
Design Strategies for Large Current
Density Hydrogen Evolution Reaction
Lishang Zhang1*, Zhe Shi1, Yanping Lin1, Fali Chong1 and Yunhui Qi2

1School of Physics and New Energy, Xuzhou University of Technology, Xuzhou, China, 2School of Material and Chemical
Engineering, Xuzhou University of Technology, Xuzhou, China

Hydrogen energy is considered one of the cleanest and most promising alternatives
to fossil fuel because the only combustion product is water. The development of
water splitting electrocatalysts with Earth abundance, cost-efficiency, and high
performance for large current density industrial applications is vital for H2

production. However, most of the reported catalysts are usually tested within
relatively small current densities (< 100 mA cm−2), which is far from satisfactory for
industrial applications. In this minireview, we summarize the latest progress of
effective non-noble electrocatalysts for large current density hydrogen evolution
reaction (HER), whose performance is comparable to that of noble metal-based
catalysts. Then the design strategy of intrinsic activities and architecture design are
discussed, including self-supporting electrodes to avoid the detachment of active
materials, the superaerophobicity and superhydrophilicity to release H2 bubble in
time, and the mechanical properties to resist destructive stress. Finally, some views
on the further development of high current density HER electrocatalysts are
proposed, such as scale up of the synthesis process, in situ characterization to
reveal the micro mechanism, and the implementation of catalysts into practical
electrolyzers for the commercial application of as-developed catalysts. This review
aimed to guide HER catalyst design and make large-scale hydrogen production one
step further.

Keywords: electrochemical hydrogen evolution, electrochemical catalyst, hydrogen evolution reaction, intrinsic
activity, architecture design

INTRODUCTION

As the global fossil energy crisis and the greenhouse effect intensify, it is imperative to reduce the use
of fossil fuels and explore alternative clean and sustainable energy sources (Lu et al., 2019; LunaDe
et al., 2019; Wu et al., 2021). Hydrogen energy is considered one of the cleanest and most promising
alternatives to fossil fuel because the only combustion product is water (Dunn, 2002). The blueprint
of the hydrogen economy envisages that hydrogen is produced by water electrolysis through
intermittent electric energy sources such as solar, wind, and tidal energy, which is then
converted into usable electric energy in fuel cells or burned in engines (Chu and Majumdar,
2012; Jiao et al., 2021). However, so far, water catalysis develops slowly in the industry due to the
expensive and unsatisfactory activity of noble metal catalysts (Wen and Guan, 2019). Although a
range of non-noble metal electrocatalysts and catalyst design strategies have been developed, most
have focused mainly on small current densities (<100 mA cm−2) which do not meet the requirements
for commercialization (Jing et al., 2018; Wang et al., 2021a). For large-scale industrial hydrogen
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production, high current density (proton exchange membrane
>1,000 mA cm−2, alkaline electrolytic cell >500 mA cm−2) and
durability (>100 h) are crucial (Luo et al., 2019; Sen et al., 2020).
Therefore, the development of robust hydrogen evolution
catalysts with high current densities and durable catalytic time
for industrial large-scale hydrogen production has greatly
promoted the development of laboratories to commercial
application.

Typically, hydrogen and oxygen are produced from the
decomposition of water by two half-reactions, the cathodic
hydrogen evolution reaction (HER) and the anodic oxygen
evolution reaction (OER) (Tasneem and Abbasi, 2011; Zhu et al.,
2017). Currently, platinum group metal-based catalysts show the
best HER catalytic activity, but their rarity and expensiveness hinder
their large-scale applications, resulting in hydrogen production only
accounting for a small fraction (about 4%) of the total hydrogen
production (Zou and Zhang, 2015). Therefore, it is highly desirable
to develop HER catalysts based on non-noble metals and have an
outstanding activity and durable long-term stability at large current
densities (Christiane et al., 2018; Zhang et al., 2020a). Earth-
abundant transition metal-based nanomaterials are considered
promising electrocatalysts due to their low cost and high catalytic
performance (Xie et al., 2021; Yu et al., 2021). In the past few years, a
large number of promising catalysts have been explored, designed,
and evaluated. However, many previous catalysts are still
unsatisfactory in activity and stability, and require further
research (Yang et al., 2021; Zhang et al., 2021). In addition, there
are few reports on the efficient and stable operation of catalysts at
industrial large current densities (Qian et al., 2021). Furthermore,
some other obstacles, such as the bulk preparation strategies, the
wreck and detach of activematerials during the catalytic process, and
the accumulation and the growth of bubbles on the catalyst surface,
hinder the commercial application (Xu et al., 2021).

