
[11:01 12/5/2010 Bioinformatics-btq179.tex] Page: i64 i64–i70

BIOINFORMATICS Vol. 26 ISMB 2010, pages i64–i70
doi:10.1093/bioinformatics/btq179

Reconstruction of the neuromuscular junction connectome
Ranga Srinivasan1, Qing Li1,2, Xiaobo Zhou1, Ju Lu3, Jeff Lichtman4 and
Stephen T.C. Wong1,∗
1Ting Tsung and Wei Fong Chao Center for Bioinformatics Research and Imaging in Neurosciences (BRAIN),
The Methodist Hospital Research Institute, Houston, TX 77030, 2Department of Computer Science, The University
of Houston, Houston, TX, 77004, 3Department of Biology, Stanford University, Stanford, CA 94305 and
4Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA

ABSTRACT

Motivation: Unraveling the structure and behavior of the brain
and central nervous system (CNS) has always been a major
goal of neuroscience. Understanding the wiring diagrams of the
neuromuscular junction connectomes (full connectivity of nervous
system neuronal components) is a starting point for this, as it helps in
the study of the organizational and developmental properties of the
mammalian CNS. The phenomenon of synapse elimination during
developmental stages of the neuronal circuitry is such an example.
Due to the organizational specificity of the axons in the connectomes,
it becomes important to label and extract individual axons for
morphological analysis. Features such as axonal trajectories, their
branching patterns, geometric information, the spatial relations of
groups of axons, etc. are of great interests for neurobiologists in the
study of wiring diagrams. However, due to the complexity of spatial
structure of the axons, automatically tracking and reconstructing
them from microscopy images in 3D is an unresolved problem. In this
article, AXONTRACKER-3D, an interactive 3D axon tracking and labeling
tool is built to obtain quantitative information by reconstruction of the
axonal structures in the entire innervation field. The ease of use along
with accuracy of results makes AXONTRACKER-3D an attractive tool to
obtain valuable quantitative information from axon datasets.
Availability: The software is freely available for download at
http://www.cbi-tmhs.org/AxonTracker/
Contact: stwong@tmhs.org

1 INTRODUCTION
The modern microscopic image acquisition techniques provide the
neuroscientists the visual perception of axons in 3D space. Of
particular interest is the knowledge of connectivity of the neuronal
components of the nervous system, the connectome. Analyzing
neuronal structures is instrumental in completely understanding the
functional properties of the mammalian central nervous system
(White et al., 1986). One such phenomenon that can be studied is
the developmental reorganization of connectivity in the mammalian
nervous system, also known as synapse elimination (Purves
and Lichtman, 1980). Pruning of synaptic connections through
competitive interactions during neurodevelopment and its effect on
the neuronal connectivity is one such example.

A study of connectomes over various time points during brain
development can reveal the mysteries about how the neural circuits
are established and the way it changes over the lifespan of the animal
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under study. Moreover, mapping wiring diagram mouse models can
help understand how an abnormality in the neural circuits can lead to
psychiatric disorders, such as schizophrenia and autism (Lichtman
et al., 2008). Another potential application is in the study of the
effect of new drugs on the mammalian connectomes. Analysis of
the connectomes at different time points during the drug-testing
could lead to valuable insights into the effectiveness of the new
drugs designed to treat disorders related to brain and central nervous
system.

The wiring diagram of the neuromuscular circuit is believed to
be a good starting point for this, as it might lead to discoveries
valuable to this study. The neuromuscular circuits are well-isolated
and accessible. Its connectome is well defined. Due to the large
size of the adult motor neurons (2–10 µm in diameter), which
are separated from neighboring axons by Schwann cells, and the
large size of neuromuscular junctions (∼20 µm in length), the
neuromuscular connectome is easier to resolve, analyze and can
be easily visualized. Moreover, since the morphological features
of the neuromuscular connectome can be directly linked with its
functional properties; for example the morphology of individual
neuromuscular junction has been found to be directly related to
its synaptic strength (Herrera et al., 1985), it renders itself as an
attractive platform to conduct connectome studies. Many questions
related to synapse elimination can be answered from the study of
mammalian neuromuscular connectome. As the spatial organization
of the axons is very specific in nature, down to the level of
individual axons, it becomes important to isolate each axon from
the connectomes for extraction of morphological features for these
studies.

