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Phylogenetic trees are used to represent the evolutionary relationship among various groups of species. In this paper, a novel
method for inferring prokaryotic phylogenies using multiple genomic information is proposed.Themethod is called CGCPhy and
based on the distance matrix of orthologous gene clusters between whole-genome pairs. CGCPhy comprises four main steps. First,
orthologous genes are determined by sequence similarity, genomic function, and genomic structure information. Second, genes
involving potential HGT events are eliminated, since such genes are considered to be the highly conserved genes across different
species and the genes located on fragments with abnormal genome barcode.Third, we calculate the distance of the orthologous gene
clusters between each genome pair in terms of the number of orthologous genes in conserved clusters. Finally, the neighbor-joining
method is employed to construct phylogenetic trees across different species. CGCPhy has been examined on different datasets from
617 complete single-chromosome prokaryotic genomes and achieved applicative accuracies on different species sets in agreement
with Bergey’s taxonomy in quartet topologies. Simulation results show that CGCPhy achieves high average accuracy and has a low
standard deviation on different datasets, so it has an applicative potential for phylogenetic analysis.

1. Introduction

There are about 10 to 500 thousand species of prokaryotes
living on the Earth today [1]. Prokaryotes have a more com-
plicated evolutionary relationship than Eukaryotes through
their long existence. Owing to evolving in different environ-
ments, the prokaryotes have considerable diversity in both
genetical and physical processes to adapt to different condi-
tions. Phylogenies are used to represent the evolutionary rela-
tionship among various groups of species. So, studying the
phylogenies of different prokaryotes can help us understand
the similarities and differences in genotype and phenotype
among them. Woese and Fox first proposed molecular phy-
logeny of prokaryotes using the small subunit ribosomal RNA
(SSU rRNA) universal distribution [2]. Since then, rRNAs
were commonly recommended as the molecular standard for
reconstructing phylogenies [3, 4]. Phylogeny of prokaryotes
inferred by rRNAs or genes has been immensely successful.

However, there are some problems in this kind of methods.
The phylogenetic trees inferred from single rRNAs or genes
may have many conflicts because of the various biological
phenomena [5], such as horizontal gene transfer (HGT) [6–
8], hybridization, lineage sorting, paralogous genes [9], and
pseudogenes [10, 11].

With the development of high-throughput sequencing
technology, more and more genomic sequences of organ-
isms have been determined. With the increasing availability
of genome information, it became possible to infer phy-
logenies by computational methods. In the past decade,
many algorithms for phylogenies reconstruction have been
proposed. Teichmann and Mitchison developed a method
by using orthologous protein families [12]. Ge et al. built
the phylogenetic tree using clusters of orthologous groups
COG to represent major phylogenetic lineages of encoded
protein [13]. Ciccarelli et al. presented an automatic proce-
dure for reconstructing the phylogenetic tree with branch
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Figure 1: The pipeline of the CGCPhy.

lengths comparable across all three domains which contain
archaea, bacteria, and eukaryote [14]. Daubin et al. sug-
gested a supertree method to build bacterial phylogenetic
trees through considering core genes [15]. However, these
methods only used one type of genomic information to infer
phylogenetic tree and could not achieve very accurate results
[5].

There are also many methods of phylogenetic analysis
using whole-genome datasets. Snel et al. presented a phy-
logeny construction model based on a similarity between
two species, which was defined as the ratio of the number
of common genes to the total number of genes [16]. Henz
et al. extended the model by using nucleotide segment pairs
instead of genes [17]. Luo et al. suggested using overlapping
gene information to infer the genome phylogenies [18]. Deeds
et al. developed amethod for inferring phylogenies by protein
structural domain [19]. Wu et al. used the frequencies of
nucleotide string to infer phylogenies [20]. Qi et al. and
Xu and Hao proposed composition vector tree (CVTree), a
method of inferring prokaryotic phylogenies by the oligopep-
tide content in the complete proteomes [21–23]. Gao et al.
compared the results of CVTree with the bacteriologists’
taxonomy [24]. Lin et al. developed a tool based on composite
distance matrix to produce prokaryotic phylogenies [5].

Most of the methods presented above used several
genome information, such as the sequence similarity, the
genomic function, or the genomic structure. Moreover, these
methods did not consider horizontal gene transfer (HGT)

events and paralogous genes, and consequently they incor-
rectly classified some species on phylogenetic tree [25, 26].
In this paper, we propose a novel method called conserved
gene cluster phylogenies (CGCPhy), which removes the genes
potentially involved in HGT events, for inferring prokaryotic
phylogenies. CGCPhy is based on the distance matrix of the
orthologous gene clusters computed on whole genome and
uses multiple genome information.The distance based on the
orthologous gene clusters between two genomes is calculated
by the number of orthologous genes in conserved clusters.
The genes in an orthologous gene cluster are neighbour genes
in a genome, and all of them have orthologous genes in the
corresponding compared species.The pipeline of the method
is shown in Figure 1.

