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Abstract: Genetic variations in dengue virus (DENV) play a distinct role in epidemic emergence.
The DENV 3′ UTR has become a recent interest in research. The objective of the study was to
examine the genetic variation in the domain II, 3′ UTR region of human and mosquito-derived DENV.
DENV-infected human sera were orally infected to laboratory reared Aedes aegypti mosquitoes. The
domain II, 3′ UTR of each human- and mosquito-derived sample was amplified. The nucleotide
sequence variation, phylogenetic and secondary structure analysis was carried out incorporating
respective regions of so far recorded Sri Lankan and the reference genotype strains of the DENV3
and DENV1 serotypes. The human- and mosquito-derived domain II, 3′ UTR were identical in
nucleotide sequences within the serotypes isolated, indicating the conserved nature of the region
during host switch. The sequence analysis revealed distinct variations in study isolates compared to
so far recorded Sri Lankan isolates. However, despite single nucleotide variations, the maintenance
of structural integrity was evident in related strains within the serotypes in the secondary structure
analysis. The phylogenetic analysis revealed distinct clade segregation of the study sequences from
so far reported Sri Lankan isolates and illustrated the phylogenetic relations of the study sequences
to the available global isolates of respective serotypes.

Keywords: dengue virus; domain II; 3′ untranslated region; genetic variations; Sri Lanka

1. Introduction

Dengue, the most common vector-borne viral disease of humans, has been distributed
throughout the tropics and is now invading the subtropical regions of the world, causing
frequent and recurrent epidemics [1–3]. Although, most of these epidemics are known to
be caused by fluctuations of the prevalence of DENV serotypes in a background of low
herd serotype specific immunity, genetic variations in DENV appear to play a distinct role
in epidemic emergence [4]. The factors that lead to DENV genetic variability and viral
replacements in nature are not well understood. However, a complex network of host–virus
interactions, together with environmental factors, may account for the transmission of
certain viral variants over others [5].

Genetic variations between serotypes, genotypes and lineages are important determi-
nants for differential viral fitness, virulence and epidemic potential [6,7]. Global genotype
replacement events have been observed in different regions [8–11] including Sri Lanka,
coinciding with severe dengue prevalence [12–15]. Sri Lanka experienced a major epidemic
in 2017 (186,101 cases) in the recent past, a significant reduction of dengue cases was
observed in 2018 (51,659 cases), while a two-fold increase in dengue cases was observed
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by the end of 2019 (105,049 cases) [16] suggesting a possible strain/genotype shift or a
genotype/clade replacement event.

DENV genotype classification has been continuously changed, depending on the
area of concern in the genome. Different areas of the DENV genome evolve at different
rates and sometimes exhibit areas of higher mutation rates within a region, as evident in
the E gene or 3′ UTR [17]. So far, genotype classification within each serotype is carried
out mainly based on the E gene sequences. Interestingly, the nucleotide composition in
the 3′ UTRs is known to differentiate dominant strains from weaker DENV strains, as
observed in many dengue endemic countries [14,18,19]. However, the 3′ UTR has been yet
less utilized in sequence characterization and phylogenetic assessments [14,17] while the
structural consequences and impact of the nucleotide variations on viral fitness have yet to
be experimentally defined [20].

DENV 3′ UTR is made of stem loops (SLs), two dumbbell (DB) structures and con-
served sequences (CSs) and repeat conserved sequences (RCSs). The length of the 3′ UTR
varies depending on the serotype/strain of the virus, but it is mainly divided into three
domains. Domain I is situated immediately downstream the stop codon, consisting of a
region with a variable nucleotide sequences and two SL structures, domain II is moderately
conserved with two DB structures incorporating conserved regions; repeated conserved
sequence2 (RCS2) and conserved sequence2 (CS2) regions and domain III is highly con-
served with one SL structure [21]. The biological significance of maintaining two almost
identical RNA structures in the 3′ UTR of flaviviruses is not yet fully resolved. Redundant
functions such as replication enhancers have been proposed for the domain II 3′ UTR which
composes two DB elements [22,23]. Further, DB structures are proposed as complex RNA
elements that accommodate multiple signals that modulate viral process [24]. However,
predictions of the distinct folding intermediates of DB1 and DB2 have suggested possible
distinct functions [23].

A fascinating feature of the 3′ UTR of flavivirus genomes is the evolutionary con-
servation of sequence repeats and duplicated RNA structures [25]. The 3′ UTR of DENV
contains two almost identical SL structures (SLI and SLII) and two similar DB elements
(DB1 and DB2). These two pairs of duplicated RNA elements acquire stable secondary
structures, which can stall the genome degradation [26] during the process of generating
subgenomic flavivirus RNA (sfRNA). Depending on which secondary structure the degra-
dation stalls at, four different species of sfRNA (sfRNA1-4) have been identified [5]. The
sfRNA help the virus evade the host immune response [21] leading to epidemiological
fitness [27]. Evidence prevails for lineage replacement events that has correlated with
sfRNA production-related virulence [28,29]. The domain II and domain III regions are
the mostly represented regions in the sfRNAs. With the domain III region being highly
conserved, the domain II region, with considerable variability, is worth investigating for
the genetic variations in order to have an insight of the DENV circulation.

A major source of DENV genetic diversity is the natural alternation among vertebrate
and invertebrate hosts, which imposes different selective pressures on the viral popula-
tion [5,30,31]. The source of the selective pressure and the mechanisms that explain the
positive and negative selection of viral variants during host adaptation is still largely
unknown. It has been revealed that sequence variations in the 3′ UTR, acquired during
host adaptation, are associated with the generation of sfRNAs [32].

The most recent findings on RNA structure duplications are reported by de Borba
et al. [24], which imply that each of the duplicated DB structures in the DENV3′ UTR is un-
der different selective pressure in adult mosquitoes. It was proposed that the maintenance
of double copies of RNA structures is a viral strategy to ensure the functionality of one
conserved element while the other is under a different selective pressure within the two
hosts [24]. These observations have raised concerns regarding the mechanisms by which
the viral RNA structures act in mosquitoes and humans, and the implications of the genetic
variations of the 3′ UTR in host adaptation, transmission, and pathogenesis.