Studies in neuronal connections are believed to help unravel
the functional properties of the nervous system. The manual
effort needed, however, is excessive, as the neurobiologist has
to manually track individual axons from a large set of data
(∼30–50 GB of volumetric data). This might amount to a few
months of painstaking labor. Of note are similar researches in the
mapping of neural circuits for the study of neuronal connectivity.
A study of potential connectivity among neurons was done based
on neuron reconstructions of the cortical circuits in cat primary
visual cortex (Stepanyants et al., 2008). Probabilistic synaptic
density maps were derived from the neural circuitry of the olfactory
centers of drosophila to predict connectivity (Jefferis et al., 2007).
Drosophila olfactory circuits were mapped and rendered to study the
mechanisms of olfactory coding in higher brain centers (Lin et al.,
2007).

Significant research efforts have been attempted to extract the
geometric structure of axons from microscopic image stacks.
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Some of the algorithms proposed in literature that are directly
related to the work in this article are the Kalman filter-based axon
tracking (Jurrus et al., 2006), 3D template matching approach to
detect neuronal structures (Al-Kofahi et al., 2002), 3D rayburst
sampling for detection of neuron structures (Rodriguez et al., 2006),
voxel coding for detection of centerlines from segmented neurons
(Vasilkoski and Stepanyants, 2009) and use of generalized cylinders
for semi-automatic 3D reconstruction of neurons (Schmitt et al.,
2004). As the problems exhibited by our datasets are completely
different from the datasets for which these methods were proposed
and due to the sheer complexity of the datasets presented in the articl,
none of these methods can be directly applied to label individual
axons.

The authors’ labs have also published their research work
in this long-standing problem of extraction and visualization of
the geometrical features and topological characteristics of axons.
Repulsive force based snake algorithm (Cai et al., 2006) was
proposed to solve the close lying axons in a sequence of cross-
sectional images. Although this method works for axons that run
approximately perpendicular to the cross-sectional plane, it is
unsuitable to complicated structures. Probabilistic region growing
algorithm (Srinivasan et al., 2007) was proposed to optimize the
time taken to track the axons by utilizing a pseudo-3D approach. This
method tracks the centerlines of the axons in the maximum intensity
projection (MIP) image and switches to the cross-sectional domain
in case of ambiguity. This method is suitable for datasets where the
axons are somewhat distinguishable in the MIP image and is also
unsuitable for use in the datasets presented in this article. Dynamic
programming algorithm (Zhang et al., 2008) introduces an approach
to track the axons using constraints for smoothness and continuity in
the cross-sectional images along with marker-controlled Watershed
algorithm. This approach also requires the axons to run in bundles
and roughly maintain their orientation throughout the dataset, and
hence, cannot be directly applied to our case. Semi-automated
reconstruction in serial images (Lu et al., 2009) was introduced as an
extension to the already existing software; Reconstruct (Fiala, 2005),
to interactively segment the axons in a sequence of cross-sectional
images. This approach requires a re-sampling of the datasets so that
majority of the axons appear in the cross-sections. This is not always
achievable, especially in the datasets presented in this article, as the
axons do not exhibit a specific orientation pattern.

Freely available image processing software, such as ImageJ
(Abramoff et al., 2004) and Reconstruct (Fiala, 2005), either deal
with 2D images/sequence of 2D images in a semi-automatic fashion
or fail in case of sharp change in axon orientation, which makes
it extremely time consuming and infeasible to track complex
structures. On the other hand, commercially available software, such
as Imaris (http://www.bitplane.com/go/products/imaris), assumes
the dataset to have an excellent contrast and cannot scale up
for tracking large neuronal circuitry. Due to the unpredictable
orientation change, connection complexity and low-contrast signal
of axons, none of current methods or approaches offer an efficient
pipeline for tracking and reconstructing wiring diagram of axons in
a large-scale, quantitative neurobiology studies.