In the first step, we compute orthologous genes by con-
sidering sequence similarity, genomic function, and genomic
structure information. Sequence similarity is calculated by
BLAST, whereas genomic function and genomic structure
are estimated by COG and operon annotation, respectively.
Consistently with other molecular phylogeny approaches,
we suppose that the closer two species are in the phyloge-
netic tree, the more similar their genomic sequence, their
function, and structure will appear. In the second step,
the genes that are potentially involved in HGT events are
eliminated according to certain criteria. In our work, two
kinds of putative genes potentially involved in HGT events
are considered. One kind contains the highly conserved
genes across different species; take two strains from the same
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species as an example, almost all genes are highly conserved
genes, and the other kind contains the genes located on
fragments with abnormal genome barcode. After that, the
distance matrix is calculated considering the number of
orthologous genes in conserved clusters. Each element of the
matrix is the conserved gene cluster distance (CGCD) that
measures the conserved extent of orthologous gene clusters
between two genomes. Finally, the neighbor-joining (NJ)
[27, 28] distance-based method is employed to construct the
phylogenetic tree by using the tool “Phylip” (available at:
http://www.phylip.com/). CGCPhy is examined on different
datasets from 645 prokaryotic genomes. In order to facilitate
result comparison, the proposed method is firstly examined
on the datasets defined for the evaluation of ComPhy [5]. In
order to verify the effect of different methods further, we also
validate these methods on random datasets which containa
different number of species. The results of CGCPhy achieve
higher accuracies than other existing methods both on fixed
datasets and random datasets in agreement with Bergey’s
taxonomy [29] in quartet topologies. Simulation results show
that the proposed method CGCPhy has consistently better
performance on different datasets, so it has an applicative
potential for phylogenetic analysis.

2. Materials and Methods

2.1. Data Preparation. The datasets of the 617 complete
single-chromosome genomes and 28 multiple-chromosome
prokaryotic genomes used to measure the performance of
the methods in this paper were downloaded from the NCBI
database (download date: June 1, 2013). Several kinds of
genome information are used in our work, such as pro-
tein sequence information, location annotation, and COG
function information [30]. The information is obtained from
annotation files, which have been downloaded from NCBI.
The operon data of each genome are obtained from DOOR
[31].The reference taxon data of the 645 prokaryotic genomes
are defined by Bergey’s code [29]. The Bergey’s code is
the abbreviation of the phylogenetic lineage in the Bergey’s
Manual of Systematic Bacteriology. For example, B12.2.3.1.3 is
the abbreviation of the lineage Phylum XII (Proteobacteria),
Class II (Betaproteobacteria), Order III (Methylophilales),
Family I (Methylophilaceae), and Genus III (Methylovorus).
In 2009, 2010, and 2012, the Bergey’s Manual is updated
gradually [32–34]. Due to the small part of species of these
updated versions, we use Bergey’s Manual of Systematic
Bacteriology (release 5.0) [29] to measure the inferring
performance of amethod.However, the constructed phyloge-
netic trees are shown using the new version of Bergey’s code.

2.2. Orthologous Genes Identification. In CGCPhy, the first
step of phylogenetic inference is to determine orthologous
genes used to measure the similarity between two species.
Several methods have been proposed for identifying orthol-
ogous genes between species through sequence comparison,
such as all-against-all BLAST [16]. Lin and coauthors [5]
measured orthologous genes by the reciprocal best BLAST
method and determined orthologous genes with 𝐸-value

below 10−3 and sequence identity higher than 30%. Sequence
information is extremely significant in the identification
of the orthologous genes. However, inferring phylogenetic
trees only by sequence similarity presents several problems.
Horizontally transferred genes, paralogous genes, and pseu-
dogenes may have high sequence similarity and may be con-
sidered as orthologous genes and consequently influence the
final results. Therefore, other important information across
prokaryotic genomes, such as genomic function and genomic
structure, should also be considered for orthologous genes
identification.

Here we apply a method which is similar to the one
proposed byOlman et al. [35] andMao et al. [36] to determine
the orthologous genes between two species.Thebasic premise
is that the orthologous genes between two species should have
similar sequence and function and belong to similar operons.
The method considers both sequence similarity and other
genomic information, such asCOG function andoperons. So,
the orthologous genes identification problem is restated as the
problem of maximizing their sequence similarity under the
constraint that the orthologous genes are filtered by similar
COG function and are grouped into a minimal number of
operons. The optimization problem is formulated as follows
[36]:
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𝑛

∑

𝑖=1

𝑚

∑

𝑗=1

𝑥
𝑖𝑗

𝐴
𝑖𝑗

+

𝑜

∑

𝑘1=1

𝑦
𝑘1

𝐵
𝑘1

+

𝑝

∑

𝑘2=1

𝑦
𝑘2

𝐶
𝑘2

,

constraint 1:

0 ≤

𝑛

∑

𝑖=1

𝑥
𝑖𝑗

≤ 1, for 𝑗 = 1, . . . , 𝑚,

0 ≤

𝑚

∑

𝑗=1

𝑥
𝑖𝑗

≤ 1, for 𝑖 = 1, . . . , 𝑛,

constraint 2:

[
[
[
[

∑
𝑙𝑘1

𝑖=1

∑
𝑚

𝑗=1

𝑥
𝑖𝑗

𝑙
𝑘1

]
]
]
]

≤ 𝑦
𝑘1

≤ 1, for 𝑘1 = 1, . . . , 𝑜,

[
[
[
[

∑
𝑙𝑘2

𝑖=1

∑
𝑛

𝑗=1

𝑥
𝑖𝑗

𝑙
𝑘2

]
]
]
]

≤ 𝑦
𝑘

2

≤ 1, for 𝑘2 = 1, . . . , 𝑝,

(1)

where𝑚, 𝑛,𝑝, and 𝑜 represent the number of genes in genome
G, genome H, and the number of operons in genome G,
genome H, respectively. 𝑥

𝑖𝑗

represents the existence of an
orthology relation between the 𝑗th gene in genome G and
the 𝑖th gene in genome H, if they are orthologous 𝑥