Viruses 2021, 13, 421 3 of 21

To expand the scientific knowledge in this area of interest, the study examined the
genetic variation of the domain II, 3′ UTR of the DENV sequences derived from dengue-
confirmed patient serum and the respective laboratory-infected Aedes aegypti mosquito
vectors and analyzed the genetic variations with the corresponding regions of the so far
reported Sri Lankan strains and the reference global genotypes for respective serotypes.

2. Materials and Methods
2.1. Ethical Approval

The study was approved by the Ethics Review Committee, Faculty of Medicine,
University of Sri Jayewardenepura, Sri Lanka on 24 June 2014 (Application number 785/13).
All patients were provided with detailed information about the study and written consent
was obtained before the patient was recruited for the study.

2.2. Sample Collection

From the dengue-confirmed patients admitted to the Centre for Clinical Management
of Dengue and Dengue Hemorrhagic Fever (CCMDDHF), Negombo, Sri Lanka, in January
2019, six patients within the first 5 days of onset of fever were selected. One drop of
whole blood from each patient was used for a rapid immunochromatographic test (ICT)
to confirm the viremic state. The presence of the dengue NS1 antigen was determined
using NS1Ag strips (Standard Diagnostics, Korea) according to the manufacturer’s rec-
ommendations. The test results were confirmed by experienced healthcare professionals
attached to CCMDDHF. The patients who produced positive dengue NS1Ag results were
proceeded (n = 5).

Blood was collected (3 mL) via venipuncture by a phlebotomist. The blood (1 mL) was
separated and mixed with an anticoagulant (Sodium citrate 3.8%) for mosquito inoculation
experiments. Serum was separated from the remaining whole blood by centrifugation
(Centurion Scientific C2 centrifuge, Chichester, UK), labelled and preserved at −60 ◦C for
molecular diagnosis.

2.3. Laboratory Rearing of Ae. aegypti Mosquitoes

Mosquito rearing procedures were followed according to standard protocols [33,34].
The colony was maintained at the insectary, Department of Zoology, Faculty of Applied
Sciences, University of Sri Jayewardenepura, Sri Lanka. F1–F5 progenies were obtained
accordingly and progenies after F5 were used for experiments to reduce the chance of any
possible transovarian transmission of DENV. The subsamples of P, F1 and F2 progenies were
tested for the DENV infection using NS1Ag strips as specified above and the un-infectivity
was confirmed and maintained throughout the experiment.

2.4. Mosquito Inoculation: Oral Infection of Laboratory-Infected Mosquitoes

Laboratory-reared, five day old female Ae. aegypti mosquitoes were selected for the
study. Mosquitoes were starved for 24 h overnight [35] prior to the experiment. Antico-
agulated whole blood (1 mL) from each dengue NS1-positive patient (D1H_2019SL-D5H
2019SL) was orally fed to thirty Ae. aegypti mosquitoes within 10 min of blood drawing [36]
via a membrane feeding apparatus [34,37]. Mosquitoes were blood fed for 25 min [38]. The
mosquitoes for negative control were fed with a non-infectious blood meal using the same
procedure and the apparatus. Immediately after the feeding trials, mosquitoes were cold
anesthetized and only engorged females were transferred to a separate cage for extrinsic
incubation of the DENV. They were maintained in sealed containers with double barriers in
the insectary (28 ◦C, 70–80% relative humidity) during the extrinsic incubation period (EIP)
of 14 days. The mosquitoes who survived the complete incubation of 14 days were (12,
10, 11, and 9 mosquitoes, respectively, from D1H_2019SL-D5H_2019SL infectious blood
fed cages) euthanized by freezing and stored individually in TRIzole reagent (Invitrogen
Corp., Carlsbad, CA, USA) at −80 ◦C for further analysis.
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2.5. Molecular Diagnosis of Human Serum and Mosquito Samples

The viral RNA was extracted from serum samples using a QIAmp Viral RNA Mini kit
(Qiagen, Valencia, CA, USA) following the manufacturer’s recommendations. The extracted
RNA was stored in −80 ◦C until reverse transcriptase polymerase chain reaction (RT-PCR).

Each individual mosquito stored in −80 ◦C was homogenized in triazole reagent on
an ice platform and total RNA was extracted from 200 µL of each specimen by using the
TRIzole reagent (Invitrogen Corp., Carlsbad, CA, USA), according to the manufacturer’s
recommendations. The extracted RNA was stored in −80 ◦C until RT-PCR.

All RT-PCR reactions were performed in a Master Cycler personnel(Eppendorf, Ham-
burg, Germany).A single step RT-PCR system (Qiagen one step RT-PCR kit, Hilden, Ger-
many) was used to amplify the domain II, 3′ UTR region of the DENV genome in a total
volume of 25 µL according to the manufacturer’s recommendations using two forward
primers (ALD-1 and ALD-1b) and a reverse primer (ALD-2) [39]. The RT-PCR reaction
mixture (25 µL) contained 2 µg of extracted RNA and 20 µL of RT-PCR master mix. The
thermal cycling conditions were: reverse transcription at 50 ◦C for 30 min, initial PCR
activation at 95 ◦C for 10 min, followed by 35 cycles of 94 ◦C for 30 s, 55 ◦C for 1 min and
72 ◦C for 30 s, followed by a final extension at 72 ◦C for 10 min.

The PCR amplified fragments were subjected to gel electrophoresis (Electrophoresis
apparatus (Labnet International Inc. USA) in Ethidium bromide stained 1.5% agarose
(Promega, Madison, WI, USA) gels. The DNA bands were visualized and imaged under
ultraviolet (UV) transillumination using a gel documentation system (AlphaImager MINI,
France). The positive PCR products were sent to Macrogen Inc. Korea for sequencing.

