, the bacteria must have
sufficient nutrients. For example, experiments with Pseudomonas fluorescens showed that
the bacterium forms a sufficiently dense biofilm on an optimal glucose medium, 30 mg/L
of glucose. At lower (15 mg/L) and higher glucose concentrations (45 mg/L), less biofilm
was formed [33].

The biofilm can be treated as the sum of the cells and the matrix surrounding them.
A decrease in either component reduces the biofilm, indicating less favourable condi-
tions for the biofilm. Under the conditions studied, the P. putida biofilm was maximal
when bacteria were grown for about six hours, and then the amount of biofilm started
to decrease (Figures 5 and 6). These results suggest that the P. putida biofilm is rather
a welfare phenotype; when unfavourable conditions occur, the biofilm diminishes, ei-
ther through cell departure or matrix depletion. Thus, the age of the biofilm must be
considered when assessing the relationship between C- and energy source and biofilm.
Examination of the biofilm dynamics revealed that regardless of the strain studied, P. putida
formed biofilm efficiently after attachment, followed by a half-maximal degradation of
the biofilm (Figures 5A,B and 6A,B). These results are in good agreement with previous
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results [8,15,24]. In other words, P. putida forms a biofilm better in the presence of optimal
amounts of nutrients. The lack of nutrients signals the initial biofilm dispersion, i.e., the
resumption of mobility in some cells, which would essentially mean finding a more prosper-
ous environment. The biofilm dispersion is estimated to occur at about the same time that
the planktonic cells enter the stationary phase, suggesting that the P. putida biofilm begins
to degrade as nutrients are depleted (Figures 5 and 6). Planktic cells have a larger surface
area exposed to the environment than those aggregated in biofilm. This would likely give
them a growth advantage and explain the observed behaviour during nutrient deficiency.

However, the older or mature biofilm, measured from 24-h-old cells, which was estimated
to coincide with the stationary phase of planktonic cells, was more dependent on the extra-
cellular component tryptone. Both studied strains maintained more mature biofilm in media
supplemented with tryptone than media without tryptone (Figures 1, 2, 4, and 5). When tryp-
tone was replaced with an equivalent amount of amino acids, the growth parameters (growth
rate and maxOD) of planktonic cells were similar. Still, the medium’s equal amount of amino
acids did not provide a more substantial biofilm in the mature phase (Figures S1, 5E, and 6E).

Certainly, planktonic P. putida catabolises tryptone, but our results suggest that P. putida
may use peptides for biofilm integrity as a structural factor. The planktic population grew
to a similar maxOD in M9-1.4CAA, M9-0.2CAA+tryptone, and LB (Figure S1), indicating
that tryptone is efficiently metabolised in cells. All these media contained similar amounts
of amino acids; additionally, M9-1.4CAA and M9-0.2CAA+tryptone had the same amount
of glucose and microelements. However, cells formed a higher amount of biofilm in a
medium containing tryptone than M9-0.2CAA or M9-1.4CAA, suggesting that sessile cells
use tryptone not only for catabolism but also likely as a structural element to build a biofilm.
Similarly, the reduced biofilm formation in the protease K-treated LB medium indicates
that the critical factor for biofilm is not free amino acids but peptides (Figure 3A). Moreover,
BSA, poly-lysine, and spermine in the M9-0.2CAA medium also positively affected the
P. putida F15 biofilm during overexpression of fis (Figures 3 and 7A). Hence, the proteina-
ceous component may act as a structural factor in the P. putida biofilm, likely stabilising the
biofilm matrix.

It is important to emphasise that tryptone (peptides) increases the biofilm of the wild type
P. putida strain PSm and the fis-overexpression strain F15 (Figures 2A, 3A, 5E, and 6E, Table 1).
However, the effect of positively charged peptides on the biofilm was not apparent. When
tryptone was replaced by poly-L-lysine or spermine, the biofilm improved only in the case of
fis-overexpression (Figure 7A). Poly-lysine may not be the best choice for studying mild changes
in the wild type strain of P. putida, as cationic peptides are known to degrade biofilms [45–47].
Thus, possibly the harmful effects of the cationic peptide overshadowed the enhancing impact
for biofilm, and the actual peptide sequence, if any, that would amplify the biofilm of P. putida
remains to be elucidated. The negatively charged cellulose and even extracellular DNA used in
the study promoted a mature biofilm in the M9-0.2CAA medium (Figure 7B). However, PGA,
which also had a negative charge, did not affect the formation of P. putida biofilm (Figure 7B).
Consequently, the effect of biopolymers on biofilm relies on more intricate properties than just
their charge.

Since the effect of tryptone on the P. putida biofilm is particularly pronounced in
cells with elevated Fis, there must be a Fis-controlled factor that mediates the impact of
the peptides on the biofilm. It is likely that one of these proteins, LapA or LapF, could
be involved in biofilm formation via an extracellular peptide. Fis is known to enhance
lapA expression and inhibit lapF expression [19,20], leaving the surface of planktonic
cells relatively hydrophilic even in the stationary phase compared to wild type PSm [14].
Therefore, our subsequent studies are focused on examining the possibility that LapA and
LapF could be involved in forming the peptide-enhanced biofilm.

5. Conclusions

This study aimed to investigate why Pseudomonas putida forms biofilms differently in
growth media and whether peptides in the form of tryptone affect the biofilm more than
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the C-source. It was ascertained that the Pseudomonas putida biofilm was dependent on
different types of extracellular biopolymers (cellulose, DNA, proteins, and peptides), all of
which appear to have a positive effect on the biofilm. Peptides were found to be the most
intriguing, as they were crucial for biofilm enhancement by Fis. Therefore, it is essential to
consider the content of biopolymers in laboratory media when measuring P. putida biofilm,
as this may significantly affect the results.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/microorganisms10030618/s1, Figure S1: The growth parame-
ters of planktic P. putida strains PSm and F15, Figure S2: The biofilm of P. putida F15 in the M9-
0.2CAA medium with a proteinaceous component of various origins.
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