𝑖𝑗

= 1,
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Figure 2: A hypothetical example of orthologous genes between genome G and genome H.
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denotes the 𝑘1th operon in genome
H. If one gene in genome G has an orthologous gene in the
𝑘1th operon, then 𝑦
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𝑘2

denotes
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scaling factors of the reliability of operons. The goal of the
optimization problem is to obtain an orthologous relation
between the two genomes, namely, an assignment of 𝑥
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, 𝑦
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,
and 𝑦
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that minimizes the objective function.The constraint
1 indicates and guarantees that each gene in genome H can
be orthologous to at most one gene in genome G, and each
gene in genome G can be orthologous to at most one gene
in genome H. The constraint 2 indicates and guarantees that
the value of 𝑦

𝑘1

is 1 while there is any gene in 𝑘1th operon,
which is mapped to at most one gene in genome G, and
the value of 𝑦

𝑘2

is 1 while there is any gene in 𝑘2th operon,
which is orthologous to at most one gene in genome H.
The optimization formula guarantees that orthologous gene
pairs have maximum sequence and function similarity, and
the orthologous genes are grouped into a minimal number
of operons. The orthologous genes between genome G and
genome H must have similar sequence and function. The
sequence similarity is calculated by BLAST, and the function
similarity is measured by COG function. Figure 2 shows the
orthologous genes between genome G and genome H in a
hypothetical example.

According to the rules in formula (1), wemodified the tool
PMAP, [36] and the new program can be used to calculate
the orthologous genes between two genomes. We calculate
orthologous genes for each pair of 617 prokaryotic species
using the program and consider those with the 𝐸-value
of BLAST below 10−3 as our candidate orthologous genes.
Because we think that the orthologous genes are important
than operon, the value of 𝐴

𝑖𝑗

, 𝐵
𝑘1

, and 𝐶
𝑘2

are set to 1.0, 0.5,
and 0.5 in the program. In order to reduce the complexity of
users, these values could not be modified in the process of
using the program.

Table 2 shows the numbers of candidate orthologous
genes in five species pairs by different methods. We can see
that many special genes are reduced by considering genomic
function and genomic structure information. The numbers
of orthologous genes between each species pair are used to
measure their phylogenetic distance in the next step.

2.3. Potential HGTGenes Elimination. After the computation
of the numbers of orthologous genes for each pair of 617
prokaryotic species, the phylogenetic distance between each
pair of genomes could be measured. However, the putative
genes involved in HGT events must be eliminated before
calculating the phylogenetic distance. In our work, the
genes potentially involved in HGT events will include the
highly conserved genes across different species and the genes
located on fragments with abnormal genome barcode, which
typically correspond to regions of foreign origins [37, 38].

2.3.1. Eliminating the Highly Conserved Orthologous Genes.
The highly-conserved genes are those that are orthologous
in the overwhelming majority of species. By analyzing the
function of the highly conserved genes usingCOG functional
categories [30], we find that most of them belong to the
COG code J whose description is “translation, ribosomal
structure, and biogenesis.”Most of these genes are considered
to be involved in HGT events [39]. The putative HGT
genes may have a great influence on the performance of
inferring phylogenetic trees, so we should eliminate these
genes according to certain criteria. However, for some special
set of species, for example, a set containing only species from
the same phylum, highly conserved genes are more likely
to come from vertical gene transfer events and not from
horizontal gene transfer events, so discarding themmay cause
undesirable results. Here, in order to distinguish these special
set of species, we use the following formulas:
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2 ∗ 𝑁
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Figure 3: The frequency of (a) different orthologous gene numbers and (b) different average ROG values.

where𝑅og(G,H) represents the pair-wise ratio of orthologous
genes (ROG) between genome G and genome H and mean
𝑅og denotes the average pair-wise ROG over a set 𝑆 of 𝑛
species. 𝑁O is the number of orthologous genes between
genome G and genome H, 𝑁G is the number of genes in
genome G, and 𝑁H is the number of genes in genome H,
respectively. G

𝑖

and G
𝑗

represent two genomes in Set 𝑆. We
assume that the closer in phylogenies the two genomes are,
the larger their value of ROG. By using mean 𝑅og, we can
distinguish the special sets of species and eliminate highly
conserved orthologous genes for these sets.

In order to determine the special set of species accurately,
we generate different sets of species 𝑆

1

, . . . , 𝑆
𝑖

, . . . , 𝑆
𝑚

ran-
domly from 617 prokaryotic species for𝑚 = 10000 times and
calculate all the mean𝑅og(𝑆𝑖) values of them. After that, the
special sets of species are distinguished by three-sigma rule,
which states that for a normal distribution, ordinary values lie
within 3 standard deviations of the mean [40]. The formulas
are as follows:
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(3)

wheremean𝑅og(𝑆𝑖) represents the average ROGof species set
𝑆
𝑖

. oss denotes ordinary species sets and sss denotes special
species sets, respectively. The special species sets are those
whose species aremore similar ormore different. For amixed
species set, which have both near and distant species, the
species set is defined as an “ordinary” species set.