2.6. Nucleotide Sequence Analysis

The forward and reverse sequences were assembled and consensus contig assembly
was performed using a DNA baser sequence assembler V.4 (2013) (Heracle BioSoft, www.
DnaBaser.com accessed on 7 July 2019). The contig sequences were edited using Bio Edit
sequence alignment editor [40] and Mega X software [41].

The assembled sequences were subjected to BLAST (Basic Local Alignment Search
Tool) on the NCBI database, to carry out the sequence similarity search. Sequence homology
was used to identify the respective DENV serotype.

Sequences identified in the study with the respective DENV3 and DENV1 reference
genotype sequences [17,42–44] and the respective regions of the DENV3 and DENV1
serotypes recorded from Sri Lanka [13,14,45,46] (Tables S1 and S2) were aligned using
CLUSTALW program (Bioinformatics Center, Institute for Chemical Research, Kyoto Uni-
versity, Uji, Kyoto 611-0011, Japan) and visually inspected to ensure correct alignment.
Sequences were further aligned with the respective prototypes for each serotype [47]
(M93130 for DENV3 and EU848545 for DENV1) using the ClustalW program in MEGA X
software [41]. Nucleotide sequence variations were identified with respect to the prototype
reference sequence for each serotype. The single-nucleotide variation (SNV) frequency with
regard to the genome position of each data set was analyzed using Microsoft Excel (2016).

A sequence similarity search was carried out using BLAST on the NCBI database for
the respective domain II, 3′ UTR sequences, in order to identify the homologues sequences
to the sequences isolated in the study.

2.7. Phylogenetic Analysis

DENV 3′ UTR, domain II region sequences identified in the study, the DENV3 and
DENV1 serotypes so far recorded from Sri Lanka (isolates which contained the sequences
for respective domain II, 3′ UTR sequences) [13,14,45,46] and reference strains for DENV3
genotypes (isolates which contained the sequences for the respective domain II, 3′ UTR
sequences) (Table S1) and reference strains for DENV1 genotypes (isolates which contained
the sequences for respective domain II, 3′ UTR sequences) (Table S2) [17,42–44] available
in GenBank were used for the phylogenetic analysis. Moreover, DENV2 reference strains
(AF038403, KM204118) and DENV4 reference strains (AY947539, KR011349) [47] were used

www.DnaBaser.com
www.DnaBaser.com
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as outgroups. Furthermore, to examine the relationship between the so far reported global
strains, respective DENV3 and DENV1 sequences identified in the study were analyzed
with the so far reported Sri Lankan isolates and the homologues DENV3 (Table S3) and
DENV1 (Table S4) isolates resulted from the sequence similarity search.

The aligned sequences were analyzed in the model test program partition finder [48]
to identify the best fit model of nucleotide substitution for phylogenetic reconstruction; in
all the analyses, the general time reversible model of nucleotide substitution with gamma-
distribution rates among invariant sites (termed as the GTR+G model) was found to be the
best fit model.

Bayesian phylogenetic analysis was carried out employing Bayesian Markov Chain
Monte Carlo method of Mr. Bayes version 4.1.2 [49]. Posterior probabilities (PP) of phylo-
genetic trees were estimated using 6 million generations (sampled every 1000 generations)
and two Metropolis-coupled Markov chain Monte Carlo (MCMC) to allow adequate time
and mixing for convergence. The first 25% of sampled trees were considered as burn in.
The consensus tree was visualized using Figtree v.1.3.2.

2.8. Secondary Structure Analysis

For RNA structure analysis, the domain II region of the 3′ UTR of the study-identified
sequences, corresponding regions of the DENV3 and DENV1 isolates representative of
different genotypes, along with the corresponding regions of the so far reported DENV1
and DENV3 Sri Lankan isolates were used.

The consensus structures for the prediction for RNA alignments of DENV3 and
DENV1 study-identified sequences were performed by RNAalifold program implemented
by Vienna RNA package [50], accessed through the Jalview desktop graphical user interface
(GUI) (version 2) [51] to understand the biological significance of DB structure duplication.

The prediction of secondary structures of the DB1 and DB2 of the 3′ UTR domain II
region was performed using the webservers MFold [52] and RNAfold [53]. They were used
with default folding parameters and folding predictions at 37 ◦C.

3. Results
3.1. Results of RT-PCR and Sequence-Based Serotype Analysis of the Human-Derived and
Mosquito-Derived DENV Samples to Examine the Domain II, 3′ UTR

The five serum samples that were positive for NS1 were subjected to RT-PCR (Figure
S3) and the nucleotide sequences of the amplified products were analyzed with the 3′ UTR
sequences in the NCBI database. Based on the similarity BLAST search, the sequences
revealed that the five serum samples belonged to DENV3 and DENV1 serotypes (Table 1).
Moreover, the amplified 3′ UTR regions of each DENV1 (D1H_2019SL and D3H_2019SL)
and DENV3 (D4H_2019SL and D5H_2019SL) were 100% identical. Table S5 shows the
GenBank accession numbers obtained for the study isolates of human-derived samples.

Table 1. The RT-PCR and sequence-based serotype results for human- and mosquito-derived samples. DENV: dengue virus.

RT-PCR Results on
Human Serum (n = 5)

DENV Serotype According
to Sequence Analysis

Human-Derived
DENV Samples

RT-PCR Results on
Mosquito Tissues

Mosquito-Derived
DENV Samples

+ DENV 1 D1H_2019SL +(5/12) D1M1_2019SL-D1M5-2019SL

+ DENV 1 D3H_2019SL +(6/10) D3M1_2019SL-D3M6_2019SL

+ DENV 3 D4H_2019SL +(7/11) D4M1_2019SL-D4M7_2019SL

+ DENV 3 D5H_2019SL +(4/9) D5M1_2019SL-D5M4_2019SL

+ DENV 3 D6H_2019SL - -

The oral mosquito feeding experiment revealed successful mosquito infections in
four out of five (4/5) infectious blood samples, according to the results of the RT-PCR
in mosquito tissues (Table 1, Figure S4). The DENV nucleotide sequence obtained for
each infected individual mosquito was identical to that of the respective human host
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(as in mosquito-derived DENV3 sequences to human-derived DENV3 sequences and
mosquito-derived DENV1 sequences to human-derived DENV1 sequences). Consequently,
the mosquito-derived DENV3 sequences (D4M1_2019SL-D4M7_2019SL and D5M1_2019SL-
D5M4_2019SL) and DENV1 sequences (D1M1_2019SL-D1M5_2019SL and D3M1_2019SL-
D3M6_2019SL) were revealed to be belonging to the respective DENV serotypes 3 and
1 (percentage identity 100%) (Table 1). Table S5 shows the GenBank accession numbers
obtained for study-identified mosquito-derived samples.

