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Abstract

It was analyzed in normal physiological arteries whether the least energy princi-

ple would suffice to account for the radius exponent x. The mammalian arterial

system was modeled as two types, the elastic or the rigid, to which Bernoulli’s

and Hagen-Poiseuille’s equations were applied, respectively. We minimized the

total energy function E, which was defined as the sum of kinetic, pressure, met-

abolic and thermal energies, and loss of each per unit time in a single artery

transporting viscous incompressible blood. Assuming a scaling exponent a
between the vessel radius (r) and length (l) to be 1.0, x resulted in 2.33 in the

elastic model. The rigid model provided a continuously changing x from 2.33

to 3.0, which corresponded to Uylings’ and Murray’s theories, respectively,

through a function combining Reynolds number with a proportional coeffi-

cient of the l � r relationship. These results were expanded to an asymmetric

arterial fractal tree with the blood flow preservation rule. While x in the opti-

mal elastic model accounted for around 2.3 in proximal systemic (r > 1 mm)

and whole pulmonary arteries (r ≥ 0.004 mm), optimal x in the rigid model

explained 2.7 in elastic-muscular (0.1 < r ≤ 1 mm) and 3.0 in peripheral resis-

tive systemic arteries (0.004 ≤ r ≤ 0.1 mm), in agreement with data obtained

from angiographic, cast-morphometric, and in vivo experimental studies in the

literature. The least energy principle on the total energy basis provides an alter-

nate concept of optimality relating to mammalian arterial fractal dimensions

under a = 1.0.

Introduction

Mean aortic blood pressure falls only 2% from the

ascending aorta to small arteries whose inner radius (r)

narrows to ~1 mm (Struijker-Boudier 2009) (or ~2.5 mm,

Nichols et al. 2011) in the human systemic circulation

(Nichols et al. 2011). The normal pulmonary arterial cir-

culation shares 50% (Brody et al. 1968; Bhattacharya and

Staub 1980; Michel et al. 1985) of the whole mean trans-

pulmonary pressure gradient, which is as low as

6–7 mmHg in humans (Fowler 1980; Kovacs et al. 2009;

Nakamura et al. 2011). The common factor in these two

small pressure-losing systems lies largely in the elasticity

of its arterial wall (Patel et al. 1960; Learoyd 1966;

Gow and Taylor 1968; Milnor 1982; Zhuang et al. 1983;

Al-Tinawi et al. 1991; Gan and Yen 1994; Dawson et al.

1999; Nichols et al. 2011). The sufficient elasticity and

resultant large distensibility in proximal systemic arteries

are due to the large ratio of constituent elastin over colla-

gen and the thin smooth muscle layer (Struijker-Boudier

2009; Nichols et al. 2011). On the other hand, the pulmo-

nary arterial wall is much thinner, less-or-non muscular-

ized, and more distensible than its systemic counterpart

(Patel et al. 1960; Gow and Taylor 1968; Milnor 1982;

Al-Tinawi et al. 1991; Guyton 1991; Dawson et al. 1999;

Nichols et al. 2011). Thus, even though peripheral pulmo-

nary arteries of r ≤ 0.1 mm comprise the most resistive in

the pulmonary circulation (Bhattacharya and Staub 1980;

Michel et al. 1985), the mean pressure gradient through

them amounts to only 2.8 mmHg, as estimated in con-

trols of our clinical data (Nakamura et al. 2011).

By contrast, as much as 60% of mean aortic blood pres-

sure is lost in peripheral systemic resistive arteries

(0.004 ≤ r ≤ 0.1 mm) (Nichols et al. 2011). A much smal-
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ler elastin/collagen ratio in more peripheral systemic arter-

ies renders their wall a lot stiffer (Learoyd 1966; Gow and

Taylor 1968; Struijker-Boudier 2009; Nichols et al. 2011).

Furthermore, adding a thick smooth muscle layer to this

already stiffer wall property makes the change in the radius

in response to internal pulsatile pressure alteration

extremely small in systemic arterioles (Meyer et al. 1988;

Nichols et al. 2011).

Some histologists, however, advocate another intermedi-

ate category of systemic arteries around 0.1 < rs ≤ 1 mm

(Struijker-Boudier 2009) (or ≤2.5 mm, Nichols et al.

2011), where the pressure gradient comprises 8% of mean

aortic pressure in humans (Nichols et al. 2011). They

describe it as elastic-muscular and its wall property lies

inbetween the more proximal elastic and more peripheral

resistive arteries (Struijker-Boudier 2009; Nichols et al.

2011).

In blood vessels where blood transportation is their

main function, mean blood volume flow per unit time

(q) through a cylindrical vessel has been empirically

expressed as a function of its internal vessel radius r, as

shown in equation (1) with a real number x:

q a rx; (1)

which is called the flow-radius relationship (Mayrovitz

and Roy 1983; Woldenberg 1983; House and Lipowsky

1987; Horsfield and Woldenberg 1989; Bennett et al.

2000). Hereafter, unless otherwise indicated, the internal

radius is simply described as the radius, and all the vari-

ables and parameters are expressed in the International

System of Units (SI) in equations. When a mother vessel

branches into two daughter vessels, representing the blood

flow of the mother and of the two daughters as qm, qd1,

and qd2, respectively, the preservation of blood flow

through these three vessels gives the following

qm ¼ qd1 þ qd2 : (2)

Moreover, indicating the radii of the mother and her

two daughter vessels as rm, rd1 , and rd2 , respectively, equa-

tions (1 and 2) provide us with the relationship between

them as

rxm ¼ rxd1 þ rxd2or
rd1
rm

� �x

þ rd2
rm

� �x

¼ 1; (3)

where x is called the radius exponent (Mandelbrot 1983;

Kamiya and Takahashi 2007; Nakamura et al. 2011) or

the junction exponent (LaBarbera 1995; Bennett et al.

2000), and corresponds to the fractal dimension of

embedding in fractal theory for an asymmetric vascular

tree applicable to multiple consecutive arterial generations

(Suwa and Takahashi 1971; Mandelbrot 1983; West et al.

1997; Bennett et al. 2000; Gafiychuk and Lubashevsky

2001; Zamir 2001; Kamiya and Takahashi 2007; Nakam-

ura et al. 2011). In normal physiological situations, the

mean of x stayed between 2.0 and 3.0, although its range

was reported to be from as low as 1.0 to over 4.0 through

various methods in a variety of mammalian arteries

(Suwa and Takahashi 1971; Sherman 1981; Mayrovitz and

Roy 1983; Woldenberg 1983; House and Lipowsky 1987;

Horsfield and Woldenberg 1989; Kassab and Fung 1995;

LaBarbera 1995; Dawson et al. 1999; Bennett et al. 2000;

Zamir 2001; Ghorishi et al. 2007; Nakamura et al. 2011).

Hereafter we use suffixes s and p to indicate systemic and

pulmonary, respectively.

Previously reported results of xs are plotted in

Figure 1A against the corresponding rs, for which we

could identify the range. These data mainly reflect rs – xs
sets listed in LaBarbera’s (1995) review article, and

include those reported by other studies (Suwa and Takah-

ashi 1971; Sherman 1981; Mayrovitz and Roy 1983;

House and Lipowsky 1987; Rossitti and L€ofgren 1993;

Kassab and Fung 1995; Nakamura et al. 2011). xs � 2.0–
2.3 was reported by angiographic morphometry in proxi-

mal systemic arterial branching structures, such as from

the aorta to next-generation large arteries (Zamir and

Brown 1982; Zamir et al. 1992; LaBarbera 1995), where

little pressure drop takes place. In contrast, xs � 3 has

consistently been reported in peripheral systemic resistive

arteries of 0.004 ≤ rs ≤ 0.1 mm (Nichols et al. 2011) by

postmortem cast morphometry in mammals (Sherman

1981; Kassab and Fung 1995) and direct measurement of

the qs � rs relationship in in vivo rat cremaster arteries

(Mayrovitz and Roy 1983; House and Lipowsky 1987).

The result of our recent analysis using human hemody-

namic data also gave xs = 3.1 � 0.2 in peripheral sys-

temic resistive arterial trees, whose radius was assumed to

range from 0.01 to 0.1 mm (Nakamura et al. 2011).

However, transitional or intermediate values of xs � 2.7

have also been observed in several organs of some mam-

malian systemic arteries (Suwa and Takahashi 1971;

LaBarbera 1995; Bennett et al. 2000).