After distinguishing two kinds of set of species, we use
different strategies to eliminate the highly conserved genes
amang them. The formula is as follows:

𝑁eg = {
0.15 ∗ 𝑁as if dataset ∈ oss
0 if dataset ∈ sss,

(4)

where𝑁as represents the number of all species (𝑁as = 617 in
our run).𝑁eg denotes the number of eliminations among the
highly conserved orthologous genes. The eliminated genes
are obtained by their rank of similarity in other genomes.The
threshold is chosen by the frequency of different orthologous
gene numbers on the 617 species. Figure 3(a) illustrates the
frequency of different orthologous gene numbers on the 617
species. From Figure 3(a), we can see that with the increase
in the number of orthologous genes, the density values are
getting smaller until the number of orthologous gene is
near 525 (617 ∗ 0.85). The special distribution of the highly
conserved orthologous genes may be related to special events
of biological evolution, such as HGT. So, in this paper, we
select 0.15 (1–0.85) as the threshold. Figure 3(b) illustrates
the density values of different average ROG values on 10000
random species sets. From Figure 3(b), it can be seen that the
average ROG values on most datasets distribute between 0.6
and 0.7. By using the three-sigma rule, the ordinary set of
species and the special set of species are neatly distinguished.

2.3.2. Eliminating Abnormal Genome Barcode Genes. Bar-
codes of genomes describe the distribution of the combined
frequency of each 𝑘-mer and its reverse complement at each
fragments of 𝐿 bps across sequences of a genome, whole or
in part [37]. Most regions of barcodes in one genome have
high similarity, while a few of them are different and usually
are considered to be abnormal fragments. The abnormal
fragments may be generated by horizontal gene transfers
(HGT) or phage invasions during biological evolution.

In our work, each genome is partitioned into nonoverlap-
ping fragments of 1000 bps (𝐿 = 1000) long and represented
by a 4-mer-based barcode. We use𝑀 to represent the length
of the genome sequence. Each fragment of one genome is
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Figure 4: A hypothetical example: (a) barcode figure and (b) matrix
structure of the genomic barcode.

represented as a vector of 136 values, and each genome is
represented as a matrix with 𝑁 (𝑁 = ⌊𝑀/𝐿⌋) rows and
136 columns. Figure 4 shows the barcode figure and the
matrix of a hypothetical genome. Figure 4(a) illustrates the
barcode figure of the hypothetical genome, and Figure 4(b)
illustrates the matrix structure of the genomic barcode. Each
element 𝑟

𝑖𝑗

is the frequency of the 𝑗th 4-mer in the 𝑖th DNA
fragment. Each row of the matrix means the barcode for each
genomic fragment. Consequently, each column represents
the frequencies of a specific 4-mer, such as “AATG” or
“GTCG” over the different DNA fragments, and each row
represents the frequencies of the different 4-mer over a
specific DNA fragment.

The average barcode of the whole genome is a row vector
whose elements are the mean values of each column of
the barcode across all fragments. The distances between the
average barcode and the barcode for each genomic fragment,
namely, the rowof the barcode corresponding to the fragment
taken as a row vector, are calculated by Euclidean distance
between the two 136-dimensional row vectors. The formulas
are as follows:

avgBarcode (𝑘)

=
1

𝑁

𝑁

∑

𝑖=1

barcode (𝑖, 𝑘) (𝑁 = ⌊𝑀/𝐿⌋ , 𝑘 = 1, ..., 136) ,

disBarcode (𝑖) = √

136

∑

𝑘=1

(barcode (𝑖, 𝑘) − avgBarcode (𝑘))2

𝑅ge (𝑥) = 𝑚 (disBarcode (𝑖))

+ 3 ∗ 𝑠 (disBarcode (𝑖)) (𝑖 = 1, . . . , 𝑁) ,

std𝑅ge = 𝑠 (𝑅ge (𝑗)) (𝑗 = 1, . . . , |𝑆|) ,

(5)

where avgBarcode(𝑘) represents the 𝑘th element of the
average barcode of the whole genome and disBarcode(𝑖)
denotes the distance between the average barcode and the
barcode of the 𝑖th fragment.𝑁 is the number of fragments in
the genome.𝑅ge(𝑥) represents the value of genomic evolution
in genome X, and std 𝑅ge denotes the standard deviation of
genomic evolution ratio in a set of species.𝑚() and 𝑠() are the
mean value and the standard deviation, and |𝑆| is the number
of species in a dataset 𝑆 for inferring phylogenies. We assume
that the closer in phylogenies the genome X and genome Y
are, the more similar their values of genomic evolution. In

our current study, we eliminate only the abnormal genome
barcode genes for the set of species which have high standard
deviation of the genomic evolution value. So by using std 𝑅ge,
we can distinguish the special set of species and eliminate the
abnormal genome barcode genes fome these datasets.

In order to evaluate the special species sets accurately,
we generate different species sets 10000 times randomly and
calculate all the std 𝑅ge of them. After that, the special species
sets are distinguished by three-sigma rule, which states
that for a normal distribution, ordinary values lie within 3
standard deviations of the mean [40]. The formulas are
defined as follows:
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oss if std𝑅ge (𝑆𝑗) ∈ (−∞, 𝜇

𝑅ge
+ 3𝜎
𝑅ge
]

sss if std𝑅ge (𝑆𝑗) ∈ (𝜇𝑅ge + 3𝜎𝑅ge , +∞) ,

(6)

where std 𝑅ge(𝑆𝑗) represents the standard deviation of geno-
mic evolution ratio in species set 𝑆

𝑗

and 𝑚 is the number of
species sets. In our work, 𝑚 is equal to 10000. oss denotes
ordinary species sets, and sss denotes special species sets,
respectively.