Here, we provide HER catalysts with an overview of exciting
recent advances in efficient electrocatalysts with performance
comparable to expensive noble metal-based catalysts. Then
design strategies for the intrinsic activity and architecture
design, including superaerophobicity, superhydrophilicity, and
adaptability, are discussed. Finally, challenges and prospects for
performance-oriented design rules that guide high-strength,
durable HER electrocatalysts/electrodes at large current
densities are presented.

DESIGN STRATEGIES

So far, many high-performance water electrolysis catalysts have been
developed, but most of them are operated at small current densities
(<100mA cm−2), which is far from the industrial requirement (Geng
et al., 2021; Wang et al., 2021b). In addition, most of these catalysts
are in the powder form, and the active center may detach from the
electrode when expelling violent bubbles, requiring frequent
replacement of the catalytic material in actual high current
density industrial production (Zhang et al., 2018; Sun et al.,
2020). Even if supporting materials are developed, few catalysts
have been tested at high current densities. Therefore, the
development of robust catalysts with high current density is

particularly important from the perspective of economic benefits
and applications. Luo et al. (2021) reported a hydroxide-mediated
nickel-based catalyst for high-current density HER. The h-NiMoFe
catalyst is loaded on a piece of Ni foam (NF) by a two-step method,
as shown in Figure 1A, which delivers an impressively good
performance that the current density is 1,000 mA cm−2 at a
relatively low overpotential of 98 mV. According to their detailed
microstructure characterization, the strong interactions between Ni
andMo/Fe could tailor the local electronic structure of Ni, andmake
hydroxide surface richer than other samples. As a result, even at high
current densities, the h-NiMoFe catalyst could stabilize hydroxide on
its surface. Impressively, the h-NiMoFe catalyst could be prepared on
ameter scale, which has the prospect of industrial application. Zhang
et al. (2020b) reported a fluorine-doped cobalt–iron phosphide
supported on an iron foam (IF) catalyst. This F-Co2P/Fe2P/IF
catalyst shows excellent HER activity that the overpotential is
only 260.5, 292.2, and 304.4 mV at large current densities of
1,000, 2000, and 3,000 mA cm−2, respectively. Yu et al. reported a
hierarchically structured 3D electrode fabricated by growing
amorphous, mesoporous NiFe-LDH nanosheet network on a 3D
MXene/NF frame (Yu et al., (2019a). This electrode was directly used
as a binder-free catalyst which delivers a high current density of
500mA cm−2at a low overpotential of 205 mV for hydrogen
evolution.

