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Abstract

White matter hyperintensities (WMHs) are among the most commonly observed marker of

cerebrovascular disease. Age is a key risk factor for WMH development. Cardiorespiratory

fitness (CRF) is associated with increased vessel compliance, but it remains unknown if

high CRF affects WMH volume. This study explored the effects of CRF on WMH volume in

community-dwelling older adults. We further tested the possibility of an interaction between

CRF and age on WMH volume. Participants were 76 adults between the ages of 59 and 77

(mean age = 65.36 years, SD = 3.92) who underwent a maximal graded exercise test and

structural brain imaging. Results indicated that age was a predictor of WMH volume (beta =

.32, p = .015). However, an age-by-CRF interaction was observed such that higher CRF

was associated with lower WMH volume in older participants (beta = -.25, p = .040). Our

findings suggest that higher levels of aerobic fitness may protect cerebrovascular health in

older adults.

Introduction

White matter (WM) hyperintensities (WMHs) are one of the most ubiquitous age-related

structural changes observed on T2-weighted MRI, yet they are of unknown etiology and have

multiple histological correlates [1]. The physiologic antecedents of WMHs are heterogenous

[1–3], but many are presumed to be a consequence of age-related vascular changes [4, 5]. Arte-

rial stiffness is associated with WMHs and is the most influential hemodynamic factor in nor-

motensive and hypertensive individuals over the age of 60 [6–8].

Age-related arterial dysfunction is the result of a variety of deleterious changes that include

intimal remodeling [9], increased arterial stiffness [10, 11], and endothelial dysfunction [12,

13]. Age-related changes in the physical properties of, and the interaction between, macro and
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microvasculature contribute to the development of WMHs [14–17]. For example, large artery

stiffening transmits increases in pulsatility, the variation of blood pressure (BP) throughout

the cardiac cycle [18, 19], to small cerebral vessels [20]. Excessive pulsatility to small cerebral

vessels is associated with WMHs [21].

While cerebrovascular changes are endemic to aging, older adults show considerable vari-

ability in vascular brain health [22–24]. One variable known to positively impact the brain’s

vascular health is cardiorespiratory fitness (CRF), a product of regular exercise [25]. However,

little is known about the effects of CRF on WMH volume per se. In contrast, higher CRF has

been linked to higher WM microstructure in older adults [26–28]. Since low WM microstruc-

ture in normal appearing WM precedes conversion to WMHs [29, 30], WMHs may also be

positively influenced by high CRF [31–33]. If so, CRF may attenuate the development of

WMHs in older adults.

We address this question in a sample of healthy older community-dwelling adults. Younger

adults were not included in this study as WMHs are atypical in this age group. A gold-standard

measure of CRF, maximal graded exercise testing, was used to assess fitness. We expected that

age would be a significant predictor of WMH volume. However, we hypothesized that fitness

level may modify the relationship between age and WMH volume. Specifically, we predicted

that the effects of age on WMH volume may be less pronounced in individuals with high fit-

ness levels based on our hypothesis that CRF may attenuate the age-related acceleration of

WMH load. Our hypothesis was also developed based on reports that higher levels of physical

activity are associated with less WMHs [34–36].

Methods

Eighty-one community dwelling healthy volunteers (33 males) participated in this study

(mean age = 65.50 years, SD = 4.01; range 59 to 77). Three of the 81 participants were excluded

from the final analysis due to incomplete imaging data (2) or asymmetric brain structure that

yielded inaccurate segmentation (1). Further, 2 participants were excluded from the study due

to outlier status on the dependent variable (> 3 standard deviations above the mean). A total

of 76 participants (29 males) were included in the reported analyses (mean age = 65.36 years,

SD = 3.92).

The University of Kentucky Institutional Review Board (IRB) specifically approved this

study and all participants provided written informed consent in accordance with the IRB.

Exclusion criteria included individuals previously diagnosed with a neurological disorder (e.g.,

stroke, seizure), major head injury and/or concussion, and heart or lung conditions (e.g., his-

tory of heart attack, chronic obstructive pulmonary disease, emphysema). All participants

obtained medical clearance from their personal physician prior to participation. Further, all

fitness assessments were supervised by the study physician.

Graded exercise test

All participants completed a maximal graded exercise test (Max GXT) to determine the highest

rate at which the body extracts and utilizes oxygen during high intensity exercise, or VO2 max.