After distinguishing two kinds of species sets, we use dif-
ferent strategies to eliminate the abnormal genome barcode
genes from them. There are about 20% genes of a genome
belonging to potential genes which involve HGT event [41],
so the formula is defined as follows:

𝑁eg (𝑗) =
{{

{{

{

0 if dataset ∈ oss
0.2 ∗ 𝑁

𝑔

(𝑗) if dataset ∈ sss
(𝑗 = 1, . . . , |𝑆|) ,

(7)

where𝑁
𝑔

(𝑗) represents the number of genes in species 𝑗 and
|𝑆| is the number of species in the dataset for inferring phy-
logenies.𝑁eg(𝑗) denotes the number of eliminated abnormal
genome barcode genes.

Figure 5(a) illustrates the values of genomic evolution
on 617 species. From Figure 5(a), we can see that the ratios
of genomic evolution are different in different species, the
maximum genomic evolution ratio is approximately equal to
0.9, and the minimum genomic evolution ratio is approxi-
mately equal to 0.6. Figure 5(b) illustrates the density values
of different standard deviation of 𝑅ge(𝑥) on 10000 random
species sets. FromFigure 5(b), it can be seen that the standard
deviation of 𝑅ge(𝑥) on most datasets distributes between
0.035 and 0.045. By using three-sigma rule, the ordinary and
special sets of species are neatly distinguishable.

2.4. Phylogenetic Distance Measurement. In this section, we
introduce a novel phylogenetic distance between a pair of
genomes that is based on the orthologous genes obtained
in Section 2.3. As a consequence, the distance takes indi-
rectly into account sequence similarity and other genomic
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Figure 5: (a) The ratios of genomic evolution on 617 species and (b) the density of different standard deviation of 𝑅ge.
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Figure 6: Conserved orthologous gene clusters between pairs of genomes.

information. The conserved gene cluster distance (CGCD)
measures the conserved extent of orthologous genes between
two genomes. CGCD is the log inverse of the number of
orthologous genes that are in the conserved clusters. The
conserved gene cluster distance is defined as follows:

𝐷cgc (X,Y) = − log (𝑁cgc) , (8)

where𝑁cgc is the total number of orthologous genes in conse-
rved clusters between genome X and genome Y.

Figure 6 shows an example of the conserved ortholo-
gous gene clusters between the hypothetical genome X and
genome Y. To calculate the phylogenetic distance between
two genomes, the conserved orthologous gene clusters need
first to be determined. In Figure 6, there are 16 genes in
both genome X and genome Y, 14 orthologous genes between
two genomes, and four conserved orthologous gene clus-
ters. The gene clusters 𝑥
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are
examples of insertion and deletion in conserved orthologous
gene clusters. We consider all the above cases as conserved
orthologous gene cluster. In the example shown in Figure 6,
𝑁cgc is 14 and𝐷cgc is −1.1461.

We validated the stability of the conserved orthologous
gene clusters in biological evolution by using the genome’s

barcodes [37] for the corresponding sequences. The dis-
tance of two species in phylogenetic tree is reported to be
related with the similarity in genomic sequence, functions,
and structures [5]. The number of conserved orthologous
gene clusters between two genomes indicates the conserved
orthologs of them in biological evolution. By using conserved
orthologous gene clusters, the method considers less gene
rearrangement, insertion, and deletion. Due to their high
stability in biological evolution, the conserved orthologous
gene clusters should be able to represent the evolutionary
relationship precisely.

Figure 7 illustrates the barcodes of sequences from ort-
hologous genes and orthologous genes of conserved clus-
ters between NC 010571 and NC 009972 as an example.
Figure 7(a) shows the barcodes of sequences generated from
orthologous genes by the method in Section 2.2. From
Figure 7(a) we can see that there are many abnormal frag-
ments which are not intrinsic genes but arguably originated
from another organism.These fragments would influence the
performance of inferring phylogenies. Figure 7(b) illustrates
the barcodes of sequence generated from the genes in con-
served orthologous gene clusters found by the abovemethod.
From Figure 7(b), it can be seen that there are few abnormal
fragments in sequences of two species. Therefore, the con-
served orthologous gene clusters could be more effective for
inferring phylogenies than the original orthologous genes.

2.5. Phylogenies Construction. The phylogenetic distance
matrix is calculated from the numbers of orthologous genes
in the conserved clusters by the CGCD formula defined
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Figure 7:Thebarcodes of sequences from (a) orthologous genes and
(b) orthologous genes of conserved clusters.

above. The result is an 𝑚 × 𝑚 distance matrix where 𝑚

is the number of species in the set used for the inference.
In order to construct the phylogenetic tree, we apply the
neighbor-joining (NJ) method [27, 28] on the distance
matrix. The neighbor-joining (NJ) method which has been
implemented availably in the tool “Phylip” (available at:
http://www.phylip.com/) was initially proposed by Saitou
and Nei [27] to reconstruct phylogenetic trees from evo-
lutionary distance data. In this paper, the principle of this
method is to find pairs of operational taxonomic units that
minimize the total branch length at each stage of clustering.
By using distance data, themethod can construct an unrooted
or rooted tree to simulate the phylogenetic tree. The package
includes several programs with implementation of different
phylogenies inferring algorithms on different kinds of data
and utilities for carrying out phylogenies-related tasks. We
used the Neighbor-Joining (NJ) method to construct the
phylogenic tree and the program “Drawgram” to plot the
rooted phylogenic tree.