3.2. Sequence Analysis for Nucleotide Variation

The sequence analysis of the domain II, 3′ UTR of DENV3 samples identified from
the study revealed sequence variations compared to that of the so far reported Sri Lankan
isolates (Figure S1 and Figure 1). Distinct SNV was observed with respect to each DENV3
genotype studied. In DENV3 genotypes except for genotype V (genotype I–IV), the
mutations T10477C and T10568G were observed in the RCS2 and CS2 regions, respec-
tively (Figure S1).
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Figure 1. Summary of the single-nucleotide variation (SNV) in DENV3 domain II, 3′ UTR region. A
DENV3 sequence identified in the study, DENV3 isolates of Sri Lanka and DENV3 genotypes I–V.
SNVs are mapped according to the DENV3 reference strain (GenBank accession number M93130).
The DB1 region is highlighted in blue and the DB2 region is highlighted in green.

Similarly, sequence variations were observed in domain II, 3′ UTR of DENV1 se-
quences identified from the study compared to that of the so far reported Sri Lankan
DENV1 isolates (Figure S2 and Figure 2). Distinct SNV was observed with respect to each
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genotype of DENV1 studied. No mutations were observed in the RCS2 region (except for
two isolates; one in DENV1 genotype IV and one in DENV1 genotype V) and in the CS2
region (except for one DENV1 genotype V isolate) (Figure S2).
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Figure 2. Summary of the SNV in DENV1 domain II, 3′ UTR region. A DENV1 sequence identified
in the study, DENV1 isolates of Sri Lanka and DENV1 genotypes I–V. SNVs are mapped according to
the DENV1 reference strain (GenBank accession number EU8485). The DB1 region is highlighted in
blue and the DB2 region is highlighted in green.
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Six mutations were observed among the DENV3 isolates used in the study (G10,412A,
G10,425A, C10,444T, G10,462A, T10.462A, T10,477C, T10,568C). Mutations, G10,412A (in
the spacer region), G10,425A and G10,462A (in the DB1 region) were not shared by other
reported Sri Lankan isolates (Figure 1).

Three mutations were observed in the DENV1 sequences used in the study (C10,467T,
A10,538G, C10,540T). Mutation C10,467T, which was positioned in the DB1 region, was
found commonly shared among all the genotypes as well as among the other Sri Lankan
isolates except in HQ891314. Interestingly, A10,538G and C10,540T mutations in the spacer
region following the DB1 were shared only with HQ891314 among the other Sri Lankan
isolates (Figure 2).

Distinct patterns of SNV were observed among the genotypes within each serotype.
Mutations observed in the RCS2 region were contained in the DB1 region while mutations
in the CS2 region contained in the DB2 region. According to the SNV frequency illustrated
in Figure 3, it was shown that not only the SNV in DB regions but also the SNV in spacer
regions were frequent among the isolates.

1 
 

 
Figure 3. SNV frequency in 3′ UTR domain II of DENV3 and DENV1 isolates. SNV frequency
in 3′ UTR domain II of (A) DENV3 sequences (DENV3 sequences identified in the study, DENV3
Sri Lankan isolates, DENV3 genotype I isolates, DENV3 genotype II isolates, DENV3 genotype III
isolates and DENV3 genotype V isolates, (B) DENV1 sequences (DENV1 sequences identified in the
study, DENV1 Sri Lankan isolates, DENV1 genotype I isolates, DENV1 genotype III isolates, DENV1
genotype IV isolates and DENV1 genotype V isolates. The DB1 region is highlighted in blue and the
DB2 region is highlighted in green.

3.3. Phylogenetic Analysis

The phylogenetic analysis with the Bayesian tree revealed clustering of all the domain
II, 3′ UTR DENV3 isolates and DENV1 isolates into two separate basal clades (Figure 4
and Figure S5). Within the DENV3 basal clade, the study-identified DENV3 sequences
(only one human-derived and one mosquito-derived isolate are represented) segregated
into a distinct clade (posterior probability (PP) 0.99 and distinct mean branch length
0.0043). Furthermore, considering the so far isolated DENV3 Sri Lankan isolates, a distinct
segregation of the Sri Lankan isolates, AY585848 and FJ88273 (both isolated in 1993) was
evident by a separate clade (PP 0.94 and distinct mean branch length of 0.0039). A similar
deviation of the Sri Lankan isolate GQ252674 (isolated in 1997) was also observed (distinct
mean branch length 0.0037).
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Figure 4. Calibrated maximum-clade-credibility tree for DENV3 and DENV1. DENV3 and DENV1
study-identified sequences, so far reported Sri Lankan isolates and reference genotype strains, based
on domain II, 3′ UTR. The general time reversible (GTR) model was used for a 154 base-pair dataset of
the 3′ UTR fragment. The numbers above each branch represent posterior probability (PP) obtained
in the Bayesian Index (1.00). DENV2 (AF038403, KM204118) and DENV4 (AY947539, KR011349)
reference strains were used as outgroups. Branches in pink represents DENV3 sequences and DENV3
study-identified sequences are highlighted in pink. Branches in blue represents DENV1 sequences
and DENV1 study-identified sequences are highlighted in blue.
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The phylogenetic analysis revealed the segregation of study-identified DENV1 (only
one human-derived and one mosquito-derived isolate are represented) sequences of do-
main II, 3′ UTR with DENV1 genotype V strains (JN903581, JQ922548 isolated from 2009–
2011 in India, AY732474, AY732474, AY62084 isolated before 1993 in Thailand, Singapore),
IV (U88535 year of isolation unknown) and Sri Lankan isolate HQ891314 (isolated in 2009)
(PP 0.87) and then further clustering into a distinct clade (PP 0.95 and branch length 0.0034)
(Figure 4 and Figure S3).