The Max GXTs were completed using an indirect calorimetry testing system with integrated

electrocardiogram (ECG). Continuous measurement of oxygen consumption was recorded

throughout the test. Max GXT data were collapsed across two different studies aimed at deter-

mining relationships between fitness and neuroimaging biomarkers of brain health. Both stud-

ies used the same neuroimaging protocols (see description below). The studies did differ

related to the Max GXT test, with one study using a bicycle ergometer and the other using a

treadmill.
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Forty-two participants completed a bicycle GXT and 34 participants completed a treadmill

GXT. The bicycle GXT consisted of progressive 3-minute workload stages. Briefly, the bicycle

GXT began with the subject pedaling at 50 rpm and a workload of 50 watts for 2 minutes. The

cadence was maintained at 50 rpm throughout the remainder of the test; however, the work-

load increased by 25 watts at the beginning of each successive 3-minute stage. The treadmill

GXT has been previously described [26, 37]. Briefly, a multistage stepwise treadmill protocol

was used. All participants started at a speed of 2.2 miles per hour (mph) and a 0% grade

(incline). The speed was increased 0.4 mph at the end of each 3-minute stage. The incline of

the treadmill was continuously increased by 2% at the onset of the third and remaining stages.

Test termination was based on volitional fatigue or the presence of any absolute or relative

contraindications according to the American College of Sports Medicine (ACSM) guidelines.

No tests were terminated due to ACSM contraindications. Upon completion of the Max GXT,

recovery (cool down) exercise was performed until HR< 100 beats/minute. Oxygen consump-

tion was measured breath-by-breath and later averaged over minute intervals and expressed

relative to body weight (ml/kg/min). The peak volume of oxygen (VO2) was used to define

CRF. VO2 was defined as meeting� 2 of the following 3 criteria: achievement of an age-pre-

dicted maximum HR; self-reported rate of perceived exertion (RPE) scores� 17; and a respi-

ratory exchange ratio of� 1.1. The standard 220-age equation was used to calculate the age-

predicted maximum HR in all participants.

Neuroimaging: T1 and FLAIR

MRI scans were performed using a 3T Siemens TIM MRI scanner at the University of Ken-

tucky utilizing a 32-channel head coil. Two MRI imaging sequences were employed for this

study. First, we used a 3D T1-weighted high-resolution anatomical sequence, Magnetization-

Prepared Rapid Acquisition Gradient Echo (MPRAGE), to segment into gray matter (GM),

WM, and cerebrospinal fluid (CSF). Sequence parameters were: Echo Time (TE) = 2.26 ms,

Repetition Time (TR) = 2530 ms, Inversion time Recovery (IR) = 1100 ms, voxel dimension is

1 x 1 x 1 mm with zero mm gap between slices, Field of View (FOV) = 256, acquisition

matrix = 256 x 256, Flip Angle (FA) = 7˚, and 176 of image slices. Second, a 2D T2-weighted

image sequence, Fluid Attenuation Inversion Recovery (FLAIR), was used to quantify WMHs.

Sequence parameters were: TE = 90 ms, TR = 9000 ms, IR = 2500 ms, Voxel dimension is 0.86

x 1.15 x 3 mm with 0.9 mm gap between slices, FOV = 220 mm, acquisition matrix = 256 x

256, FA = 130˚, and 35 image slices.

Total WMH volume was computed using an in-house, semi-automated protocol validated

for quantification of WMH from 3D FLAIRs [38]. Briefly, the 3D MPRAGE was resampled

and co-registered to the FLAIR image using linear six parametric rigid body registration (FSL

software library v5.0.8). The Brain Extraction Tool (BET), (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/

BET), was used for non-brain tissue stripping of FLAIR images and to generate a binary brain

mask. The binary brain mask was multiplied by the MPRAGE image to remove the non-brain

tissue voxels. All images underwent two intensity inhomogeneity corrections (N3-correction)

before image co-registration. MPRAGE images were then segmented to four tissue masks, 1)

GM, 2) WM, 3) CSF, and 4) non-classified tissue voxels. Segmentation was completed using

Statistical Parametric Mapping (SPM12) tool, which was operated based on MATLAB software

(http://www.fil.ion.ucl.ac.uk/spm/) and used an in-house previously validated template created

from 145 images of healthy older adults [39].

All processing was performed in native space. WM tissue masks were summed and con-

verted to a binary total WM mask and eroded by one voxel to reduce partial volume effects

associated with segmentation. The WM binary mask was then multiplied by the FLAIR image
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to generate a WM mask that included hyperintense voxels. This allowed for the generation of

the intensity distribution curve of WM voxels. The intensity distribution curve was then fitted

to the Gaussian curve to calculate the mean and the standard deviation (SD) of total WM.