2.6. Performance Measurement. One of the challenges of
inferring phylogenies is how to measure the inferring per-
formance of a method. Most of the previous phylogenetic
analysis methods measured the performance with respect
to an organism taxonomy. However, there is no uniform
standard prokaryotic organism taxonomy [5]. In this paper,
we use Bergey’s taxonomy tomeasure the quality of the results
of our method. Bergey’s taxonomy is a classification scheme
inBergey’sManual of Systematic Bacteriology [29], which has
been widely recognized by most biologists as the reference
taxonomy. In order to facilitate result comparison between
the inferred phylogenetic tree and the tree from the Bergey’s
taxonomy, the number of agreed quartet topologies is used to
measure the performance. The quartet topology model was

proposed by Lin et al. [5], and it is a subtree structure of the
subset of four terminal taxa which are connected in three
possible ways. The quartet topologies of Bergey’s taxonomy
are generated from the classifications of the 617 prokaryotic
genomes described in Section 2.1. There are 2,684,646,031
effective quartets of the 617 prokaryotic genomes.

3. Results and Discussion

In order to facilitate the comparison of the results, the pro-
posed method is initially examined on the set of species used
to evaluate ComPhy [5]. Then we examined the proposed
method on the datasets of the 617 prokaryotic genomes of
different species of archaea and bacteria. To validate the
method completely, we also apply the method on random
sets of species with different dimensions. The agreed quartet
topologies between the inferred phylogenetic tree and the
tree from the Bergey’s taxonomy are used to measure the
performance of themethod, and the whole accuracy of all 617
prokaryotic genomes is 91.12% on effective quartets.

3.1. Fixed Datasets Validation. In this validation step, the
method is examined using the datasets applied to ComPhy.
These are 9 datasets of different dimensions, 7 datasets were
formed randomly from datasets of archaea and bacteria, and
the other two were obtained from BPhyOG [18] and Deeds
et al. [19]. All of these datasets are subsets of the 617 proka-
ryotic genomes.

We run CGCPhy and other methods on these 9 datasets.
The performance results on the 9 datasets of GCD [16], OG
[18], CVTree [21–23], ComPhy [5], and CGCPhy are shown
in Table 3. From the table, we can see that the accuracies of
CGCPhy on most datasets are higher than those of other
methods except for dataset 4, in which the performance of
CGCPhy is a little lower than the ComPhy method. The
accuracies of the 9 datasets by GCD, OG, CVTree, ComPhy,
and CGCPhy are 86.28%±0.0399, 84.99%±0.0268, 92.86%±

0.0390, 93.76% ± 0.0339, and 96.98% ± 0.0193, respectively.
The method CGCPhy presents the highest average accuracy
and the lowest standard deviation, outperforming the other
four methods of phylogenies inference.

To further investigate the effectiveness of each method,
we draw by different methods the phylogenetic trees of 20
bacterial species selected randomly which are a subset of
the dataset 1 in Table 1. Figure 8 shows four phylogenetic
trees inferred by the GCD, CVTree, ComPhy, and CGCPhy
methods.These phylogenetic trees are plotted by the program
“drawgram” in the tool “Phylip.” Figure 8(a) illustrates the
phylogenetic tree inferred by gene content distance (GCD)
method. From Figure 8(a), we can see that the genomes of
NC 000912 and NC 004829, which are members of Firmi-
cutes phylum (B13), are placed outside their own phylum
and inferred in Proteobacteria phylum (B12). Figure 8(b)
illustrates the phylogenetic tree inferred by composition
vector tree (CVTree) method. From Figure 8(b), it can be
seen that the genomes of NC 004757 and NC 007484, which
are members of protebacteria phylum (B12), are placed
outside their own phylum and inferred near Actinobacteria
phylum (B14). Figure 8(c) illustrates the phylogenetic tree

http://www.phylip.com/
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Table 1: Taxon statistics of the 645 prokaryotic genomes.

Phylum Class Order Family Genus Species Strain
Archaea1 1 3 5 10 15 15
Archaea2 9 10 15 23 31 34
Archaea3 1 1 1 1 1 1
Bacteria1 1 1 1 1 1 1
Bacteria2 1 1 1 4 6 6
Bacteria4 1 2 2 2 3 4
Bacteria6 2 3 3 4 6 6
Bacteria10 2 5 5 11 16 32
Bacteria11 1 1 1 2 5 5
Bacteria12 6 35 58 125 227 307
Bacteria13 3 7 18 32 90 143
Bacteria14 3 11 18 21 42 53
Bacteria15 1 1 1 1 1 1
Bacteria16 1 1 2 3 9 13
Bacteria17 1 1 2 3 7 8
Bacteria19 2 2 2 2 2 2
Bacteria20 3 3 5 8 11 12
Bacteria21 1 1 1 1 1 1
Bacteria22 1 1 1 1 1 1
Total 19 41 90 142 255 475 645

inferred by composite distance (ComPhy) method. From
Figure 8(c), we can see that the genomes of NC 000912
and NC 004829, which are members of Firmicutes phylum
(B13), are placed outside their own phylum and inferred
in protebacteria phylum (B12). Figure 8(d) illustrates the
phylogenetic tree inferred by conserved gene cluster distance
(CGCPhy) method. From Figure 8(d), it can be seen that all
genomes are accurately placed closer to their own phylum.