By the same token, we present the pulmonary arterial

counterpart reported in humans and dogs in the litera-

ture (Suwa and Takahashi 1971; Horsfield and Wolden-

berg 1989; Dawson et al. 1999; Nakamura et al. 2011) in

Figure 1B. Mean xp was reported to be 2.3 � 0.1

(0.0065 ≤ rp ≤ 15 mm) (Horsfield and Woldenberg

1989), or to range from 2.47 � 0.09 (rp < 0.1 mm) to

2.66 � 0.07 (rp ≥ 0.1 mm) by pulmonary arterial cast

morphometry of normal humans (Suwa and Takahashi

1971). Assuming that the peripheral pulmonary arterial

radius ranges from 0.01 to 0.1 mm in common with the

systemic counterpart, our recent report indicated

xp = 2.2 in peripheral pulmonary arteries in normal

humans (Nakamura et al. 2011). The relationship
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between qp and rp in the human pulmonary arterial tree

simulated by Singhal et al. (1973) on the basis of their

cast morphometry is also presented with a log–log plot

in Figure 2, where the slope of this plot clearly indicates

that xp stays constant at 2.32 starting from proximal

large to peripheral small arteries. However, a marked

large standard deviation (SD) of the arithmetic mean of

xp around 2.9 was also reported in dog lungs by Dawson

et al.’s (1999) cast-morphometric study, as indicated in

Figure 1B.
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Human coronary †, Suwa and Takahashi (1971) Table 1(c)

Human mixed ‡, Nakamura et al. (2011) P.36
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Figure 1. (A) Distribution of reported xs in a variety of animals by previous studies through various methods, all of which, except for Meuer’s

data (LaBarbera 1995), are humans (Singhal et al. 1973; Rossitti and L€ofgren 1993; LaBarbera 1995; Nakamura et al. 2011) and mammals

(Sherman 1981; Mayrovitz and Roy 1983; House and Lipowsky 1987; Kassab and Fung 1995). CMA, ECA, SCA, and SMA indicate the

cremaster muscle, external carotid, subclavian, and superior mesenteric arteries, respectively. Radii of ECA, SCA, and SMA were estimated from

Olufsen et al.’s (2000) table 1 as 2.5, 4.4, and 3.3 mm, respectively; radius of ECA was tentatively substituted for the mean of the minimal

radius at the outlet of bilateral common carotid arteries. House and Lipowsky’s (1987) result presented in this figure was derived from the

volumetric flow of red blood cells. (B) Distribution of reported xp in humans (Suwa and Takahashi 1971; Horsfield and Woldenberg 1989;

Nakamura et al. 2011) and dogs (Dawson et al. 1999). PA, pulmonary arterial tree; LPA, left PA. r, vessel radius, presented at the mid-point

with the range because the mean and median were not reported in the literature; x, radius exponent, defined by in equation (1 or 3) and

presented as the mean with one standard deviation. Suffixes s and p indicate systemic and pulmonary. Methodology is indicated by symbols:

*angiography; †cast morphometry; ‡model analysis with catheter data; §direct measurement in vivo.
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To date, the most influential and prevailing theory for

xs = 3 found in the peripheral systemic arterial bed

(Uylings 1977; Sherman 1981; Zamir and Brown 1982;

Rossitti and L€ofgren 1993; Kassab and Fung 1995; LaBar-

bera 1995; Nakamura et al. 2011) is Murray’s law, which

applied the minimum cost principle to a rigid cylindrical

artery with viscous Newtonian steady flow (Murray 1926;

Uylings 1977; Sherman 1981; Mayrovitz and Roy 1983;

Griffith and Edwards 1990; LaBarbera 1995; Gafiychuk

and Lubashevsky 2001; Nakamura et al. 2011). Fractal

space-filling embedding (Mandelbrot 1983; Gafiychuk and

Lubashevsky 2001) also provides an alternative theoretical

basis for xs = 3. However, these two principles are not by

themselves effective enough to explain the consistency of

the radius exponent of the proximal systemic (rs > 1 [or

2.5] mm) (Zamir and Brown 1982; Zamir et al. 1992;

LaBarbera 1995), intermediate systemic elastic-muscular

arteries (0.1 < rs ≤ 1 [or 2.5] mm) (Suwa and Takahashi

1971; LaBarbera 1995), or the pulmonary arterial beds

(Singhal et al. 1973; Horsfield and Woldenberg 1989;

Nakamura et al. 2011) on the common basis. Several

explanations for x from 2.0 to 2.7 have since been

attempted, such as the cross-sectional area-preserving law

(x = 2.0) (Woldenberg 1983; Zamir et al. 1992; LaBarbera

1995; West et al. 1997; Bennett et al. 2000), minimization

of both drag and power loss (x = 2.0) (Griffith and

Edwards 1990; Bennett et al. 2000), complete turbulence

(x = 7/3 = 2.33) (Uylings 1977; Bennett et al. 2000),

minimization of surface area and power loss (x = 2.5)

(Griffith and Edwards 1990; Bennett et al. 2000), and

minimum volume principle (2.1 < x < 2.8) (Woldenberg

1983; Bennett et al. 2000).

Hagen-Poiseuille’s equation has long been used univer-

sally to express the pressure gradient in arterial models

including Murray’s theory, irrespective of whether r is

derived from big arteries like aorta or from small periph-

eral arterioles (Murray 1926; Suwa and Takahashi 1971;

Uylings 1977; Sherman 1981; Mayrovitz and Roy 1983;

Rossitti and L€ofgren 1993; Kassab and Fung 1995; LaBar-

bera 1995; West et al. 1997; Dawson et al. 1999; Gafiy-

chuk and Lubashevsky 2001; Kizilova 2006; Ghorishi et al.

2007; Kamiya and Takahashi 2007; Nakamura et al. 2011).

However, it is also well known that Hagen-Poiseuille’s

equation is unable to accurately estimate vascular resis-

tance in proximal systemic elastic arteries and whole pul-

monary arteries because of their large pulsatile fluctuation

of radius (Horsfield and Woldenberg 1989; Middleman

1995; Nichols et al. 2011). On the other hand, Bernoulli’s

equation can and should rather reasonably be applied to

blood flow through elastic arteries, such as proximal

human systemic or whole pulmonary arteries (Lima et al.

1983a,b; Bermejo et al. 2002; Nichols et al. 2011).

The present article tries to introduce an alternate novel

theory for optimal arterial models to explain various values

of the radial exponent, which were observed in normal,

namely, physiological mammalian arteries from the stand-

point of the least energy principle. Prior to the theoretical

analysis to follow, referring to Figure 1A and B, we tenta-

tively reviewed the hitherto reported locality, wall property,

and radius exponent of systemic and pulmonary arteries,

which had been categorized by the radius alone, as shown

in Table 1 A and B, because it was considered to provide

an overview of the present status of the whole situation

surrounding the radius exponent and related morphology.

First, we theoretically used Murray’s theory by approach-

ing through the least energy principle, where Bernoulli’s and

Hagen-Poiseuille’s equations were, respectively, applied in

elastic and rigid arterial models, and we tried to delineate

the respective optimal arterial design of these two models

in the normal physiological circulation. Second, we also

estimated xs and xp through mathematical and fractal

analysis using previously reported morphometric data of

systemic as well as pulmonary arterial trees in the literature.

Finally, theoretical results were compared with either

reported and/or our own estimated results and discussed in

relation to conventional theories.

Methods

Theoretical background

Murray (1926) deliberated on the cost function C for a

steady blood flow in a cylindrical artery and came up

with the sum of pressure energy loss (DUP) per unit time,

as defined by Hagen-Poiseuille’s equation on one hand,

ln qp = 2.32 ln rp  1.421 
r = 0.999 

–15 
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 q
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ln rp 

qp [mL sec–1] 
rp [mm]

Figure 2. Ln-ln plot of human pulmonary arterial blood flow (qp)

in a vessel against its corresponding vessel radius (rp). The original

data for the plot are derived from combining Singhal et al.’s (1973)

tables 4 and 5 under the condition of assumed cardiac output of

4.8 L/min. The slope of this proportionality is equal to radius

exponent x. r indicates the correlation coefficient.
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and the loss of metabolic energy (DUM) of blood in the

vessel per unit time on the other. Indicating pressure loss

through the vessel, blood flow rate, internal vessel radius,

vessel length, and blood viscosity as DP, q, r, l, and l,
respectively, DP and DUP were represented as

DP ¼ 8ll
pr4

q and (4)

DUp ¼ DPq ¼ 8ll
pr4

q2; respectively: (5)

To extend DUM from the original definition by Murray

(1926), which was intended only for blood volume in a

vessel, to the whole vascular volume, Mayrovitz and Roy

(1983) later added the metabolic term of an arterial wall

(the second term in the next eq. 6) to that of blood only

(the first term) for DUM. Defining the metabolic rate of

blood per unit time and volume, that of the vessel wall,

and the wall thickness of blood vessels as Kb, Kw, and h

(Mayrovitz and Roy 1983), respectively, DUM was repre-

sented anew as

DUM ¼ Kbpr
2lþ Kwð2prlhÞ: (6)