During large-scale catalytic hydrogen evolution, massive
hydrogen bubbles are rapidly formed at high current densities
(Han et al., 2018). Bubbles accumulate on the contact surface of
the catalyst and the electrolyte, which seriously hinders the mass
transfer of the liquid, slows down the electron transfer, and
reduces the exposed active sites number, resulting in decreased
electrocatalytic activity and stability (Yu et al., 2019b). Thus, the
challenge is separating the formed H2 bubbles to maintain the
catalytic capacity of the electrodes in high current density
industrial hydrogen production (Yang et al., 2019). It has been
reported that “superaerophobic” surface structures can be
assembled by forming array structures, which are essential for
high-current HER since the superaerophobic surface could
release forming bubbles in time (Lu et al., 2015). Since the
accumulated bubbles on the surface could lead to the catalytic
site blocking and the electrolyte diffusion suppression, the
superhydrophilic electrodes are expected to promote the
wettability between the catalyst and the aqueous electrolyte,
and accelerate the separation of bubbles through
superaerophobicity. For superaerophobicity, the three-phase
interface of electrode–electrolyte–bubble is formed, as shown
in Figure 1B (Lu et al., 2015). In large current density HER,
the rapidly generated bubbles usually adhere to the electrode
surface in large quantities and then cluster together to form a gas
film, leading to the decreased active sites and hindering the
diffusion from the electrolyte to the catalyst surface. It is
indispensably needed to release the gaseous products from the
electrode surface in time before bubble accumulation. Therefore,
making the surface dislike the gaseous products beneficial for the
bubble release, the catalyst surface engineering is thus of great
prospective to solve this problem. Theoretically, the release
diameter of the bubbles depends on the adhesion force of the
catalyst film, and the adhesion force originates from the three-
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phase (solid, liquid, and gas) contact line (TPCL). As displayed in
the left part of Figure 1C, the TPCL is a continuous circle when
the electrode is flat. Constructing nanostructured electrodes
provides a rougher surface, which significantly reduces the
surface solid fraction and thus cuts the TPCL into
discontinuous points (Figure 1C, right). Given that each point
of the TPCL has the same adhesion force to bubbles of the same
material, the broken TPCL shows a smaller cumulative adhesion
force relative to the continuous TPCL. Therefore, the surface
roughness is a key factor that influences the TPCL and adhesion
force. Note that due to the interfacial energy balance,
superhydrophilic surfaces are often superaerophobic; therefore,

both design principles are often used simultaneously (Xu et al.,
2021; GeorgeEaso et al., 2017). Superhydrophilic materials are
textured and/or structured materials (rough and/or porous) with
a surface roughness coefficient greater than 1, on which water
(liquid) diffuses completely, as shown in Figure 1F, (Drelich and
Chibowski, 2010). Roughness enhances the diffusion of the liquid
and capillary forces control the wicking of the liquid into the
textured material structure. Therefore, a common practical way
to fabricate super wet surfaces is by manipulating the surface
texture. For example, compared to nanosheets, vertically aligned
nanoarrays (Figure 1D–Figure 1E (Lu et al., 2015)) can generate
efficient gas escape, especially in high current densities; the three-

FIGURE 1 | (A) Synthesis of the h-NiMoFe catalyst and wettability characterization on different samples, reproduced with permission from Luo et al. (2021). (B)
Force analysis of a single bubble on the catalyst film; (C) triple-phase contact lines (TPCLs) on different electrode states: flat (left) and nanostructured (right) (D,E)
schematic illustration of the adhesion behavior of bubbles on different electrode states: flat film (left) and nanostructured film (right), reproduced with permission from Lu
et al. (2015). (F)Minimum values of the roughness coefficient necessary to facilitate complete diffusion of the liquid on the surface, reproduced with permission from
Drelich and Chibowski (2010). (G) Schematic diagram of the evolutionary behavior of bubbles formed on CoS2 films with different surface structures, reproduced with
permission from Faber et al. (2014). (H) Schematic illustration of bubble and catalysts contact, reproduced with permission from Xie et al. (2021).
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phase (solid, liquid, and gas) contact line between the bubble and
the electrode surface is in a discontinuous state, resulting in a
particularly low contact area and low adhesion, similar to the
microstructure of the bubble on the surface of a lotus leaf (Faber
et al., 2014). For instance, Zhao and coworkers prepared a WS2
moiré superlattices electrocatalyst with both superhydrophilicity
and superaerophobicity, which makes the big bubble split into
small ones more naturally, maintains rapid and stable contact
between the electrodes and electrolyte and deterring the
formation of inactive sites (Figure 1H) (Xie et al., 2021). Wen
and coworkers prepared a hierarchical amorphous CoMoSx
electrocatalyst with both superhydrophilicity and
superaerophobicity (Shan et al., 2020), which requires low
overpotentials of 269 mV at 500 mA cm−2 for HER. The
superhydrophilicity favors the entry of the electrolyte, and the
superaerophobicity could facilitate the rapid departure of bubbles
which accelerates mass transfer, especially at high current
densities. Yin and coworkers obtained a nanovilli Ni2P
electrode with superaerophobic and superhydropholic surfaces
Yin et al. (2021). They found that these two characteristics can

significantly facilitate mass and electron transfer, and the
performance of the nanovilli Ni2P electrode is superior to that
of the smooth Ni2P nanosheet array electrode, which is in
accordance with the aforementioned theory (Figure 1F). Thus,
the surface architecture design is an efficient way to not only
enhance the superaerophobicity and superhydrophility, which
are beneficial for the H2 release, but also increase the surface area
which is conducive to the exposure of active sites and accelerate
the mass transfer process of the electrolyte.