WMH masks were generated by thresholding the FLAIR WM mask with a minimum value

(mean + 3 × SD) and maximum value (mean + 15 × SD). Manual editing was required to

remove false positive and artifact voxels from the total WMH mask as described previously

[40].

Statistical analysis

Statistical analyses were completed using SPSS 24.0. Two-tailed independent-samples t-tests

were used to determine sex and group differences for measures of CRF. For the regression

analysis, WMH volume was represented as a percent of intracranial volume (ICV; WMH (Vol-

ume/Total Intracranial Volume)/100). Percent WMH volume was log transformed due to its

typical skewed distribution. Next, two interaction terms were created by calculating the prod-

uct of mean centered age and CRF values and mean centered mean arterial pressure (MAP;

[systolic blood pressure + 2×diastolic blood pressure]/3) and CRF values. The log transformed

WMH volumes served as the outcome measure, and age, CRF and MAP served as predictor

variables. Age by CRF and MAP by CRF interaction terms also served as predictor variables.

Sex and mode of assessment (bicycle or treadmill) were used as covariates of no interest. Nui-

sance variables not contributing to WMH were excluded from a second regression analysis

Results

Demographic and variable data are shown in Table 1. There was a significant difference in

CRF between sexes. Male participants demonstrated significantly higher CRF values

(M = 33.67, SD = 10.70) compared to females (M = 27.07, SD = 5.90; t(38.65) = -3.05, p = .004.

Table 2 contains demographic and variable data across the two different modes of exercise

testing. Participants completing a treadmill test had significantly higher VO2 values

(M = 33.66, SD = 9.90) compared to participants who completed the bicycle test (M = 26.29,

SD = 5.70; t(50.17) = 3.85, p< .001).

The multiple regression model significantly predicted WMH volume, F(7,68) = 2.92, p =

.01, R2 = .23. Age was a significant predictor of WMH volume (beta = .32, p = .02; 95% CI:
0.008 to 0.070). MAP (beta = .14, p = .23), CRF (beta = .01, p = .92) and the MAP-CRF interac-

tion term (beta = .02, p = .89) were not independent predictors WMH volume when control-

ling for age. Fig 1 illustrates the interaction effect of age and CRF on WMH volume such that

higher CRF was associated with lower WMH volume in older adults (beta = -.25, p = .04; CI:
-0.006 to -0.0001). For illustration purposes a median split of CRF (28.55 ml/kg/min) was used

Table 1. Demographic and variable data.

Subjects Age MAP VO2 (ml/kg/min) WMH Volume (% ICV)

n = 76 65.4 (3.9) 92.9 (6.0) 29.6 (8.6) 0.19 (0.21)

Female n = 47 65.4 (4.1) 93.2 (5.8) 27.1 (5.9) 0.22 (0.25)

Male n = 29 65.3 (3.8) 92.4 (6.2) 33.7�� (10.7) 0.13 (0.11)

Abbreviations: MAP = mean arterial pressure; VO2 = volume of oxygen; ml = milliliters; kg = kilograms;

min = minute; WMH = white matter hyperintensity; ICV = intracranial volume. Note: values are means and values

in parentheses are S.D.

��P = .006.

https://doi.org/10.1371/journal.pone.0236986.t001
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to create high and low fitness groups. Neither sex (beta = -.15, p = .22) nor study group (beta =

.04, p = .78) significantly contributed to WMH volume.

Discussion

Our results indicate a significant age-by-fitness interaction on WMH volume in older adults.

Age was strongly associated with WMH volume. However, the effect of age on WMH volume

was qualified by an interaction with CRF. Specifically, results indicated that the characteristic

effects of age on WMH load were diminished by CRF. Findings suggest that continued fitness

may protect cerebrovascular health in older adults. The details and implications of these obser-

vations are discussed below.

An expected positive association was observed between age and WMH volume. Age is a

non-modifiable vascular risk factor for WMH load [1, 41, 42]. Sixty-eight percent of individu-

als between the ages of 60 and 70 present with periventricular WMHs.[43] WMH volume

increases 0.4% a year in individuals over the age of 60 [43]. However, rates of progression are

Table 2. Mode of exercise testing data.