The wall thickness h can be assumed to be constantly

proportional to r from large arteries down to micro arte-

rioles and given by h = wr, where w is reported by past

morphometric studies to be 0.25 in systemic large arteries

and 0.2–0.5 in small arteries and arterioles (Uylings 1977;

Mayrovitz and Roy 1983; Nichols et al. 2011). The wall

thickness of pulmonary arteries is estimated as one-third

of their systemic counterparts (Guyton 1991). Hence,

equation (6) can be rewritten with the aggregated meta-

bolic rate K as

DUM ¼ ðKb þ 2wKwÞpr2l ¼ Kpr2l: (7)

Combining equations (5 and 7), Murray’s cost function

C was defined as (Murray 1926; Mayrovitz and Roy 1983)

C ¼ DUp þ DUM ¼ 8ll
pr4

q2 þ Kpr2l: (8)

Applying partial differentiation of C to equation (8)

with respect to r, the condition of oC/or = 0 on the basis

of minimum cost principle leads to 16lq2/(Kp2) = r6,

which then results in the next equation (9):

q ¼ p
4

K

l

� �1=2

r3: (9)

This cubic relationship between q and r is Murray’s law

itself. However, this persuasive explanation does not nec-

essarily guarantee the minimum cost of the whole arterial

tree, where arterial ramifications are essential.

Definition of energy function for an artery

We designed the energy function for a single artery and

designated it E, which represents the whole energy needed

to drive and transport blood, and maintains both the vessel

and the blood. Blood flow was treated as a viscous incom-

pressible Newtonian fluid. Time average or the mean of

kinetic, pressure, and metabolic and thermal energies of

blood flow are defined as UK, UP, and UM, respectively; the

Table 1. Categorization of mammalian arteries by locality in terms of radius, arterial wall property, and consequently radius exponent.

Locality Range of radius (mm) Wall property xs References

(A) Systemic

Proximal 1 < rs Elastic1 ~2.3 Zamir and Brown (1982); Zamir et al. (1992); LaBarbera (1995)

Intermediate 0.1 < rs ≤ 1 Elastic-muscular2 ~2.7 Suwa and Takahashi (1971); LaBarbera (1995)

Peripheral 0.004 ≤ rs ≤ 0.1 Muscular (rigid)2 ~3.0 Sherman (1981); Mayrovitz and Roy (1983); House and Lipowsky (1987);

Kassab and Fung (1995); Nakamura et al. (2011)

Locality Range of radius (mm) Wall property xp References

(B) Pulmonary

Proximal 0.1 < rp Elastic1 ~2.3 Singhal et al. (1973); Horsfield and Woldenberg (1989); Dawson et al. (1999)

Peripheral 0.004 ≤ rp ≤ 0.1 Elastic1 ~2.3 Singhal et al. (1973); Horsfield and Woldenberg (1989); Dawson et al. (1999);

Nakamura et al. (2011)

The range of the radius presented in each classification of systemic and pulmonary arteries comes from Struijker-Boudier’s (2009) figure 1 and

Suwa and Takahashi’s (1971) table 1(a), respectively. r stands for radius; x, radius exponent defined by equation (1 or 3). Suffixes p and s indi-

cate pulmonary and systemic, respectively. Although the lower limit of the vessel radius is common to that of capillaries, our arterial model

does not conceptually include the capillary vessel.
1,2indicate vessel types to which we applied our elastic and rigid arterial models, respectively. Data of x came from table 1 (Dawson et al.

1999), table 4 (Horsfield and Woldenberg 1989), figure 2D (House and Lipowsky 1987), P. 15 (Kassab and Fung 1995), table 1.3 (LaBarbera

1995), table 1 (Mayrovitz and Roy 1983), P. 36 (Nakamura et al. 2011), P. 443 (Sherman 1981), tables 4 and 5 (Singhal et al. 1973), and

table 3 (Suwa and Takahashi 1971).
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arterial system transports these three main energies along

the stream, as will be detailed later. UM does not include

the metabolic and thermal energy held by the arterial wall

in this model, because it is not transported by the arterial

stream. Mean losses of kinetic, pressure, and metabolic

and thermal energies through the vessel per unit time are

represented as DUK, DUP, and DUM, respectively, while

DUK and DUP are not significantly dependent upon the

shape of branching in this model. We assume that there is

no interconversion between dynamic energy (UK, UP,

DUK, and DUP) and metabolic and thermal energy (UM

and DUM) within the vessel. Energy dissipation due to tur-

bulence of blood flow is not taken into consideration

either in this model. The potential energy held by the grav-

itational center of blood flow and its change through a sin-

gle artery are not treated separately in this model. While

the metabolic energy is partly converted to heat in the

whole vascular volume including blood, the movement of

heat is assumed to be in equilibrium between the arterial

system and the surrounding tissue. The energy conserva-

tion through this single artery is expressed as

E � ðDUK þ DUP þ DUMÞ ¼ UK þ UP þ UM:

Thus, we get

E ¼ ðUK þ DUKÞ þ ðUP þ DUPÞ þ ðUM þ DUMÞ: (10)

Therefore, E is defined as the sum of kinetic energy,

pressure energy, metabolic and thermal energy, and loss

of each. The rigorous cost function C is definable in

equation (10) as

C ¼ DUK þ DUP þ DUM: (11)

Minimizing E optimizes the arterial design of this

model analysis. However, neither this optimization nor

Murray’s model incorporates and so guarantees the mini-

mum cost at the arterial branching.

Energy function for an elastic artery

The elastic arterial model is assumed to represent both

proximal systemic arteries (rs > 1 mm) (Struijker-Boudier

2009) and the whole pulmonary arterial tree spanning

from proximal (rp > 0.1 mm) to peripheral (0.004 ≤ rp
≤ 0.1 mm) (Singhal et al. 1973; Horsfield 1978; Horsfield

and Woldenberg 1989; Huang et al. 1996; Dawson et al.

1999), as indicated also in Table 1A and B. The elastic

arterial model is basically assumed cylindrical but might

have a modicum of tapering toward the end (Milnor

1982; Dawson et al. 1999; Nichols et al. 2011).

The means of the internal vessel radius and length

over time and space in a single elastic artery are indi-

cated as r and l, and the mean blood volume flow per

unit time and the mean pressure over time and space

are also represented as q and P, respectively. The pres-

sure drop produced along the length of the vessel is

expressed by DP.
Indicating the specific gravity of blood as q, the mean

mass of blood volume flow per unit time is given by qq.
The mean linear velocity v at the gravitational center of

blood flow is given as q/pr2. Thus, UK, the kinetic energy

of blood flow through the vessel per unit time is

expressed in the next equation (12) (Milnor 1982):

UK ¼ 1

2
qqv2 ¼ 1

2
qq

q

pr2

� �
: (12)

In an elastic artery with a modicum of tapering, Ber-

noulli’s effect provides an increase in UK, which makes

DUK negative. UP and DUP are described as shown below

(Milnor 1982):

UP ¼ Pq and (13)

DUP ¼ DPq (14)

Because 1 lL O2 consumption corresponds to

5 9 10�3 cal (=2.1 9 10�2 J) of metabolic energy

(Mayrovitz and Roy 1983), UM is defined as the sum of

the metabolic energy converted from the oxygen supply

of arterial blood flow and genuine thermal energy in it:

UM ¼ kuO2
qþ cHqT ¼ ðkuO2

þ cHTÞq; (15)

where k, uO2
, cH and T indicate the proportional coeffi-

cient to convert oxygen volume in blood to equivalent

metabolic energy (k = 2.1 9 104 J L�1), the arterial oxy-

gen volume per unit blood volume, the specific heat

capacity of blood per unit volume, and the mean absolute

temperature of blood as an average over time and space,

respectively. uO2
is regarded as constant throughout the

arterial tree in this model for simplification.