The clustering of all the other Sri Lankan isolates (from 2009–2014) with DENV1
genotype I and genotype V isolates with Asian origin (isolated from 1990–2010 from
Thailand, Bangladesh, China) was also observed (PP 0.63). However, no clear clustering of
genotypes I–V was observed among the domain II, 3′ UTR-based classification.

The DENV3 3′ UTR domain II region from this study found homology with a set
of sequences shown in Table S3 (Query cover-100%, E value 2 × 10−91, percentage iden-
tity 99.47%) which resulted from the BLAST, which were isolated from Latin American
countries including Brazil, Nicaragua, Venezuela and Paraguay. The phylogenetic analysis
using the Bayesian tree (Figure 5) revealed that all so far reported Sri Lankan DENV3
isolates and study-identified DENV3 sequences clustered in the same basal cluster with
the Latin American DENV3 sequences resulted from the BLAST.Viruses 2021, 13, x FOR PEER REVIEW 13 of 27 
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Figure 5. Calibrated maximum-clade-credibility tree for DENV3. DENV3 study-identified sequences,
Sri Lankan isolates and similar sequences revealed from BLAST, based on 3′ UTR domain II fragment.
The GTR model was used for a 45 base-pair dataset of the 3′ UTR fragment. The numbers above each
branch represent the PP obtained in the Bayesian Index (1.00). DENV2 reference strains (AF038403,
KM204118) were used as outgroups. DENV3 study-identified sequences are highlighted in pink.

The DENV1 3′ UTR domain II region from this study found homology with a set of
sequences shown in Table S4 (Query cover-100%, E value 5 × 10−93, percentage identity
99.48%) as per the BLAST result. These strains had an Asian origin and were identical
in the selected nucleotide region. However, the phylogenetic analysis with the similar
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sequences and Sri Lankan isolates revealed (Figure 6) that, the 2019 DENV1 sequences
identified in the study were more related to the 2009 Sri Lankan isolate HQ891314, than the
Sri Lankan isolates recorded earlier. Furthermore, the 2019 DENV1 sequence was more
related to the other homologues Asian isolates than the Sri Lankan isolates.
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The GTR model was used for a 59 base-pair dataset of the 3′ UTR fragment. The numbers above each
branch represent the PP obtained in the Bayesian Index (1.00). DENV2 reference strains (AF038403,
KM204118) were used as outgroups. DENV1 study-identified sequences are highlighted in blue.

3.4. Secondary Structure Analysis

DENV3 sequences derived in the study revealed mutations on both DB1 and DB2
structures respective to the DENV3 reference sequence (Figure 1, Table S6). According to
the Mfold- and RNAfold-predicted secondary structures, both the reference- and study-
identified DENV3 sequences assumed similar secondary structures (Figures 7 and 8).
Table S6 shows that the secondary structure predictions using the Mfold and RNAfold
programs revealed distinct DB1 and DB2 secondary structures for the DENV3 sequences
of the study sequences compared to other Sri Lankan isolates. The similar DB1 and
DB2 structures were observed in the study-identified sequences of DENV3 and reference
DENV3 genotype II and genotype V isolates. Despite the nucleotide variation, all the
Sri Lankan DENV3 isolates shared similar DB1 and DB2 secondary structures (Table S6).
Lesser variation was observed among the DB2 secondary structures and two predominant
structures for domain II, 3′ UTR were observed among all the DENV3 isolates considered.

Study-identified DENV1 sequences revealed mutations on DB1 structure respective
to the DENV1 reference sequence (Figure 2, Table S7). According to the Mfold- and
RNAfold-predicted secondary structures, the reference- and study-isolated DENV1 se-
quences assumed similar DB2 structures but different DB1 structures (Figures 9 and 10).
Table S7 shows that the secondary structure predictions using the Mfold and RNAfold
programs revealed similar DB1 and DB2 secondary structures for all the Sri Lankan isolates
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including the study-isolated DENV1 sequences. Lesser variation was observed among the
DB2 sequences of all DENV1 isolates. Although a low level of structural variation was
observed according to Mfold predictions, more structural conservation was observed in
DENV1 isolates according to the RNAfold predictions. One predominant structure for
domain II, 3′ UTR with lesser or no variation was observed among all DENV1 isolates
according to both Mfold and RNAfold predictions.
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Figure 8. Mfold-predicted minimum free energy (MFE) secondary structures for RNA alignments
of DENV3. DENV3, domain II of 3′ UTR region, reference strain (M93130) and DENV3 sequences
identified from the study. Nucleotide variations are indicated in yellow.
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Figure 9. RNAalifold-predicted consensus structures for RNA alignments of DENV1. DENV1, DB1 and DB2 of 3′ UTR
region, reference strain (EU848545) and DENV1 sequences derived from human serum (D1H_2019SL, D3H_2019SL) and
mosquito tissues (D4M1_2019SL-D4M7_2019SL, D5M1_2019SL-D5M4_2019SL), implemented by the Vienna RNA package.
Mutations C10538G and C1540T were observed on the DB1 structure while no mutations were observed on the DB2
structure. Nucleotide variations are indicated in yellow.
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4. Discussion

The DENV genotypes show a characteristic geographical distribution, implying com-
petitive advantage for individual genotypes in different environments [1]. The utilization
of 3′ UTR in genetic characterization is less common among the DENV research. [14,17].
Therefore, to have an insight on the genetic variation of the DENV genotypes, this study
focused on the moderately conserved domain II, 3′ UTR, which also houses the conserved
RCS2 and CS2 regions and two DB structures.