In this work, we introduce a new tool, AxonTracker-3D, which
does not require any parameter adjustment by the user and can
drastically reduce the effort and time required to obtain valuable
quantitative information from volumetric axon imagery. From our
study, the AxonTracker-3D, which incorporates a 3D, real-time

tracking approach based on diffusion, greatly reduces the time
required in processing the large volumes of axon images from
months via manual analysis to minutes on personal computers.

2 METHODS
The interscutularis muscles were removed from thy-1-YFP-16 transgenic
mice (Feng et al., 2000) for diffraction-limited confocal imaging of entire
motor axonal connectomes. For identification of muscle fiber type, muscles
were removed and post fixed with 1% PFA for 7 min, frozen and sectioned
at 20 µm using a Leica Cryostat (Leica, Germany). Following that, sections
were incubated with blocking solution (2% BSA+ 1% goat serum + 0.3%
triton) at 25◦C for 3 h, and incubated with monoclonal antibodies against
myosin type I and 2A (mouse anti-myosin I IgG1, 1 : 20, Novocastra,
UK; mouse anti-myosin 2A IgG1, 1:10, Iowa Hybridoma Bank, USA) at
4◦C for 6–8 h. After several washes in 0.1% PBS-triton, samples were
incubated with secondary antibody (Alexa-488 anti-mouse IgG1, 1:1000;
Molecular Probes, USA) for 3 h. Finally, muscle sections were rinsed in
PBS (25◦C, 20 min ×2) and mounted on slides with Vectashield mounting
medium.

The motor neurons expressed yellow fluorescent proteins (YFP) uniformly
inside each cell. The YFP was excited with a 488 nm line of argon laser
using a 60× (1.4NA) oil objective and detected with a 520–550 nm band-
pass emission filter. The images were sampled at Nyquist limit in the x−y
direction and oversampled by a factor of 1.5 in the z direction (voxel
size = 0.1 µm ×0.1 µm × 0.2µm) with a 12 bit dynamic range. In order to
obtain the complete connectome (consisting of ∼200 stacks), the motorized
stage controlled by the MutliTimeZ macro, developed by Zeiss, was used.

3 ALGORITHM AND IMPLEMENTATION

3.1 Workflow and user interface
Tracking and segmentation are the two major steps in solving
the connectome and extracting quantitative information from these
datasets. In this article, AxonTracker-3D, a tool incorporating
the tracking and visualization of axons, has been developed
to facilitate the connectome function analysis in large-scale,
quantitative neurobiology studies. The datasets are processed one-
by-one and are then stitched together to form a collage for further
analysis. A segmentation approach is also proposed, which uses the
tracking results from AxonTracker-3D. The workflow is described
in Figure 1.

Fig. 1. Workflow of the proposed method.
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Fig. 2. Tracking interface of AxonTracker-3D: the interactive visualization
window is shown with the axons in a dataset. One of the axons that have
been tracked is shown in red. Provision for manual intervention is provided
on the left side of the interface. The centerline in the visualization window
is updated in real-time as the tracking is being done. The centers can also be
seen in the three orthogonal views (shown in Fig. 3) in real time.

The user first loads the dataset that needs to be tracked, which is
followed by preprocessing for noise removal. The user then selects
starting points for all the axons present in the dataset followed by
the initiation of the tracking algorithm. The initialization of the
algorithm consists of computation of the candidate center points
for all the axons present in the dataset, which is done automatically.
As the tracking proceeds, the results can be viewed as an overlay
on the rendered data in 3D in real time. In case of a problem in
tracking due to low contrast, dramatic change in the orientation of
the axons or due to very low voxel intensity, the algorithm stops
and prompts the user for correction and guidance. The interactive
tracking has the provision of deletion of wrongly tracked points and
addition of new points to the centerline. After the user guides the
algorithm by clicking a few new points along the centerline, the
algorithm resumes the tracking process.

Once the tracking is complete, the datasets are stitched together
to obtain the big picture (the connectome). The centerlines can
be used to segment the axons and visualize them in 3D space.
The user interface of AxonTracker-3D, which has been developed
using C++, ITK, VTK and QT on a PC with 1.86 GHz Intel®
Core™2 CPU and 2 GB of RAM configuration, is shown in
Figure 2.