Furthermore, DUM in this article is defined again in

equation (7) as in Murray’s or Mayrovitz and Roy’s equa-

tions; however, the l � r relationship of an arterial tree in

a number of human organs has already been reported by

Suwa and Takahashi (1971), who indicated that l was a

function of r using real numbers a and Ω in both sys-

temic and pulmonary arteries as

l ¼ Xra (16)

This empirical expression has been applied widely in

arterial fractal models (Suwa and Takahashi 1971; West

et al. 1997; Dawson et al. 1999; Olufsen et al. 2000;

Gafiychuk and Lubashevsky 2001; Kizilova 2006; Kamiya

and Takahashi 2007). The morphologically estimated

value of the exponent a centers around 1.0, ranging from

0.76 to 1.21, in various human systemic (Suwa and

Takahashi 1971; Kamiya and Takahashi 2007) as well as

mammalian pulmonary arteries (Suwa and Takahashi

1971; Dawson et al. 1999), as listed in Table 2. Simply
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assumed to be 1.0, it has generally been used and

discussed in model studies (Suwa and Takahashi 1971;

West et al. 1997; Dawson et al. 1999; Olufsen et al. 2000;

Gafiychuk and Lubashevsky 2001; Kizilova 2006; Kamiya

and Takahashi 2007). Therefore, when we need to deal

with a in this model analysis, a is set tentatively to 1.0

for the sake of simplicity and brevity. As a result, equa-

tion (7) was rewritten with equation (16) as

DUM ¼ KpXr2þa: (17)

Substitution of equations (12–15 and 17) into equa-

tion (10) gives

E¼ 1

2
qq

q

pr2

� �2

þDUKþðPþDPÞqþðkuO2
þ cHTÞq

þKpXr2þa: (18)

Because Bernoulli’s effect always guarantees reciprocal

conversion between DUK and DUP as DUK + DUP � 0

throughout an elastic artery (Lima et al. 1983a,b; Bermejo

et al. 2002; Nichols et al. 2011), DUK + DPq � 0 also

holds true in equation (18).

In conclusion, equation (18) is rewritten with Ber-

noulli’s effect as

E ¼ 1

2
qq

q

pr2

� �2

þPqþ ðkuO2
þ cHTÞqþ KpXr2þa: (19)

We partially differentiated E with respect to r, and

applied oE/or = 0 to equation (19).

Energy function for a rigid artery

The rigid arterial model is applied to intermediate

(0.1 < rs ≤ 1 mm) (Struijker-Boudier 2009; Nichols et al.

2011) and peripheral systemic arteries (0.004 ≤ rs
≤ 0.1 mm) (Mayrovitz and Roy 1983; House and Lipow-

sky 1987; Nichols et al. 2011), both of which we regard as

cylindrical (Murray 1926; Suwa and Takahashi 1971;

Uylings 1977; Sherman 1981; Mayrovitz and Roy 1983;

Kassab and Fung 1995; LaBarbera 1995; West et al. 1997;

Olufsen et al. 2000; Gafiychuk and Lubashevsky 2001;

Kizilova 2006; Kamiya and Takahashi 2007; Nakamura

et al. 2011; Nichols et al. 2011), as indicated in Table 1A.

The energy function E in equation (10) was also applied

to the analysis of the optimal design of a rigid artery. UK,

UP, UM, and DUM are similarly expressed as counterparts

in equations (12, 13, 15, and 17), respectively. As DUP in

a rigid artery is due to the friction between viscous blood

flow and the arterial inner surface (Nichols et al. 2011),

Hagen-Poiseuille’s equation was applied as presented in

equation (5). Because there is no change in mean linear

velocity through a rigid artery due to Hagen-Poiseuille’s

law, DUK is equal to 0 in equation (10). By substituting

Table 2. Reported data of a and Ω in systemic and pulmonary arteries by previous studies of fractal analysis with cast-morphometric measure-

ments in the literature.

Reference Range of radius (mm) a Ω

Systemic

Human renal Suwa and Takahashi (1971) ≥0.01 0.85 17.6

Mesenteric Suwa and Takahashi (1971) ≥0.01 1.04 13.0

Femoral Suwa and Takahashi (1971) ≥0.01 1.01 13.2

Pancreas Suwa and Takahashi (1971) ≥0.01 0.90 16.1

Cerebral cortex Suwa and Takahashi (1971) ≥0.01 1.15 7.4

Basal ganglion Suwa and Takahashi (1971) ≥0.01 1.21 4.6

Coronary Suwa and Takahashi (1971) ≥0.01 1.05 7.9

Pulmonary

Human1 Dawson et al. (1999) 0.0065–0.425 0.85 6.43

Human2 Dawson et al. (1999) 0.01–7.4 0.89 9.51

Human Suwa and Takahashi (1971) ≥0.01 1.16 2.8

Dog lt. Dawson et al. (1999)5 0.030–7.574 1.139–1.15 3.987–5.0

Dog Dawson et al. (1999) 1.00

Dog3 Dawson et al. (1999) 0.014–5.56 0.84 9.72

Cat Dawson et al. (1999) 1.03 15.5

Rat4 Dawson et al. (1999) 0.00665–0.8 1.03 5.3

a and Ω represent exponent and proportional coefficient of the relationship between vessel length and radius, respectively, defined by

equation (16); lt, left. Research articles which Dawson et al. (1999) used for their estimation are partly common to our references (Horsfield

1978; Gan and Yen 1994; Jiang et al. 1994; Huang et al. 1996).
1,2,3,4corresponded to the above-mentioned Horsfield (1978); Huang et al. (1996); Gan and Yen (1994); Jiang et al. (1994), respectively.

Sources of data were table 3 (Suwa and Takahashi 1971) and table 1 (Dawson et al. 1999), while 5means figure 4 (Dawson et al. 1999).
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equation (16) into equation (5) as DUP, E of a rigid

cylindrical artery is finalized as

E ¼ 1

2
qq

q

pr2

� �2

þPqþ 8lXra

pr4
q2 þ ðkuO2

þ cHTÞq

þ KpXr2þa; (20)

which involves the addition of Hagen-Poiseuille’s term

in equations (5–19) as a consequence. Similarly, the

optimal relationship between q and r was sought by oE/
or = 0.

Resources of subjected data

For comparison, we also analyzed mammalian arterial

cast-morphometric data sets reported in the literature,

which contain r, l, and the number of vessels in an arte-

rial tree in each generation. The rule of vessel generation

is ranked and numbered at each ramification from the

most proximal to the most peripheral arteries. However,

if the literature in question happened to follow the rule

of “order,” which adopted an inverse numbering system

starting from the most peripheral arteries, we regarded

the largest order as the first generation, revising orders

into generations. One data set of canine mixed systemic

arterial trees was available from Milnor’s (1982) morpho-

metric study. We also used Mall’s data of canine superior

mesenteric arterial tree modified by Sherman (1981), who

adopted the rule of “rank,” which numbered the first-

generation vessel as 0, although Mall’s data set lacks data

about l. We could also acquire three human pulmonary

arterial data sets from Horsfield’s (1978), Huang et al.’s

(1996), and Singhal et al.’s (1973) postmortem cast-mor-

phometric studies. Data in Huang et al. (1996) and Sing-

hal et al. (1973) were from a 44-year-old man and a

32-year-old woman, respectively. Because table 6 in Hors-

field (1978) was a revised data set of the human pulmo-

nary arterial tree from table 4 of Singhal et al. (1973) by

amending vessel numbers in small arteries (0.013 ≤ rp
≤ 0.850 mm) (Horsfield 1978), our analysis did not

include the data from order 11 to 17 (1.33 ≤ rp
≤ 30 mm) in Horsfield (1978), which were common to

those in Singhal et al. (1973). In addition, four mamma-

lian data sets of the pulmonary arterial tree were sub-

jected to our analysis; Gan and Yen’s (1994) and Milnor’s

(1982) dog, Zhuang et al.’s (1983) cat, and Jiang et al.’s

(1994) rat cast-morphometric data. Data from two other

studies (Olufsen et al. 2000; Nakamura et al. 2011) were

also used.

Data analysis of x, a, and Ω

Radial exponent x was estimated in each succeeding gen-

eration through the arterial tree of morphometric data

sets. Letting n be a natural number, we assume that the

nth generation mother arteries with mean internal radius

rn and mean vessel length ln branch into the (n + 1)th

generation daughter arteries with mean internal radius

rn+1 and mean vessel length ln+1, while the vessel numbers

of the nth and the (n + 1)th generation arteries are repre-

sented as Nn and Nn+1, respectively. Defining the ratios of

the radius, length, and vessel number of the (n + 1)th

generation to the nth as bn (0 < bn < 1), cn (0 < cn < 1),

and gn (>1), we indicate the means of bn, cn, and gn
through consecutive generations as b, c, and g, respec-
tively. Branching rules (West et al. 1997; Ghorishi et al.