DENV, being an RNA virus, exhibits exceptional genetic variability, mainly due to the
intrinsically high rate of mutation associated with RNA-dependent RNA polymerase [54].
The sequence variation of the DENV genome during the human to mosquito host switch
has been investigated in many studies [30,55–59]. In the study of de Borba et al. [24], the
significance of the variability of host adaptation has been studied. Their study found
mutations in both DB regions of DENV populations with increased frequency from the
first to second generation (F1 to F2) of infected Ae. aegypti vector mosquitoes. It has been
concluded that the mutations are positively selected in adult mosquitoes that affect DB2
structures resulting in enhanced RNA replication in mosquito cells. One of the objectives
of the current study was to examine the nucleotide variation of the domain II, 3′ UTR
during the host switch in human- and mosquito-derived sequences respective to the in-
fected serotype. No such sequence variations were observed in the domain II, 3′ UTR
of DENV3 and DENV1 sequences identified in the current study and the human- and
mosquito-derived sequences in the domain II, 3′ UTR were identical in their respective
serotypes (Table 1). However, adaptive mutations within the minor DENV populations
within each host are known to be obscured by wild-type sequences and only revealed
once they become dominant in the virus population and deep sequencing experiments
are warranted to inference further in this regard [60]. The present study confirmed the
reportedly high conservation of the RCS2 and CS2 regions in domain II, 3′ UTR as shown
by de Castro et al. [55] in is his study of human- and mosquito-derived samples [55]. Fur-
thermore, one of the Brazilian mosquito-derived isolates from his study JN38344 showed
homology with the study isolates of DENV3 (Table S3). Similarly, Sessions et al. [31]
did not find any mutations in the 5′ or 3′ UTR that has been identified in recent studies,
except for a single position in the 3′ UTR in two isolates out of the twelve DENV1 isolates.
The consensus changes detected in that study were positioned within the UTR between
DB1 and DB2 in the two isolates. As discussed by Sessions et al. [31], the reason for the
observed stability in this region is unclear. The studies Liu et al. [56], de Borba et al. [24]
and Villordo et al. [30] were primarily conducted in cell lines with DENV2 and to a lesser
extent with DENV3 [55]. As most of the host adaptation studies have been carried out
with low sample numbers, further inferences in this regard are warranted with extensive
studies of mosquito adaptation.

The sequence analysis of the DENV3 domain II, 3′ UTR sequences derived from the
human and respective laboratory-infected mosquitoes revealed nucleotide differences
compared to that of the so far reported Sri Lankan isolates (Figure 1 and Figure S1). The
phylogenetic analysis with the Bayesian tree revealed clustering of the domain II, 3′ UTR
DENV3 sequences identified in the study into a distinct clade (PP 0.99 and distinct mean
branch length 0.0043) (Figure 4 and Figure S2). Discrete SNVs were observed among the
study-identified sequences of DENV3 and the respective regions of so far reported Sri
Lankan isolates (Figure 1). The mutations C10,444T, T10,477C (DB1 region) and T10,568G
(DB2 region) were commonly shared between Sri Lankan isolates and DENV3 sequences
identified in this study, while mutation G10,425 and G10,462A (DB1 region) was seen only
with study-identified sequences. The mutations G10,412A which was observed in the
spacer region just before the DB1 were not shared by the other reported Sri Lankan isolates.
Furthermore, except in few DENV3 genotype II isolates, the mutation G10,412A was rarely
observed among the DENV3 isolates (Figure 1).

With respect to the sequence variations, DB1 and DB2 structural variations were
observed among all the DENV3 sequences considered (Table S6). The secondary structure
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predictions using the Mfold and RNAfold programs revealed distinct DB1 and DB2 sec-
ondary structures for the DENV3 sequences identified in the study compared to other Sri
Lankan isolates investigated earlier. Despite the nucleotide variation observed, all the Sri
Lankan isolates shared a similar DB1 and DB2 secondary structures. Compared to the SNV
observed in Sri Lankan isolates, the discrete SNV observed in DENV sequences from the
study (Figure 1 and Figure S1), (both within DB regions and in-between spacer regions)
may have attributed to the structural differences observed in the secondary structures.

DENV3 viruses isolated before and after the emergence of dengue hemorrhagic fever
(DHF) in 1989 in Sri Lanka belonged to two distinct clades (DENV3 genotype IIIA and
IIIB, respectively) [12,13]. The stepwise increase in cases after 2000 has been accompanied
by the appearance of another clade of the DENV3 genotype III strain that has replaced
the clade IIIB [15]. The DENV3 serotype was known to be responsible for the 2002 and
2004 epidemics [61]. In 2008, Silva et al. [14] studied the 5′ and 3′ UTRs of 15 serum-
derived DENV-3 genotype III isolates from Sri Lanka, Nicaragua and Martinique and found
sequence variability in the 3′ UTRs. Silva et al. [14] were able to reproduce the clustering of
Messer et al. [13] in the phylogenetic analysis based on whole genome sequences. However,
in his phylogenetic analysis based on 3′ UTR, the isolate AY585848 (isolated in 1993) which
fell outside of the group B clade based on structural gene analysis of Messer et al. [13],
segregated with the group B isolates. In the current study, the phylogenetic analysis
revealed the segregation of all Sri Lankan isolates of DENV3 in the same basal clade, except
for the study sequences of DENV3 (PP 0.99 and distinct mean branch length 0.0043) and
the 1993 isolates, AY585848, FJ88273 (PP of 0.94 and mean branch length of 0.0039) which
showed distinct segregations in separate clades (Figure 4 and Figure S3). Furthermore,
the Sri Lankan isolate GQ252674 (isolated in 1997) displayed a distinct branching (distinct
mean branch length 0.0037) (Figure 4 and Figure S5). The previously recorded DENV3 Sri
Lankan strains isolated after 2000 were not considered in the phylogenetic study due to
the unavailability of whole or corresponding 3′ UTRs. However, the DENV3, genotype III,
group A segregation observed in Messer et al. [12] and Silva et al. [14] was not observed
in the phylogenetic classification of the current study based on the domain II, 3′ UTR
(Figure 4 and Figure S5). All genotype III viruses are known to be closely related, with
distinct phylogenetic groups associated with moderate or severe disease [13]. Due to
various limitations, the phenotypical presentation of the study isolates was not considered.
However, phylogenetic studies with the phenotypic appearances for each subtype are
warranted and would bridge the knowledge gaps in future studies.