Subjects Age MAP VO2 (ml/kg/min) WMH Volume (% ICV)

n = 76 65.4 (3.9) 92.9 (6.0) 29.6 (8.6) 0.19 (0.21)

Bicycle n = 42 (♀ = 26) 66.8 (4.1) 91.8 (6.3) 26.3 (5.7) 0.20 (0.21)

Treadmill n = 34 (♀ = 21) 63.7 (2.8) 94.3 (5.3) 33.7�� (9.9) 0.17 (0.22)

Abbreviations: MAP = mean arterial pressure; VO2 = volume of oxygen; ml = milliliters; kg = kilograms;

min = minute; WMH = white matter hyperintensity; ICV = intracranial volume. Note: values are means and values

in parentheses are S.D.

��P< .0001.

https://doi.org/10.1371/journal.pone.0236986.t002

Fig 1. Interaction effect of age and CRF on WMH volume. Scatter plot illustrating the relationship between age and

percent ICV WMH volume with high and low CRF as the group variable. Filled (black) dots represent the relationship

between age and WMH volume in participants with a CRF less than 28.55 ml/kg/min. Open (white) dots represent the

relationship between age and WMH volume in participants with a CRF greater than 28.55 ml/kg/min. Abbreviations:

ICV = intracranial volume; VO2 = volume of oxygen; ml = milliliters; kg = kilograms; min = minute.

https://doi.org/10.1371/journal.pone.0236986.g001
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variable across longitudinal studies. In a review by Jorgensen et al. (2018), accrual rates ranged

from 5% to 50% a year [44]. Despite such variability, data suggest an aggressive progression in

the seventh decade of life. Our results provide evidence to suggest that CRF is associated with

reduced WMH load during this critical period of progression.

There are likely to be a number of factors contributing to age-related WMH progression.

Meani et al. (2018) observed the largest increase in pulse wave velocity (PWV), a measure of

carotid stiffness, in the seventh decade [45]. PWV increased 1.8 m/s over an average of 3.7

years in individuals between 61 and 70. A 0.6 m/s, 0.6 m/s, and 1.4 m/s increase was observed

in the fifth, sixth, and eighth decades, respectively. Further, the presence of small vessel disease

neuroimaging markers (i.e., lacunes, WMH, and microbleeds) increases by 1.41 (at least 1

marker), 2.09 (2 markers), and 6.16 (3 markers) from early (60 to 64) to late (65 to 69) portions

of the seventh decade [46]. These findings suggest that critical changes in conduit and small

cerebral vasculature in the seventh decade may accelerate WMH accumulation.

Findings from this study also support the well-documented health and vascular benefits of

regular exercise [47–49]. Aerobic exercise improves CRF by decreasing BP, increasing arterial

compliance and improving endothelial function [50–53]. Superior CRF is associated with

higher cerebral blood flow [37], and superior endothelial function is related to higher WM

microstructure [54]. Lower cerebral blood flow is associated with higher WMH volume [38,

55]. Further, older middle-age adults who are enriched for Alzheimer’s disease risk factors, but

who have high CRF, show lower WMH volume than peers with lower CRF [56]. Collectively,

exercise-induced improvements in vascular health likely augment cerebrovascular function by

improving cerebral circulation. Such evidence provides a potential mechanism to explain exer-

cise-induced gains in cognition [57].

The present study has several caveats that warrant further investigation. First, the cross-sec-

tional nature of our study limits the ability to draw causal conclusions. The age-by-fitness inter-

action observed in the present study serves to justify future longitudinal designs to determine if

late-life improvements in CRF can reduce WMH volume. Second, the absence of a relationship

between BP and WMH volume is likely the result of strict exclusion criteria related to uncon-

trolled hypertension. Further, we did not account for the potential effect of anti-hypertensive

drugs or statins. The average BP of the study sample (125/77 mmHg) approximated new clinical

guidelines for reduced cardiovascular events [58]. However, regular exercise improves CRF and

has a therapeutic effect on hypertension [59–61]. Finally, we recognize that our relatively

healthy sample prevents us from generalizing findings to older adults with cardiovascular health

conditions, compromised respiratory function and other comorbidities.

In conclusion, our results are consistent with a large body of literature pointing to age as a

significant risk factor for WMHs. Our novel finding demonstrates that CRF is associated with

a significant reduction in the effect of age on WMH volume in older adults. This effect may be

the result of previously reported exercise-induced vascular benefits, including improved endo-

thelial function, reduced conduit artery thickness and increased arterial compliance. Further,

the age-by-fitness interaction appears to suggest that WM-associated benefits of exercise

extend well into the seventh decade of life, suggesting that late-life intervention may be benefi-

cial in reducing cerebrovascular injury. Findings also provide additional evidence for the pro-

vascular and neuroprotective nature of exercise. Future intervention studies should examine

the hypothesis that improved CRF leads to WMH stabilization or regression.
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