2007; Nakamura et al. 2011) are given as

bn ¼
rnþ1

rn
; cn ¼

lnþ1

ln
; and gn ¼

Nnþ1

Nn
: (21)

Using xn as the radial exponent between nth and

(n + 1)th generations, the preservation of blood flow

through ramifications ensures the following

Nnr
xn
n ¼ Nnþ1r

xn
nþ1: (22)

Equation (22) gives xn as

xn ¼ lnðNn=Nnþ1Þ
lnðrnþ1=rnÞ ¼ � ln gn

ln bn
: (23)

Means and SD of xn were computed in respective arte-

rial categories by the radius, as given in Table 1A and B,

and are presented as estimated x.

a was estimated from equation (16) as the slope of lin-

ear regression analysis between lnr versus lnl (Suwa and

Takahashi 1971; Dawson et al. 1999), where the vertical

intercept corresponded to ln Ω throughout each arterial

category as listed in Table 1A and B. By combining equa-

tions (16 and 21) as

a ¼ ln c
ln b

; (24)

we alternatively sought a from the results of b and c,
which were reported in our previous study (Nakamura

et al. 2011). We also computed Ω from Olufsen et al.’s

(2000) data under a = 1.0.

Statistical analysis

The decision of a statistically significant outlier was

made by Dixon’s Q test, which defines the estimator Q

as a statistical value obtained by dividing the gap by the

full range of sample data, where gap means the absolute

difference between the outlier in question and the closest

value to it (B€ohrer 2008). When Q exceeded the critical

value of confidential limit under P < 0.05, the outlier

was excluded from further statistical analysis (B€ohrer

2008).
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Results

The elastic arterial system

Because oE/or = 0 in equation (19) results in 2qq3 ¼
ð2þ aÞKp3Xr6þa, it follows

q ¼ p
2þ a
2

� �
KX
q

� �1=3

r2þa=3: (25)

Hence, x was directly derived from equations (1 and

25) as follows:

x ¼ 2þ a
3
: (26)

When a is assumed equal to 1.0, x is deduced as 2.33.

Equation (3) is also written with equation (26) as

rd1
rm

� �x

þ rd2
rm

� �x

¼ rd1
rm

� �2þa=3

þ rd2
rm

� �2þa=3

¼ 1: (27)

Using a, b, c, and g on the basis of equations (21, 22,

and 24), the preservation of blood flow extends equa-

tion (27) into an asymmetric fractal expression (Man-

delbrot 1983; Kamiya and Takahashi 2007; Nakamura

et al. 2011):

gbx ¼ gb2þa=3 ¼ gb2c1=3 ¼ 1: (28)

Equation (28) shows that x = 2 + a/3 of equa-

tion (26) retains its validity both structurally and func-

tionally even in the case of more complex asymmetric

ramifications.

The rigid arterial system

oE/or = 0 as applied to equation (20) gave

2

2þ a

� �
q

Kp3Xra
q3 þ 4� a

2þ a

� �
8l
Kp2

q2 ¼ r6: (29)

Letting q/r be f for convenience, x is given below in

equation (30) by taking a as 1.0 only at the exponent in

equation (29) (Appendix A1):

x ffi 2þ ðqf =plÞ þ 8ð4� aÞX
3ðqf =plÞ þ 8ð4� aÞX : (30)

Using v = q/pr2, f = q/r, and D = 2r, where D stands

for the internal vessel diameter, Reynolds number (Re)

is defined and rewritten as shown in next equa-

tion (31) (Horsfield and Woldenberg 1989; Nichols et al.

2011):

Re ¼ mDq
l

¼ 2qq
plr

¼ 2qf
pl

: (31)

Eliminating f in equation (30) using equation (31), we

can express x with Re and Ω as

x ffi 2þ f
3
;where; f ¼ Reþ 16ð4� aÞX

Reþ 16ð4� aÞX=3 : (32)

Equation (32) indicates that mean x asymptotically

approaches its upper limiting value of 3.00 at Re < 10

and to its lower limiting value 7/3 = 2.33 at Re > 104.

Using a, b, c, and g again, the blood flow preservation

also guarantees equation (32) in an asymmetric arterial

fractal by the same token as previously applied to the

elastic arterial system:

gbx ¼ gb2þf=3 ¼ gb2cf=3a ¼ 1: (33)

Estimatin of x, a, and Ω from the literature

Distribution diagrams of the estimated xs and xp against

rs and rp, respectively, are presented in Figure 3A and B.

Mean and SD of the estimated xs and xp in each catego-

rized group by radius, as indicated in Table 1A and B are

shown in Table 3A and B, respectively. Table 3A does not

include the result of xs = 5.56 at rs = 0.026 mm from

Sherman’s rank 4 arteries in Mall’s data (Sherman 1981)

(our fifth generation equivalents) because the Q value

resulted in 0.831 (= (5.56 � 3.36)/(5.56 � 2.91)) over

the critical value of 0.829 (P < 0.05) (B€ohrer 2008)

among four estimates in the peripheral arterial area, as

indicated in Figure 3A. Estimated a and Ω of systemic

and pulmonary arterial trees are presented in Table 4A

and B, respectively. Available systemic arterial data for

this analysis were too scarce to separately estimate the

parameters from these three groups, as classified in

Table 1A.

Comparison of theoretically derived x with
morphometrically determined xs and xp

x = 2.33 from equation (26) was compared with esti-

mated and reported data of proximal systemic arterial xs,

and proximal and peripheral pulmonary arterial xp, in

Figure 4A (rs > 1 mm) and Figure 4B, respectively. Equa-

tion (32) was plotted in Figure 4A together with reported

and our estimated mean xs after adjusting the range of rs
to the corresponding Re as follows. First in the proximal

systemic artery, average Re values at the aortic bifur-

cation and in the common iliac arteries were reported

to range between 400 and 1100 (mean, 730), and

between 390 and 620, respectively (Nichols et al. 2011).

Second, when q of 1.06 mg/cm3 and l of 0.04 Poise

(g cm�3 sec�1) are substituted for equation (31) (Hors-

field and Woldenberg 1989; Kamiya and Takahashi 2007;

Nichols et al. 2011), Re can be represented in the follow-

ing equation:
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Re ¼ q

pr2
2rq
l

¼ 2� 1:06

p� 0:04

q

r
¼ 16:88

q

r
; (34)

where q and r are given in cgs unit (Nichols et al. 2011).

Mayrovitz and Roy (1983) reported the regression equa-

tion as qs = 200 9 Ds
2.89 in cgs unit, where qs and Ds

represented mean blood flow in an artery (cm3/sec) and

its vessel diameter (cm) ranging between 0.0006

and 0.0108 cm, respectively, in an in vivo direct micro-

scopic measurement of cremaster muscle arteries of rats.

Applying the result reported by Mayrovitz and Roy to

equation (34) by expanding the range of rs to 0.1 mm,

we were able to estimate Re as 4.2 (=16.88 9 200

9 (0.02)2.89/0.01) at rs = 0.1 mm. Therefore, average Re

is considered to reside within the range of 4 and 400 in

the region of intermediate systemic arteries. Several cou-

pled conditions of physiological Ω and Res, under which

equation (32) gives xs of 2.7, are presented in Table 5.

0

1

2

3

4

5

6

0.001 0.01 0.1 1 10 100

x s

rs [mm]

3.0
2.33
from Mall's dog SMA data (Sherman 1981, Table III)
from Milnor's dog data (1982, Table 2.3)

*

0

1

2

3

4

5

6

0.001 0.01 0.1 1 10 100

x p

rp [mm]

Mean: 2.45
2.33
1SD
2SD
from Horsfield's human PA data (1978, Table 6)
from Huang et al.'s human LPA data (1996, Table 2)
from Singhal et al. 's human PA data (1973, Table 4)
from Gan and Yen's dog RPA data (1994, Table 1)
from Milnor's dog PA data (1982, Table 2.3)
from Zhuang et al.'s cat RPA data (1983, Table 1)
from Jiang et al.'s rat LPA data (1994, Table 2)

A

B

Figure 3. (A) Plot of estimated xs vs. rs at each arterial generation of systemic arteries of two dogs in the literature (Sherman 1981; Milnor

1982). *indicates the result regarded as an outlier by Q test (P < 0.05) (B€ohrer 2008) among the estimates from Mall’s data of dog superior

mesenteric arteries (SMA) (Sherman 1981) at peripheral systemic arterial area (0.004 ≤ rs ≤ 0.1 mm). (B) Counterparts of pulmonary arteries

from three human (Singhal et al. 1973; Horsfield 1978; Huang et al. 1996) and four mammalian data (Milnor 1982; Zhuang et al. 1983; Gan

and Yen 1994; Jiang et al. 1994) in the literature. Mean of all estimated xp was indicated together with single and double standard deviations

by broken and dotted lines, respectively. PA, pulmonary arterial tree; LPA, left PA; RPA, right PA. r, vessel radius; x, radius exponent, defined by

in equation (1 or 3); s, systemic; p, pulmonary.
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Thirdly, Re at Ds = 0.1 mm (rs = 0.05 mm) in an intra-

organ arterial bed was reported to be 0.1 by theoretical

simulation by Kizilova (2006). Thus, average Re in arter-

ies of rs ≤ 0.1 mm is supposed to range approximately

between 0.1 and 4. Values of Re in the range from 0.1 to

4 yielded xs = 3.00 with equation (30) (Fig. 4A), where

Ωs spanned from 60 to 70 in peripheral systemic arteries

(Table 4A).