DENV3 was known to have caused unexpected epidemics of DHF in Sri Lanka, East
Africa, and Latin America over the past two decades. The virus evolution using a phyloge-
netic approach has been investigated and found that isolates from these geographically
distinct epidemics were closely related and belonged to DENV3, subtype III, which orig-
inated in the Indian subcontinent [13]. The emergence of DHF in Sri Lanka in 1989 has
correlated with the appearance of a new DENV3, subtype III variant, which likely has
spread from the Indian subcontinent into Africa in the 1980s and from Africa into Latin
America in the mid-1990s [13]. Silva et al. [14] in his study with 3′ UTR, suggested that the
Martinique isolates described by Peyrefitte et al. [62] and the Nicaraguan DENV3 samples
were related to the Sri Lankan genotype IIIB DENV3. Furthermore, the clustering of the
Latin American/Caribbean isolates with the Sri Lankan genotype IIIB DENV3 in his phylo-
genetic analysis supported the proposed common East African origin for all these strains
confirming the use of the 3′ UTR for molecular epidemiologic studies of DENV3 [14]. The
DENV3 3′ UTR domain II region sequences from this study was found to be homologous
to a set of sequences shown in Table S3 which resulted from the BLAST. Interestingly,
these homologous sequences were isolated from Latin American countries including Brazil,
Nicaragua, Venezuela and Paraguay. The phylogenetic analysis using the Bayesian tree
(Figure 5) revealed that all so far reported Sri Lankan DENV3 isolates and study-identified
DENV3 sequences clustered in the same basal cluster with the Latin American DENV3
sequences resulted from the BLAST. As reported by Messer et al. [13], a single introduction
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and eventual diversification of the virus population from the founding strain is indicated
by the clustering of Latin America/Caribbean isolates. The most recent isolate has been
reported from Nicaragua in 2010 (Table S3). The exact mode of persistent transportation of
DENV3 strains from Latin America to Sri Lanka cannot be exactly speculated. However,
the environmental and socioeconomic factors responsible for the transport and persistence
in Sri Lankan context should be further examined.

The DENV1 3′ UTR domain II sequences derived from the human and respective
laboratory-infected mosquito vectors revealed nucleotide differences compared to that of
the so far reported Sri Lankan sequences according to the sequence analysis (Figure S2
and Figure 2). The phylogenetic analysis with the Bayesian tree (Figures 1 and 2) revealed
the segregation of study-identified DENV1 sequences with DENV1 genotype IV, V and
Sri Lankan isolate HQ891314 (PP 0.86) and then further clustering into a distinct clade (PP
0.95 and distinct mean branch length 0.0034). The clustering of all the other Sri Lankan
isolates with DENV1 genotype I and V isolates (PP 0.63) was also observed. Discrete SNV
was observed (Figure 2) in the DENV1 sequences identified in the study and the so far
reported Sri Lankan isolates except in HQ891314 (isolated in 2009) which shared two of
the three mutations. As in all the other reported Sri Lankan isolates, no mutations were
observed in the DB2 regions of the study-identified sequences of DENV1. The C10,467T
mutation which was observed in the DB1 region was commonly shared by all Sri Lankan
isolates except for the HQ891314 and most of the other DENV1 isolates of genotype I–V. The
DENV1 sequences identified in the study and the Sri Lankan isolate HQ891314 shared the
mutations A10,538G and C10,540T in the spacer region following the DB1. Although these
mutations were commonly observed among all the genotypes of DENV1, co-occurrence of
both mutations were rarely observed except in the genotype IV and V. However, despite the
SNV in DB regions and in between spacer regions, all the Sri Lankan DENV1 isolates and
study-identified sequences of DENV1 shared the same DB1 and DB2 secondary structures
according to RNAfold predictions (Table S7). However, differences were observed in the
DB1 structure of the HQ891314 isolate according to Mfold predictions (Table S7).

The earliest isolates of DENV1 from Sri Lanka isolated in 1983 and 1984 belonged
to the South Pacific genotype III [15]. More recent isolates obtained during 1997–2004
were belonged to the Africa/America genotype IV, indicating that at some point between
the early 1980s and the mid-1990s, there was a DENV1 genotype shift. The DENV1
genotype with an Asian origin introduced before the 2009 epidemic which appeared to
be responsible for the 2009 epidemic of Dengue and Dengue hemorrhagic fever has been
reported [45], and since then DENV1 has remained as the predominant serotype in the
country [46]. According to the prevailing phylogenetic evidence, the DENV1 strain from
the 2009 epidemic has continued to circulate within the population and caused severe
disease in the epidemic of 2012 [46]. The DENV1 3′ UTR domain II region identified from
this study was found to be homologous to a set of sequences shown in Table S4 as per the
BLAST results. All these homologous sequences had an Asian origin and were identical
in the selected region to DENV1 study sequences. The phylogenetic analysis with these
homologous sequences and Sri Lankan isolates revealed that the 2019, study-identified
DENV1 sequences were more related to these homologous sets of sequences with the Asian
origin than to the so far reported DENV1 Sri Lankan sequences, except for the 2009 Sri
Lankan isolate HQ891314, which also segregated into the same clade (Figure 6). The most
recently reported isolate out of these homologous Asian sequences were from Singapore
(2016) and India (2017). It has been shown that the virus corresponding to the 3′ UTR
domain II has circulated and persisted in Asian countries such as China, Singapore and
India since 2000 (Table S4). Since continuous transportations to the above countries occur
for commercial, cultural and religious requirements, it is unclear why this isolate was
not reported earlier. However, the phenotypical presentation of the 2019 DENV1 strain
together with other strains should be further studied with its whole genome composition
to make further inferences. de Borba et al. [24] examined the evolutionary relationships
between the duplicated RNA structures in different DENV serotypes and found that DB1
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and DB2 elements from different DENV serotypes were more alike between them than DB1
and DB2 from the same serotype. The same observation was made during the secondary
structure predictions for DENV3 and DENV1 sequences (Tables S6 and S7). As suggested
by de Borba et al. [24], this fact supported a divergent evolutionary path and specialization
of each structure after the duplication.