In electrocatalytic processes, especially at high current densities,
the tension and vibrational forces generated during bubble escape
and collapse are widely regarded as important factors for poor
stability (Zou et al., 2017). Therefore, high-current HER catalysts
also require appropriate mechanical properties. From a machinery
mechanics point of view, the gap-rich nanotubes interweave with
stacked and interleaved nanosheets to form “springs” that can absorb
vibrational wave energy, release rebound energy, and resist
destructive stress from the surrounding environment (Bertolazzi
et al., 2011; Liu et al., 2014). Zhang and coworkers reported a high-
current HER catalyst 2D CoOOH sheet encapsulated Ni2P into

FIGURE 2 | (A) In situ bending deformation and restoration measurement by SEM probe, reproduced with permission from Zhang et al. (2020c). (B) Optimized
structure of P-β-NiMoO4-(110). (C) Active electric states in different phases of NiMoO4. (D) Charge density differences of H2O adsorbed on Ni sites in P-β-NiMoO4. (E)
Hydrogen adsorption free energy (ΔGH*) in different exposed atoms in P-β-NiMoO4, reproduced with permission from Wang et al. (2021c). (F) H2O adsorption sites on
GDY/MoO3 and H2O adsorption on pristine MoO3 and GDY/MoO3, reproduced with permission from Yao et al. (2021b).
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tubular arrays Zhang et al. (2020c). They used in situ bending
deformation and restoration measurement to detect the effect of
mechanical toughness on the performance of high-current HER
catalyst. The authors applied repeated bend-restoration tests to
investigate the mechanical property. As shown in Figure 2A, a
single nanotube of the Ni2P–CoOOH arrays was pushed by an SEM
probe. As depicted, the maximum bending angle of a single nanorod
is up to 27.7°. The nanotube can then restore to its original state,
indicating its excellent mechanical stability. It was revealed that the
high mechanical toughness of HER electrode material can buffer the
electrolyte concentration polarization, accelerate hydrogen bubble
rupture, and insure the long-term stability.

In a review article, it was noted thatmany of the reported catalysts
improve their catalytic performance by increasing the mass loading
or surface area of the catalyst and that the lack of an intrinsic catalytic
activity center is a major barrier to the design and preparation of
good catalysts (Jakob and Chorkendorff, 2019). High intrinsic
activity is a prerequisite for high-current HER catalysts, which
requires structural design at the atomic scale to tune the local
electronic structure (Yu et al., 2021). To enhance the intrinsic
activity, various strategies have been explored, such as phase
engineering (Tran et al., 2016; Yao et al., 2021a), crystal facet
engineering (Xi et al., 2021; Song et al., 2021), defect engineering
(Ye et al., 2016; Yin et al., 2016), and polymetallic engineering
(Li et al., 2021; Kumar et al., 2021). Wang and coworkers reported
a strategy for achieving phosphate substitution and subsequent
stabilization of the crystalline phase of metastable β-NiMoO4