Discussion

Application of the least energy principle to E for both

elastic and rigid arterial models yielded the optimal x for

each model. Irrespective of whether it is elastic or rigid,

these results in a single arterial model could successfully

be extended even to an asymmetric fractal arterial tree

system from the viewpoint of blood flow preservation at

branchings. Neither blood temperature in equation (15)

nor metabolic rates of Kb and/or Kw in equation (6)

influenced optimal arterial fractal structures in this model

analysis. We can regard T as independent of the radius in

general. Kb and/or Kw, whose estimated values based on

experimental data were reported to be 4.34 9 103 and

29.9 9 103 erg cm�3 sec�1, respectively, by the detailed

study of Mayrovitz and Roy (1983), were also indepen-

dent of the radius in previous model studies (Murray

1926; Uylings 1977; Sherman 1981; Mayrovitz and Roy

1983; Griffith and Edwards 1990; Gafiychuk and Luba-

shevsky 2001). However, if the local environment happens

to change uO2
and T as well as Kb and Kw, the optimal x

cannot in all likelihood escape their influence. The

F�ahræus-Lindqvist effect (Dawson et al. 1999; Kamiya

and Takahashi 2007; Nakamura et al. 2011; Nichols et al.

2011), which is well known as a non-Newtonian effect,

will yield a smaller x than the predicted value of 3.0 by

equation (32) in the peripheral systemic arteries because

this effect raises Re by significantly decreasing l under

the condition of 0.004 ≤ rs ≤ 0.2 mm (Kamiya and

Takahashi 2007; Nichols et al. 2011).

The arrangement of xs obtained from two canine data

sets (Sherman 1981; Milnor 1982) in Figure 3A proved

similar to the inverse-sigmoid curve in Figure 4A,

suggesting a multifractal vascular system (Zamir 2001;

Grasman et al. 2003). Equation (32) under several physi-

ological conditions of Ω and Re (Table 5), which yields x

around 2.7, partly explained quantitatively this tendency

of reported or estimated xs distribution at intermediate

systemic arteries (0.1 < rs ≤ 1 mm) (Fig. 4A). Alterna-

tively, we can get Re = 13.1 Ω by substituting both

x = 2.7 and a = 1.0 into equation (32). Estimated mean

xs for proximal (rs > 1 mm) and peripheral systemic

arteries (0.004 ≤ rs ≤ 0.1 mm) from Milnor (1982) and

Sherman (1981) agreed with the pertinent morphometric

and hemodynamic data in the literature (Sherman 1981;

Zamir and Brown 1982; Mayrovitz and Roy 1983; House

and Lipowsky 1987; Kassab and Fung 1995; LaBarbera

1995; Nakamura et al. 2011), as indicated in Table 3A.

While xs for intermediate systemic arteries (0.1 <
rs ≤ 1 mm) from Milnor’s (1982) data was estimated to

be a little smaller than the expected value of 2.7, that

from the modified Mall’s data (Sherman 1981) estimated

as 2.2 turned out to be closer to that of more proximal

Table 3. Estimated data of x in systemic (A) and pulmonary arteries

(B) from reported data sets by previous studies.

References

Range of

rs (mm) xs

(A) Systemic arteries

Proximal 1 < rs

Dog Milnor (1982) 2–9.5 2.32 � 0.06

Dog SMA Sherman (1981) 1.5 2.46

Intermediate 0.1 < rs ≤ 1

Dog Milnor (1982) 0.225–0.65 2.49

Dog SMA Sherman (1981) 0.3–0.5 2.22 � 0.09

Peripheral 0.004 ≤ rs ≤ 0.1

Dog Milnor (1982) 0.075 2.95

Dog SMA Sherman (1981) 0.011–0.016 3.10 � 0.241

References

Range of

rp (mm) xp

(B) Pulmonary arteries

Proximal 0.1 < rp

Human Horsfield (1978) 0.112–0.425 2.42 � 0.33

Human lt. Huang et al. (1996) 0.11–7.4 2.82 � 0.50

Human Singhal et al. (1973) 0.112–15 2.30 � 0.46

Dog rt. Gan and Yen (1994) 0.14–5.56 2.72 � 0.57

Dog Milnor (1982) 0.5–8.0 2.76 � 0.52

Cat rt. Zhuang et al. (1983) 0.176–2.54 2.50 � 0.51

Rat lt. Jiang et al. (1994) 0.13–0.8 1.60 � 0.56

Peripheral 0.004 ≤ rp ≤ 0.1

Human Horsfield (1978) 0.0065–0.069 2.54 � 0.11

Human lt. Huang et al. (1996) 0.01–0.075 2.42 � 0.31

Human Singhal et al. (1973) 0.011–0.069 2.33 � 0.04

Dog rt. Gan and Yen (1994) 0.014–0.070 2.52 � 0.19

Cat rt. Zhuang et al. (1983) 0.012–0.096 2.39 � 0.23

Rat lt. Jiang et al. (1994) 0.00665–0.078 2.29 � 0.83

r stands for vessel radius; x, radius exponent, defined by equa-

tion (1 or 3); s, systemic; p, pulmonary. SMA indicates superior

mesenteric artery; lt, left; rt., right. 1excluded the rank 4 arterial

data (Sherman 1981) as an outlier. Vessels are categorized in

terms of the radius by the classification presented in Table 1A and

1B. Data of the whole pulmonary arterial tree are indicated with

no notation of laterality. The present analysis used table 1 (Gan

and Yen 1994), table 6 (Horsfield 1978), table 2 (Huang et al.

1996), table 2 (Jiang et al. 1994), table 2.3 (Milnor 1982), table III

(Sherman 1981), table 4 (Singhal et al. 1973), and table 1

(Zhuang et al. 1983). Data are presented as the mean with one

standard deviation.
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elastic arteries (Table 3A). Because xs, which we think is

largely affected by wall properties, would also vary among

regions, animal species and, most of all, among individu-

als even with the same radius, the property of intermedi-

ate elastic-muscular arteries might be identified not by

the scale of rs alone, but rather by xs itself, as presented

in Table 6. While xs from the rank 4 (fifth generation)

arteries of modified Mall’s data was regarded as an outlier

by the Q test in this analysis, Sherman originally men-

tioned that Mall’s data of rank 3 (rs = 0.096 mm) and

four (rs = 0.026 mm) arteries were questionable due to a

systematic distortion in the size of some of the small

arteries, since the dogs in Mall’s study were killed by

bleeding, with the result of probably pronounced vaso-

constriction (Sherman 1981).

Mean estimated xp from the data of normal mamma-

lian pulmonary arterial morphometry in the literature

(Singhal et al. 1973; Horsfield 1978; Zhuang et al. 1983;

Gan and Yen 1994; Jiang et al. 1994; Huang et al. 1996;

Nakamura et al. 2011) focused around 2.3–2.5 in both

proximal (rp > 0.1 mm) and peripheral pulmonary arter-

ies (0.01 ≤ rp ≤ 0.1 mm) as displayed in Table 3B and

Figure 4B. However, it will not be justified so easily to

regard xp as monofractal throughout the whole pulmo-

nary arterial tree because the distribution of individually

estimated xp exhibited an actually large range at proximal

pulmonary arteries, as presented in Figure 3B. Marked

fluctuation of xp at these proximal pulmonary arteries

can be attributed to such factors as their varied elliptic

cross section (Milnor 1982; Nichols et al. 2011), signifi-

cant tapering structure of the main pulmonary artery

toward its first branches (Milnor 1982; Dawson et al.

1999), and the inherent constraints imposed, more or

less, on these vessels by the shape of the thoracic cage,

lungs, and heart (Singhal et al. 1973). However, estimated

peripheral xp of three humans (Singhal et al. 1973; Hors-

field 1978; Huang et al. 1996) converged at 2.41 � 0.18

in the range of rp below 0.1 mm, as shown in Figure 3B,

Table 4. Estimated data of a and Ω in systemic (A) and pulmonary arteries (B) by fractal analysis with published data in the literature.