In a few cases when the algorithm fails to find the correct
center due to bad contrast between adjacent axons or low intensity,
a provision for manual intervention is provided in the software,
using which, the user can add or delete the center points of the
axons to guide the algorithm. AxonTracker-3D can display the
three orthogonal views of the current location of the centerline
along with a visualization of the tracking results (Fig. 3). The
user can then add or remove voxels from the centerline, hence
guiding the software to accurately track the centerlines of the axons.
After all the axons in the dataset are tracked, segmentation can be
performed.

Fig. 3. The orthogonal views of a dataset showing provision for editing the
centerlines detected by the algorithm.

3.2 Centerline extraction
The raw image datasets obtained are prone to noise and need to be
preprocessed. We use anisotropic diffusion image filtering (Perona
and Malik, 1990) to reduce the noise while preserving contrast near
the edges of the axons. In order to extract the structures from the
datasets for quantitative analysis, centerlines or the backbones of
the objects have to be extracted first, which can then be used for
segmentation.

The process of centerline extraction involves the estimation of
most likely voxels in the dataset that belong to the medial axis of
the axons. From the initial point (defined manually), we employ a
tracking method to extract the centerlines of each axon present in
the dataset.

In order to compute the candidate center points of the axons,
we define a scoring method for the voxels in the dataset using a
combination of the gradient vector flow (GVF) (Xu and Prince,
1997) and object orientation vectors. In their original work, these
forces were generated to guide the initial contour to the boundaries
of the objects. We use the inverse of the approach where the forces
help the boundaries to collapse to the center. To generate these
candidate points, we first compute the GVF in all the cross-sectional
images along the three orthogonal directions, along the x-, y- and
z-axes, respectively. Each cross-sectional image along a particular
axis is then binarized and the boundaries of the structures present
in the cross-section are shrunk based on the forces of the GVF. An
example is shown in Figure 4. As seen in Figure 4c, the resulting
scores contain noise around the actual center and hence, non-maxima
suppression is used.

Once the computation of possible centers along all three directions
is complete, we merge them together using a directional vector-based
approach. The entire dataset is binarized and is first divided into
smaller subsets. In each such portion, the geometrical orientation
vector of the binarized objects contained in the small dataset is
computed. The orientation of an object in 3D space can be computed
using moment of inertia matrix. The elements of the matrix are the
moment of inertia the mass exhibits in 3D space about different
combinations of the three orthogonal axes (x, y and z). By computing
the eigensystem of the matrix and by looking at the eigenvector
with the least eigenvalue, we can determine the direction in which
the mass exhibits the least amount of inertia. In other words, this
direction is nothing but the orientation of the mass present inside
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(a) (b) (c)

Fig. 4. Identification of candidate centers: (a) raw image, (b) gradient forces
shown by vectors, and (c) candidate centers found by collapsing the boundary
of the binarized version of (a).

the sub-volume. We first compute the moment of inertia matrix as:

I =
⎡
⎣

Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

⎤
⎦

where Ixx = ∑
r∈R V (r ) (d (r )2

y +d (r )2
z ) and similarly Iyy and Izz

are defined; Ixy = Iyx = −∑
r∈R V (r )d (r )xd (r )y and similarly,

Iyz = Izy and Izx = Ixz are defined in a symmetrical way; R is the
set of all the voxels in the binarized volume under consideration;
d(r) = [d(r)x , d(r)y, d(r)z] is the distance of the voxel, r, from the
center of mass of the binarized volume; andV (r) is the value of the
voxel at r in the binarized volume.

We compute the eigenvalues and the corresponding eigenvectors
of the system and select the eigenvector with the lowest absolute
eigenvalue as the orientation of the object in the sub-volume.
Intuitively, based on the projection of this vector along the three
axes (x, y and z), the three scores along orthogonal directions are
combined using:

ScoreGVF = txScorex
GVF +tyScorey

GVF +tzScorez
GVF,

where �t = [tx,ty,tz ] is the orientation vector of the sub-volume.
This score is an indication of likelihood of a voxel belonging to
the axon centerline. Figure 6b–d are examples of candidate center
points calculated using GVF along the x, y and z-axes for a dataset.
We can see these candidate center points are very close to actual
center points even in a complicated dataset shown in the figure.
Figure 6e is obtained after combining the scores in (b–d).