(Figure 2B) Wang et al. (2021c). According to their study,
compared to the α-NiMoO4 system, P-β-NiMoO4 contains
optimized electronic states originating from Ni atoms near the
Fermi level, which favors charge transfer from the active Ni to
the surrounding atoms. In the β-NiMoO4 system, the promotion of
the Ni-3d state after phosphate substitution favors the generation of
the active electronic state. As a result, the adsorbed protons can
readily accept electrons to produce hydrogen atoms, thus
accelerating the whole HER process on P-β-NiMoO4. Phosphate
substitution is proven to be imperative for stabilizing and activating
β-NiMoO4, which can effectively generate the active electronic state
and promote the intrinsic HER activity. In addition, simple
perovskites have proven their HER ability during the past years
with inferior activity to commercial Pt/C (Xu et al., 2016). Recently,
Liu and coworkers used PrBa0.94Co2O5+δ (PB0.94C) as a precursor for
fabricating PB0.94C-based double/simple perovskite heterostructure
(PB0.94C-DSPH) for HER Liu et al. (2021). Their research excludes
the dominant effect of intrinsic activity for the simple perovskite
phase on an outstanding performance of PB0.94C-DSPH. What is
more, they prepared the catalyst by milling and calcination, which is
promising for large-scale production. Another strategy is the
discovery/design of new active sites with higher intrinsic activity
(Nitish et al., 2022). Recently, Yao and coworkers reported an
original 3D self-supporting graphdiyne/molybdenum oxide
(GDY/MoO3) material. They introduced new intrinsic catalytic
active sites (non-oxygen vacancy sites) by “sp C−O−Mo
hybridization” on the interface (Figure 2F) Yao et al. (2021b).
The GDY/MoO3 electrode displays excellent HER activity at high
current densities, as the interfacial “sp C−O−Mo hybridization”
facilitates electron transfer from GDY to MoO3, further leading

to more efficient electron injection during HER (25-fold higher
than MoO3) and decreasing the formation energy of oxygen
vacancies.

CONCLUSION AND OUTLOOK

The development of HER electrocatalysts with Earth abundance,
cost-efficiency, and high performance for large current density
industrial applications is of vital importance for H2 production.
However, most of the reported catalysts focused mainly on small
current densities (< 100 mA cm−2) which do not meet the
requirements for commercialization. In this review, we
recapitulated the exciting recent advances of effective
electrocatalysts for HER whose performance is comparable to
costly noble metal-based catalysts. Then design strategies with
respect to the intrinsic activity and the architecture design are
discussed. Although there aremany large-current catalysts that have
been developed, many challenges are still urgent to be overcome. 1)
First, facile and scalable synthesis routes are urgently needed for the
requirement of industry scale application of HER catalysts to bemet
(Zhang et al., 2020d; Qian et al., 2020). Among previously reported
catalysts, NiMo-based electrodes have been demonstrated as the
most active HER catalysts. As mentioned in this minireview, the
h-NiMoFe catalyst shows excellent activity with a meter level
synthesis, having the prospect of industrial application. The P-β-
NiMoO4 shows superior performance than commercial Pt/C at
large current densities as well. NiMo-based catalysts are often
prepared by mild conditions, hydrothermal methods usually,
making them promising for large-scale applications to meet the
industrial dements. 2) Second, the phase characterization of
catalysts is usually operated at their stable final states; in situ
monitoring the phase information in the catalytic process is very
important to reveal the micro mechanism of catalytic reaction (Jia
et al., 2015). The mechanism of HER remains unclear and even
controversial (Huang et al., 2021). In alkaline electrolytes, it is still
under debate whether hydrogen binding energy acts as the only
activity descriptor and whether other factors are the rate-
determining steps (Zhang et al., 2019; Huang et al., 2021). Since
the ex situ characterization could only detect the original state and
final state after catalysis, the inside change cannot be observed.
Therefore, the application of in situ and operational
characterization under a real electrochemical process is very
important to provide experimental evidence to determine key
intermediates, and thus reveal the real phase-evolve process and
the reaction mechanism. 3) Third, there is still a gap between
academia and industry. In the actual efficiency first industrial testing
process, test environment would be different: higher temperature,
pressure, and electrolyte concentration. Therefore, the vital step is
the implementation of catalysts into practical electrolyzers for the
commercial application of as-developed catalysts. 4) Last, the
stability is one of the most important parameters to evaluate the
electrocatalysts for industrial applications. In acid electrolytes, non-
noble metal-based catalysts usually show inferior stabilities since
they are easily reacting with H+ in acid conditions. Therefore, no
metal-based catalysts may become a promising candidate when
applied at high current densities.
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