References Range of radius (mm) as Ωs r

(A) Systemic arteries

Human Ao Olufsen et al. (2000) 7.2–12.0 3.3 � 2.51

CCA 2.8–2.9 63.1 � 5.01

Maj. brs. 1.9–7.0 17.9 � 7.61

Human mixed Nakamura et al. (2011) 0.01–0.1 0.782

Dog mixed Milnor (1982) 0.025–9.5 1.11 70.66 0.99

References

Whole tree Proximal (0.1 mm < rp)

Peripheral

(0.004 ≤ rp ≤ 0.1 mm)

ap Ωp r ap Ωp r ap Ωp r

(B) Pulmonary arteries

Human Horsfield (1978) 0.85 9.21 0.99 0.97 11.53 0.97 0.83 8.61 0.99

Human lt. Huang et al. (1996) 0.89 9.38 0.98 0.86 9.69 0.96 0.55 2.61 0.98

Human Nakamura et al. (2011) 0.712

Human Singhal et al. (1973) 0.80 8.09 0.99 0.76 8.31 0.97 0.83 8.61 0.99

Dog rt. Gan and Yen (1994) 0.83 13.13 0.99 0.77 13.30 0.97 0.92 16.51 0.99

Dog Milnor (1982) 0.68 8.46 0.91

Cat rt. Zhuang et al. (1983) 1.03 14.11 0.99 0.78 13.01 0.95 1.21 24.77 0.99

Rat lt. Jiang et al. (1994) 0.72 2.17 0.98 0.83 2.29 0.97 0.93 5.20 0.98

a and Ω represent exponent and proportional coefficients of the relationship between vessel length (l) and radius (r), respectively, defined by

equation (16); r, correlation coefficient; s, systemic; p, pulmonary; lt., left; rt., right. Pulmonary arteries were categorized by radius; each range

of the radius in subjected data is not indicated but is common to Table 3B. The data included in the present analysis came from table 1 (Gan

and Yen 1994), table 6 (Horsfield 1978), table 2 (Huang et al. 1996), table 2 (Jiang et al. 1994), table 2.3 (Milnor 1982), P. 68 (Nakamura

et al. 2011), table 1 (Olufsen et al. 2000), table 4 (Singhal et al. 1973), and table 1 (Zhuang et al. 1983). All methods but two (Olufsen et al.

2000; Nakamura et al. 2011) were cast-morphometry; that of Nakamura et al. (2011), the combination of fractal-model analysis and catheter-

ization; that of Olufsen et al. (2000), measurement on magnetic resonance images or estimation. Ao stands for aorta, which includes ascend-

ing aorta, aortic arch, and abdominal aorta (Olufsen et al. 2000); CCA, common carotid arteries; Maj. brs., major branches, which include

superior and inferior mesenteric, renal, internal and external iliac, and superficial and deep femoral arteries (Olufsen et al. 2000). Data of the

whole pulmonary arterial tree are indicated with no notation of laterality.
1indicates estimates under a = 1.0.
2was calculated by equation (24). Data are presented as the mean with one standard deviation.
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Pig coronary, Kassab and Fung (1995) P.15
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Figure 4. (A) Comparison between theoretical x from our rigid arterial model and morphometric xs. The model-derived optimal relationship

between the radius exponent x vs. Reynolds number (Re) in a rigid cylindrical artery was also plotted as curves based upon equation (32), which

shift to the right with the increment of Ω. Ω represents the proportional coefficient of the vessel length-radius relationship in equation (16). Both

reported mean xs in the literature (Suwa and Takahashi 1971; Sherman 1981; Mayrovitz and Roy 1983; House and Lipowsky 1987; Rossitti and

L€ofgren 1993; Kassab and Fung 1995; LaBarbera 1995; Nakamura et al. 2011) and those estimated from two dog data in previous studies

(Sherman 1981; Milnor 1982) were plotted together against corresponding rs. Mean and one standard deviation (SD) of the estimates were

plotted with large rhombuses and outliers, respectively, at proximal (xs, 2.36 � 0.11; rs, 5.5 mm, range 1.5–9.5 mm), intermediate (xs,

2.36 � 0.21; rs, 0.44 mm, range 0.23–0.65 mm), and peripheral arterial regions (xs, 3.06 � 0.21; rs, 0.06 mm, range 0.01–0.10 mm), where

Mall’s rank 4 (corresponding to our 5th generation) arterial data (Sherman 1981) were excluded as an outlier. CMA, ECA, SCA, and SMA indicate

the cremaster muscle, external carotid, subclavian, and superior mesenteric arteries, respectively. (B) Comparison between the elastic arterial

model-derived x and morphometric xp. Means of both reported xp in the literature (Suwa and Takahashi 1971; Horsfield and Woldenberg 1989;

Dawson et al. 1999; Nakamura et al. 2011) and those estimated from published data sets (Singhal et al. 1973; Horsfield 1978; Milnor 1982;

Zhuang et al. 1983; Gan and Yen 1994; Jiang et al. 1994; Huang et al. 1996) were similarly plotted together against rp. Large rhombuses with

outliers indicate the mean of estimated xp with 1 SD at proximal (xp, 2.48 � 0.59; rp, 0.67 mm, range 0.11–15 mm) and peripheral arterial

regions (xp, 2.41 � 0.40; rp, 0.06 mm, range 0.01–0.10 mm). PA, pulmonary arterial tree; LPA and RPA, left and right pulmonary arterial trees,

respectively; prox., proximal; peri., peripheral. r, vessel radius, presented as the mid-point and its range for the same reason as described in the

legend of Figure 1; x, radius exponent, defined by in equation (1 or 3); s and p, systemic and pulmonary, respectively.
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where xp of a dog (Gan and Yen 1994) and a cat (Zhuang

et al. 1983) also stayed at the same level in the similar

range of rp. Stable and consistent peripheral xp among

normal humans and these mammals are probably due to

similar respiratory physiology and pulmonary circulation

(Table 3B).

Our estimates of a and Ω agreed with the results

reported by previous studies (Suwa and Takahashi 1971;

Dawson et al. 1999), as indicated in Table 4A and B. We

could confirm the empirically reported relationship

between r and l as written in equation (16) by large cor-

relation coefficients (r) between lnr versus lnl (Table 4A

and B). Although several estimated values of Ω differed to

a considerable degree between proximal and peripheral

pulmonary arteries, the difference was partly due to the

much smaller number of peripheral samples in the data

than proximal samples. As indicated in Tables 2 and 4, ap
actually stayed slightly below 1.0 or ~0.8, which provides

xp � 2.27 (Fig. 4B) from equation (26). The range of a
from 0.72 to 1.23, as indicated in Tables 2 and 4, yields x

in the elastic arterial model from 2.24 to 2.41. On the

other hand, the same range of a from 0.72 to 1.23 causes

only a trivial deviation of x in the rigid model (eq. 32);

for example, x resulted in 2.348–2.350 (Ω = 1.5;

Re = 1000) and 2.996–2.997 (Ω = 50; Re = 4).

Our elastic arterial model explains x = 2.33 by

Bernoulli’s effect. However, it has conventionally been

explained by Uylings’ theoretical prediction under the con-

dition of complete turbulence in a rigid cylindrical vessel

(Uylings 1977), one of the most influential theories (Sher-

man 1981; Horsfield and Woldenberg 1989; Huang et al.

1996; Bennett et al. 2000; Olufsen et al. 2000). But it still

remains controversial to explain the radius exponent

reported in proximal systemic arteries as well as in the

whole pulmonary arterial tree by the presence of turbu-

lence alone (Caro et al. 1978; Roy and Woldenberg 1982;

Horsfield and Woldenberg 1989; Nichols et al. 2011).

Because the peak Re in human systemic and pulmonary

arteries is estimated as <2000 except for the region just

above the aortic valve (Caro et al. 1978; Nichols et al.

2011), it conflicts with the presence of continuous turbu-

lence. Horsfield and Woldenberg (1989) stated that turbu-

lence by itself could not fully account for the coexistence of

both xp = 2.3 � 0.1 and Re < 2000 at the same time in the

case of pulmonary arteries, while several more direct effects

resulting from arterial wall elasticity should also intervene.

The result in our rigid arterial model led us to represent

x with a novel function of Re and Ω, as presented in equa-

tion (32). This equation provides the general solution of

optimal x under various blood flow levels, involving both

Murray’s and Uylings’ theories. First, Murray’s oC/or = 0

in equation (11) is a particular solution of oE/or = 0 of

equations (10 and 20). The ratio of UK over DUP in

equation (20) is proportional to Re when a is equal to 1.0:

Table 5. Coupled conditions of Ω and Re in the physiological

mammalian systemic artery, which render x to get close to 2.70

as predicted by the rigid model.