Once the candidate centerlines are computed, the tracking process
starts with the manually chosen initial point for each axon. The
centerlines of the axon are traced using a moving sphere whose
center always lies on current center of the centerline that has been
traced so far. To compute the next center on the centerline, the
directional vector for the sphere (computed using the current center
and nine previous centers) is computed. The radius of the sphere in
our study has been set to five voxels. The search for the next center
is performed in a preset angle range (set to 45◦ in our case) about
the directional vector inside the sphere so that the centerline does
not trace back itself. In each step, inside the search region, the voxel
with the highest GVF score is chosen as the next center. If many

Fig. 5. An illustration demonstrates the tracking process inside the axon.

voxels are found to have the same value, we resolve them using:

Ci+1 =argmin
r∈R

{
a
(
1−Gr

)+b
(
Dr

)}
,

where Ci+1 is the (i+1)-th center (or the new center on the centerline
to be determined); R is the set of all the candidate voxels that
need to be resolved; Gr is the normalized value of the maximum
value of gradient along the path connecting Ci (current center on
the centerline) and r; which Dr =−→

ti ×−−→
ti+1 is a smoothness term

based on the dot product of the directional vectors (the directional
vector of the sphere and the directional vector formed between the
current center and the voxel under consideration respectively); a
and b are the weights that denote accuracy and smoothness of the
centerline. In our study, these parameters have been set as 0.65 and
0.35, respectively. An illustration of the tracking algorithm is shown
in Figure 5. The shaded conical region inside the spheres shown in
Figure 5 are the search region at different points along the centerline.

3.3 Segmentation of axons
In many cases, axons twist and turn, and lie close to each other
in the image stack. The challenges in segmentation include weak
boundaries between close-lying axons and large intensity variations
in some axons, which cause many segmentation methods to fail. In
order to deal with this problem, the segmentation scheme consists
of two steps.

In the first step, local threshold 3D region growing is applied to
get the rough segmentation result which will be used as the initial
segmentation for the subsequent step. The local region is defined as
spheres with certain radius (set to two to five voxels in our study),
and the centers of the spheres are located on these center points.
This radius was determined based on the radius of the thinnest axon
present in the datasets.

Once the rough segmentation of axons is obtained, an interactive
level set model (Yan et al., 2008) was adopted to detect boundaries
in 3D space. The interaction involves two types of mechanisms:
repulsion and competition. The repulsion term is for separating
the touching axons and the competition is for defining the axon
boundaries. These mechanisms were formulated as an energy
functional, which is then minimized by using the multiphase level
set method. Figure 6g shows the segmentation result obtained using
the centerlines of the axons from Figure 6f.
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(a)                (b)    (c) (d)

(e)                      (f) (g)

Fig. 6. Computation of center point candidates using GVF. (a) MIP of the
original dataset. (b–d) MIP of the GVF dataset computed along the x-, y- and
z-axes, respectively. (e) Visualization (3D) of the combined GVF datasets
using vector approach. (f) Centerlines computed by our tracking algorithm
based on the centerline candidates. (g) 3D rendering of the segmentation
results using the centerlines.

3.4 Stitching of datasets
After the datasets have been segmented, they are stitched together
to form a collage. As the datasets are contiguous with a variable
amount of overlap between them, we process the dataset stack by
stack to form a montage by using the normalized cross-correlation
measure to determine contiguous stacks and the extent of overlap
between them. The cross-correlation measure between an image, I ,
and a template, t, is defined as:

C (u,v )=
∑

x,y [I (x,y )− Īu,v ] [t (x−u,y−v )− t̄ ]√∑
x,y [I (x,y )− Īu,v ]2∑

x,y [t (x−u,y−v )− t̄ ]2
,

where (u,v) is the coordinate where the template is centered at;
I(x,y) is the image region under the moving template; t is mean
of the template; and Īu,v is the mean of the image region under
the template. The cross-correlation measure has been applied in xy
plane and then in xz plane to complete the alignment in 3D. This
reduces the computational time involved in alignment as opposed to
a completely 3D alignment. As the datasets were down-sampled by
a factor of 2, an alignment error of one voxel is unavoidable during
alignment.