In order to estimate the contribution of each different step
in the phylogenetic distance computation, we use different
combinations of the three stages: (1) identifying orthologous
genes, (2) eliminating the highly conserved orthologous
genes, and (3) measuring conserved gene cluster distance
to infer phylogenetic tree. Table 4 shows the performance
results of 4 different combinations of the three stages on the
9 datasets. From the table, it can be seen that accuracies
on all the datasets applying all the three stages combination
are higher than the others. The average accuracies of the 9
datasets by combinations 1, 1+2, 1+3, and 1+2+3 are 83.41%,
83.97%, 95.43%, and 96.98%, respectively.The results provide
clear evidence that each step plays a relevant role for inferring
phylogenetic tree. It can be seen that the performances of the
methods are improved smaller by considering the two stages
of removing highly conserved genes and abnormal genome
barcode genes than considering the stage of gene clusters.
The reason may be that the role of orthologous genes is
more important thanHGT genes in the evolutionary process.
However, in several datasets, such as dataset 1, dataset 2
and dataset 6, the performances are improved greatly by
considering the two stages. So, we keep step two in our
approach for processing several special datasets.

We also construct the phylogenetic tree by CGCPhy on 28
multiple-chromosome prokaryotic genomes, and the results
are shown in Figure 9. From Figure 9, it can be seen that
most species in the same genus are closer in the phylogenetic
tree. However, Ralstonia eutropha in Ralstonia are closer
with Cupriavidus taiwanensis in Cupriavidus than Ralstonia
pickettii in the same genus.The resultmay be that we calculate
orthologous gene clusters between two genomes but not
between different chromosomes on multiple-chromosome
prokaryotic species.

3.2. Random Datasets Validation. In this validation, the met-
hods are examined using random sets of species with dimen-
sion 50, 100, 200, and 300, respectively. For each dimension,
we randomly generate 10 subsets of the set of the 617
prokaryotic genomes.

The accuracy results on random species sets of different
dimension by CVTree [21–23], ComPhy [5], and CGCPhy
are illustrated in Figure 10. Figures 10(a)–10(d) illustrate the
accuracy of phylogenetic inference by the same methods in
sets of 50, 100, 200, and 300 random species, respectively.
From these figures, we can see that the accuracy on most
datasets of CGCPhy is higher than that of CVTree and Com-
Phy. The average accuracy on random datasets of 50 species
of CVTree, ComPhy, and CGCPhy are 88.63%, 88.60%,
and 93.74%, respectively. The average accuracy on random
datasets of 100 species of CVTree, ComPhy, and CGCPhy are
92.09%, 89.55%, and 94.81%, respectively. The average accu-
racy in random datasets of 200 species of CVTree, ComPhy,
and CGCPhy are 91.87%, 90.71%, and 95.48%, respectively.
The average accuracy on random datasets of 300 species of
CVTree, ComPhy, and CGCPhy are 92.20%, 86.49%, and
96.13%, respectively.ThemethodCGCPhy has higher average
accuracy than CVTree and ComPhy for all the dimensions of
the random species datasets.Theperformance results validate
the effectiveness of the method for phylogenetic inference.

The performance results on the random sets of different
combinations of the three stages of the distance computation
are illustrated in Table 5. From the table, we can see that the
accuracies in 50, 100, 200, and 300 random species datasets
are 78.51% ± 0.0389, 81.04% ± 0.0564, 93.65% ± 0.0279,
and 95.04% ± 0.0278, respectively. The method CGCPhy has
higher average accuracy and lower standard deviation in
different datasets, so it has excellent stability and accuracy in
phylogenetic inference. The method proposed in this paper
achieved average above 93% agreement with Bergey’s taxon-
omy in quartet topologies on random datasets of different
species number. Empirical results show that the proposed
method has excellent qualities for phylogenetic analysis.

We also examine three special kinds of species sets
by using CGCPhy. Firstly, we used species from the same
family and order as the first kind of species sets. Then
the phylogenetic trees are constructed by CGCPhy, and the
average accuracies are 93.48% and 89.04% agreement with
Bergey’s taxonomy. Secondly, we generated 10 species sets
by the following criteria: a set with only distant species.
We used CGCPhy to construct the phylogenetic trees,
and the average accuracies are 88.76%. Because of the
small number of orthologous genes between distant species,
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Table 2: The candidate orthologous genes in five species pairs.

Compared genomes pair B B + C B + C + O
NC 000916 versus NC 007716 88 86 73
NC 007681 versus NC 008025 300 296 258
NC 008228 versus NC 007356 557 515 469
NC 003155 versus NC 002678 2249 1524 1437
NC 002655 versus NC 002695 4693 4617 4221
B: bi Directional best hits BLAST; C: COG; O: operon.

Table 3: The performance results of accuracy by five methods.

DS NoS GCD∗(%) OG∗(%) CT(%) Com∗(%) CGC(%)

1 52 86.44 83.93 92.17 90.29 98.83
2 53 86.40 85.49 87.92 90.74 95.29
3 54 87.34 88.27 91.47 96.55 98.91
4 82 92.58 84.35 98.87 96.16 96.59
5 96 85.45 87.22 99.24 99.26 99.29
6 165 77.98 87.87 89.86 94.38 98.04
7 181 89.74 80.34 90.08 95.67 96.35
8 277 84.04 81.89 93.88 90.71 96.00
9 398 86.56 85.52 92.28 90.07 93.56
DS: datasets; NoS: number of species; GCD: gene content distance; OG: overlapping gene distance; CT: CVTree,𝐾 = 5; Com: ComPhy; CGC: CGCPhy. ∗The
results of GCD, OG, and ComPhy obtained from reference [5].

Table 4: The results of accuracy by different stage combinations on fixed datasets.