It was observed that DB2 displays more sequence variation than DB1 within the
same serotype in both DENV3 and DENV1 sequences. de Borba et al. [24] examined the
sequence conservation of the two DB structures among genotypes of DENV2 serotype
and observed a higher sequence variability of DB2 among its genotypes. As elaborated by
de Borba et al. [24], the observations suggest that the two paralogues RNA elements are
under different selective pressures in nature, which could be associated with the selection
observed in mosquitoes [24].

The fact that mutations in the flaviviral 3′ UTR could affect sfRNA production and
its affinity to host proteins, which are necessary for successful viral replication, is well
established [20]. In the case of DENV, the two SLs in domain II are found to be functionally
coupled for sfRNA generation and the sequence variation acquired in mosquito adaptation
was found to be detrimental for sfRNA1 formation [55]. de Borba et al. [24] identified
sequence variations in one of the two DB structures in DENVs that were isolated after
passage in mosquitoes, which resembled earlier experimental results in SLs. Furthermore,
the deletion of both DB elements was near lethal for viral replication in both hosts, and
the deletion of DB2 was found to be advantageous for mosquito infection [24]. It is
known that shorter variants, sfRNA3 and sfRNA4, were positively selected in mosquito
cell lines [5]. It has been demonstrated that shorter sfRNAs are produced as the result
of stalling degradation just upstream of two DB structures [63]. It can be hypothesized
that the point mutations on DB or resulting secondary structures of DBs could also play
a role in shorter sfRNA formation. Furthermore, except the highly conserved domain III
region, the DB region (majorly the DB2 region) is the most represented region among all
sfRNA species. However, the structural consequences and impact of the substitutions in
this region on viral fitness have yet to be experimentally defined.

It is known that a high similarity between centroid and MFE structures indicate a
reliable prediction [64]. The MFE and centroid predictions for the study isolates of both
DENV3 and DENV1 resulted in similar structures (Tables S6 and S7). However, variations
were also observed to a lesser extent in DB2 structures. The predominant types of DB1 and
DB2 structures were clearly observed among both DENV3 and DENV1 isolates and further
studies are warranted to interpret the relationship with viral features.

Maintaining structural integrity in DB structures contributes to sfRNA production
and the epidemiological fitness of the virus [32]. The predominant secondary structures
of DBs revealed in the study clearly demonstrated the structural integrity among the
DENV3 and DENV1 strains studied (Tables S6 and S7). Amidst the number of SNVs
revealed, DB structures were often accompanied by compensatory mutations to maintain
structural integrity [20]. However, it is also known that these functionally important RNA
structures can be disrupted by SNVs [65]. Recently, single-nucleotide-induced changes of
RNA conformations has been studied and it was recommended that SNVs could be used
as a powerful tool to study the impact on structural changes of RNAs [66]. RNA secondary
structure is a result of a complex network of base-pairing and stacking interactions [67].
To observe a large conformational change in RNA, the mutation must not only disrupt
an existing base-pair, but also favor a completely alternative base-pairing network. The
functional consequences of structure disruption depend on whether the affected region
is involved in important regulatory interactions. In certain cases, small local changes
in RNA structures may have functional consequences [65,68]. The two RNA structure
prediction approaches have revealed certain SNVs that have disrupted the structure, in
both the DB and the spacer regions adjoining the DB structures (Figures 1–3, Tables S6 and
S7). However, predicting exactly which SNV will alter the secondary structure remains
challenging and the fact should be further examined. Phenotypic presentations respective
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to the secondary structures should be further investigated throughout all the genotypes
and the SNVs responsible should be identified in future studies of the genetic manipulation
of DENV.

5. Conclusions

This study examined the genetic variations of the domain II, 3′ UTR of DENV3 and
DENV1 circulated during the 2019 dengue outbreak in Sri Lanka. The study elaborated
on the stability and the conserved nature of the domain II, 3′ UTR region during the host
switch. Distinct nucleotide sequence variations in the domain II, 3′ UTR were observed
between the study-identified sequences and the so far recorded Sri Lankan isolates. DENV
genotype classifications with respect to domain II, 3′ UTR revealed distinct segregations
of the study isolates. Unique SNVs in 3′ UTR have been revealed in the study and the
phenotypical presentation corresponding to the variations should be further examined
to correlate with the disease presentation. The structure and the role of DBs have been a
novel area of interest and the contribution to sfRNA production must be further examined.
Furthermore, the study recommends future research in examining and analyzing the
genetic variation of Sri Lankan isolates along with the intra-host genetic variation among
native vector mosquitoes.
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3′ UTR region of dengue positive mosquito tissue samples. Figure S5: Calibrated maximum-clade-
credibility tree for DENV3 and DENV1, domain II, 3′ UTR. Table S1: Source of DENV3 virus
isolates used for sequence analysis. Table S2: Source of DENV1 virus isolates used for sequence
analysis. Table S3: Homologous GenBank DENV sequences respective to domain II 3′ UTR of
DENV3 study-identified sequences. Table S4: Homologous GenBank DENV sequences respective
to domain II 3′ UTR of DENV1 study-identified sequences. Table S5: GenBank accession numbers
obtained for the study sequences. Table S6: Mfold- and RNAfold-predicted secondary structures for
RNA alignments of DENV3, domain II region sequences identified in the study, Sri Lankan isolates
and DENV3 genotypes. Table S7: Mfold- and RNAfold-predicted secondary structures for RNA
alignments of DENV3, domain II region sequences identified in the study, Sri Lankan isolates and
DENV1 genotypes.
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