Ω 5 20 40 60

Re 70 300 500 800

x 2.69 2.68 2.71 2.70

Re, Reynolds number, defined by equation (31); x, radius expo-

nent, computed by equation (32) with coupled values of Ω and

Re under a = 1.0. a and Ω represent exponent and proportional

coefficients of the relationship between vessel length and radius,

respectively, defined by equation (16).

Table 6. Categorization of systemic arteries by radius exponent in the two canine data sets in literature.

Locality References xs

Range of

radius (mm)

Expected wall

property

Expected range of

Reynolds number

Proximal xs ~ 2.3 Elastic 400–11001

Dog Milnor (1982) 2.32 � 0.06 0.65–9.5

Dog SMA Sherman (1981) 2.30 � 0.16 0.5–1.5

Intermediate xs ~ 2.7 Elastic-muscular 42–400

Dog Milnor (1982) 2.65 0.225

Dog SMA Sherman (1981)

Peripheral xs ~ 3.0 Muscular (rigid) 0.13–4

Dog Milnor (1982) 2.95 0.075

Dog SMA Sherman (1981) 3.10 � 0.244 0.011–0.096

x, radius exponent, defined by equation (1 or 3); s, systemic; SMA, superior mesenteric artery. Sources of data sets were table 2.3 (Milnor

1982) and table III (Sherman 1981).
1Nichols et al. (2011); 2estimated from equation (34) and Mayrovitz and Roy (1983); 3from Kizilova (2006); 4does not include the rank 4

arterial data (Sherman 1981) as an outlier.
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UK

DUP
¼ ð1=2Þqqðq=pr2Þ2

8lXraq2=pr4
¼ mrq

16lX
/ Re: (35)

Because the result of oE/or = 0 in equation (20)

approximates that of oC/or = 0 in equation (7) under the

condition of UK � DUP and Re becomes sufficiently low

as shown in equation (35), x reaches 3.00, which Mur-

ray’s (1926) law eventually advocates. Moreover, Uylings’

(1977) theory is another particular solution of oE/or = 0

under Re ? ∞. E in equation (20) appears similar to

equation (19) under the inverse condition of DUP � UK,

where Re rises sufficiently high as in equation (35), and x

approaches 2.33, which is compatible with what Uylings’

model relates. The complete turbulence in equation (20)

means that blood flow closely mimics the ideal fluid with

Bernoulli’s principle.

However, our model does not explain the actual

morphometric data of x < 2 or > 3 observed in some

particular states of normal mammalian vasculatures

(Woldenberg 1983; LaBarbera 1995; Dawson et al. 1999;

Bennett et al. 2000). Furthermore, our theoretical results

do not necessarily account for radius exponents found in

some pathophysiological arterial remodeling processes of

human and/or mammalian diseases. Ghorishi et al.

(2007) reported the mean xp to be 1.671, which is not

accountable by our model, at 0.01 ≤ rp ≤ 10 mm in cast

morphometry of a 2-month-old lamb with secondary pul-

monary hypertension (PH) caused by surgically produced

left-to-right (L–R) shunt in the fetal period. However, the

same shunt lamb’s xp targeted 3.0 at the most peripheral

pulmonary arterioles (rp ≤ 0.01 mm) in their Figure 2B

(Ghorishi et al. 2007), while its xp stayed around 2.0–2.3
at rp from 0.4 to 3 mm. Our recent analysis of hemody-

namic data revealed that the estimated xp in patients with

congenital L–R shunt defects increased gradually from 2.5

to 3.0 in peripheral pulmonary resistive arteries whose

radius range was assumed to be 0.01 ≤ rp ≤ 0.1 mm in

accordance with the severity of secondary PH, while xp of

controls remained at 2.2 (Nakamura et al. 2011). Congen-

ital L–R shunt defects induce medial hypertrophy and

vasoconstriction of intra-acinar arteries (0.004 ≤ rp
≤ 0.1 mm) with secondary PH a few months after birth

along the postnatal course of the disease (Michel et al.

1985; Ghorishi et al. 2007). Both of these pathophysiolog-

ical changes are considered to induce strikingly decreased

elasticity and increased rigidity of intra-acinar arterial wall

properties.

There are limitations for this model analysis. The

energy function E in this analysis did not take into

account non-Newtonian effects and energy dissipations

due to either turbulence or arterial ramifications. Ber-

noulli’s equation is not necessarily guaranteed through

arterial ramifications but holds true for a single elastic

artery and/or valve (Lima et al. 1983a,b; Bermejo et al.

2002). Because most morphometric studies were per-

formed with formalin-fixed specimens or by the resin cast

method, their data do not necessarily reflect actual in vivo

pulsatile hemodynamic realities (Suwa and Takahashi

1971; Singhal et al. 1973; Bennett et al. 2000; Nichols

et al. 2011). The concept of the optimality principle itself

cannot escape some limitations. First, the in vivo vascular

system must meet multiple functional requirements that

are not fully expressible in terms of mathematical opti-

mality conditions. Second, there is no guarantee that the

vascular system will attain a mathematically deduced opti-

mal state: in other words, the actual vessel structure of a

living body shows significant asymmetry and heterogene-

ity (Woldenberg 1983; Griffith and Edwards 1990; Daw-

son et al. 1999; Bennett et al. 2000).

Combining a novel modification of Murray’s law and a

scaling exponent between vessel radius and length, our

model proposes a new approach to account for the topi-

cally different hemodynamic conditions in elastic and

rigid arterial models leading to the radial exponent 2.33

and continuously changing from 2.33 to 3.0 as a function

of Reynolds number, respectively. They are known as

Uylings’ law for turbulence and Murray’s law for laminar

flow, respectively. In spite of the above-mentioned limita-

tions, our model study explains the radius exponent in

the elastic arterial system not by turbulence but by its

elasticity and Bernoulli’s effect, and our novel expression

of x in rigid arteries is a step for further understanding

the relationship among the fractal dimension, the situa-

tion of blood flow, and the arterial scaling structure.

From the practical viewpoint, the results of theoretical

approaches including ours will enable accurate estimation

of blood velocity and its feasible distribution, and could

be applied to pharmacodynamics in the systemic and

pulmonary circulation. Equations (26 and 28) would offer

a surgically preferable reconstructive design in terms of

proximal arterial branching structures, and help alleviate

the total cardiac work imposed and necessary to maintain

sufficient blood circulation. Reflecting both the elastic

and rigid arterial models in the industrial design of

the artificial vascular structure would also contribute to

making prostheses hemodynamically more efficient. We

hope that this model analysis will eventually contribute

on a theoretical basis to further biological and medical

knowledge.
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Appendix

Under the condition of a = 1.0 at the exponent in

equations (16, 29) can be transformed to

2q
ð2þ aÞKp3X � q

3

r3
þ 8ð4� aÞl
ð2þ aÞKp2 �

q2

r2
ffi r4: (A1)

Using a real number e as a proportional coefficient,

equation (1) can be written as

q ¼ erx: (A2)

When f is defined as

f ¼ q

r
: (A3)

as a method to calculate equation (A1), the equation is

simplified as

Af 3 þ Bf 2 ¼ r4: (A4)
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where A ¼ 2q
ð2þ aÞKp3X and B ¼ 8ð4� aÞl

ð2þ aÞKp2 : (A5)

To make the succeeding composite functions easier or

clear-cut for differential calculus, we tentatively define g,

y, and z as follows for convenience:

g ¼ lnf ; (A6)

y ¼ lnðAf 3 þ Bf 2Þ; and (A7)

z ¼ @y

@g
; respectively (A8)

Equations (A2, A3, and A6) give us

g ¼ lneþ ðx � 1Þlnr: (A9)

Equations (A4 and A7) lead eventually to

y ¼ 4lnr: (A10)

Eliminating r in equation (A9) by equation (A10) yields

g ¼ lneþ ðx � 1Þ y
4
: (A11)

Partial differentiation of g in equation (A11) with

respect to y and equation (A8) results in

@g

@y
¼ x � 1

4
¼ 1

z
: (A12)

On the other hand, equations (A6, A7, and A8)

provide

z ¼ @y

@g
¼ dy

df
� df
dg

¼ 3Af 2 þ 2Bf

Af 3 þ Bf 2
f ¼ 3Af þ 2B

Af þ B
: (A13)

With equations (A5, A12, and A13) we can describe x

as

x ¼ 1þ 4

z
¼ 1þ 4ðAf þ BÞ

3Af þ 2B
¼ 2þ ðqf =plÞ þ 8ð4� aÞX

3ðqf =plÞ þ 8ð4� aÞX :
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