Datasets 1 1 + 2 1 + 3 CGCPhy
Dataset1 84.67% 87.08% 95.52% 98.83%
Dataset2 87.01% 89.58% 90.58% 95.29%
Dataset3 91.92% 86.46% 96.95% 98.91%
Dataset4 87.53% 86.58% 95.73% 96.59%
Dataset5 84.96% 84.96% 99.29% 99.29%
Dataset6 78.80% 78.96% 95.76% 98.04%
Dataset7 78.11% 78.11% 96.35% 96.35%
Dataset8 77.48% 77.48% 96.00% 96.00%
Dataset9 80.26% 86.54% 92.72% 93.56%
Mean 83.41% 83.97% 95.43% 96.98%
1: identifying orthologous genes; 2: eliminating the highly conserved orthologous genes; 3: measuring conserved gene cluster distance; CGCPhy = 1 + 2 + 3.

the accuracies are not as good as expected. We also used 10
random sets which contain species from distant genera and
similar genera. By using CGCPhy, the average accuracy of
constructed phylogenetic trees is 92.70%.

Prokaryotic phylogenies inferring is still an open prob-
lem, and Bergey’s taxonomy changes the taxonomy of several
species in each new release [42]. For example, the genus
Oceanobacillus was part of the phylum Proteobacteria (B12)
in Bergey’s taxonomy 3.0 [43], but it belonged to phylum
Firmicutes (B13) in Bergey’s taxonomy 5.0 [29]. The species
Oceanobacillus iheyensis (B13.1.1.1.12) is accurately placed
to its own phylum by our CGCPhy method. In Bergey’s

taxonomy 5.0 [29] the species Thiomicrospira denitrificans
was placed in phylum Gammaproteobacteria (B12.3). But
by CGCPhy the species of Thiomicrospira are placed closer
to phylum Epsilonproteobacteria (B12.5), and in TOBA 7.7
[44] the species was renamed Sulfurimonas denitrificans
and moved to Epsilonproteobacteria. The species Carboxy-
dothermus hydrogenoformans (NC 007503) and Moorella
thermoacetica (NC 007644) are placed closer by using CGC-
Phy. But in Bergey’s taxonomy 5.0, they were placed in
Order Clostridiales (B13.1.1) and Order Thermoanaerobac-
teriales (B13.1.2). However, in Bergey’s Manual Vol. 3 [32],
NC 007503 were moved in Order Thermoanaerobacterales
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Figure 8: Phylogenetic trees of 20 bacterial species by (a) GCD, (b) CVTree, (c) ComPhy and (d) CGCPhy.

(B13.2.3). So, the proposed method has important implica-
tions in phylogenetic inference and has a powerful capability
for phylogenetic analysis.

4. Conclusions

How to infer prokaryotic phylogenies accurately is still an
open problem. In this paper, we infer prokaryotic phylo-
genies by a novel method CGCPhy, which is based on the
distance matrix of orthologous gene clusters between whole
genome pairs. Unlike most of existing methods, which only

use several genome information, our method measures the
evolutionary relationship among various groups of species
by using genomic information of sequence, function, and
structure. If two species are closer in phylogenetic tree,
they are more similar in genomic sequence, functions, and
structures. So, we measure orthologous genes by both con-
sidering sequence similarity and other genomic annotation
information. Nonetheless, these orthologous genes may con-
tain several genes which are involved in horizontal gene
transfer (HGT) events. In this paper, we eliminate the highly
conserved genes across different species and the genes located
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Rhodobacter sphaeroides 2 4 1

Cyanothece ATCC 51142

Haloarcula marismortui ATCC 41698

Halorubrum lacusprofundi ATCC 49239

Figure 9: Phylogenetic trees of 28 multiple-chromosome prokaryotic genomes by CGCPhy.

Table 5: The results of accuracy by different stage combinations on random datasets.

Species no. 1 1 + 2 1 + 3 CGCPhy
50 77.62% 78.56% 93.74% 93.74%
100 77.78% 80.04% 93.37% 94.81%
200 79.67% 81.41% 94.08% 95.49%
300 78.97% 84.16% 93.39% 96.13%
Mean 78.51% 81.04% 93.65% 95.04%
Std 0.0389 0.0564 0.0279 0.0278
1: identifying orthologous genes; 2: eliminating potential HGT genes; 3: measuring conserved gene cluster distance; CGCPhy = 1 + 2 + 3.

on the fragments with abnormal genome barcode which
are considered as the putative genes potentially involved in
HGT events. Afterwards, the distance of orthologous gene
cluster between two genomes is calculated by the number
of orthologous genes in conserved clusters. Using these
distances, we can construct phylogenetic trees by the third-
party tool “Phylip.”

The proposed method is examined on different datasets
from 617 prokaryotic genomes. To validate the method

completely, we examine the method on the fixed datasets
and random datasets in different number of species. The
method achieved average above 93% agreement with Bergey’s
taxonomy in quartet topologies on these datasets. The
CGCPhy method has higher average accuracy of phyloge-
netic inference than other methods, such as CVTree and
ComPhy in most datasets. Simultaneously, it has low stan-
dard deviation of inferring accuracy in different datasets.
Simulation results show that the proposed method has
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Figure 10: The accuracy of phylogenetic inference in (a) 50, (b) 100, (c) 200, and (d) 300 random species datasets.

consistent robustness and accuracy in phylogenetic inference
and has a potential capability for phylogenetic analysis. The
complied program and test datasets are publicly available at
http://csbl.bmb.uga.edu/publications/materials/weidu/.
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