To record morphological properties of neuronal processes,
images were acquired from neonatal mice using laser scanning
immunofluorescent confocal microscopes. The connectome of
interscutularis muscle of the mouse was used for this study. The
complete connectome consisted of ∼200 data stacks. Adjacent
stacks had an overlap of around 10% for alignment to form
the montage. The data acquisition lasted around 24–48 h and

accumulated ∼50 GB of data. The datasets that did not contain
any axons were discarded. The resulting set of datasets contained
154 stacks which amounted to around 35 GB of data.

The volumetric datasets are a large number of 3D axon image
stacks, each typically being 1024 × 1024 × (100–200) voxels in size
(voxel size of 0.1 µm × 0.1 µm × 0.2 µm), which when put together
form a collage of the connectome. The datasets were down-sampled
along the xy direction, yielding datasets that were 512 × 512 ×(100–
200) voxels in size (voxel size of 0.2 µm × 0.2 µm × 0.2 µm),
which improved the tracking and segmentation speed without losing
accuracy and lowered the computer memory requirement.

Figure 7 shows the tracking and segmentation results of 30
contiguous stacks from the collage. The centerlines were tracked
and segmented automatically using AxonTracker-3D. The datasets
were then stitched together using the cross-correlation measure and
are visualized together as shown in Figure 7b. The results show
that touching axons and axons with short turns can be accurately
extracted by the software.

On an average, each axon takes <30 s to track if no manual
intervention/correction is required. Owing to the complexity of
axon, each dataset had ∼25–40% of the axons that needed
manual correction at three to four places for tracking. The average
reconstruction time for one image stack is ∼10–15 min. Once
tracked, each dataset in the collage took 5 min for segmentation.

4 DISCUSSION
In this article, we presented a novel interactive tool to extract
and reconstruct axons obtained from 3D confocal microscopy
image stacks. Compared to the previously proposed methods,
our algorithm has two major contributions: firstly, the software
can successfully extract centerlines of axons with minimal user
intervention. Rendering of the data in 3D along with overlay of
tracking results in real-time is a useful feature offered by the
software. By introducing user interaction, we can see that our
algorithm can successfully extract and reconstruct touching axons
and axons with dramatic orientation changes. Secondly, by using
local region growing and interactive level set segmentation methods,
we can get the actual boundary of each axon which can provide us
valuable quantitative information such as the length, radius for axon
function and connectivity analysis. As a continuation of the work
presented in this article, we will discuss algorithms to detect and
track branches in order to minimize user-intervention needed for
AxonTracker-3D. The following are the planned improvements to
the current version of the software.

Axons in the connectome of neuro-muscular junctions tend to
branch into complex patterns. The current version of AxonTracker-
3D does not have a provision to automatically detect branches.
At branch points, the centerlines were joined together manually to
complete the wiring circuitry of the axons. As an extension to our
current work, we plan to design and implement new algorithms to
detect branching points along the axons.

Methods such as AdaBoost classifier (Freund and Schapire, 1999)
could be a potential solution to this problem. This consists of three
steps: (i) re-slice the axon tubes along its orientation; (ii) extract 2D
and 3D features from the slices and spheres rounding the center
points; (iii) select samples to train AdaBoost classifier (manual
selection of ∼100 samples for training). The AdaBoost method
can be used to classify positive training examples from negative
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(a)

(b)

Fig. 7. (a) An example shows 30 stacks aligned automatically.
(b) Segmentation and labeling using AxonTracker-3D.

examples by selecting a small number of critical features from a huge
feature set previously designed and creating a weighted combination
of them to use as a strong classifier to detect the branch points along
axons.

We will include a provision for manual intervention in branch
detection as well, but the need for it will be rather minimal.
AxonTracker-3D has been designed such that the user interface and
interaction is kept as simple, intuitive and user-friendly as possible.
Any addition or modification to AxonTracker-3D modules will not
affect the basic work-flow as described in Figure 1.

The current version of the software does not make use of multi-
threading, and hence there is a good scope of increasing the
execution speed manifolds by making use of multiple CPU’s if
available on the PC. As the size and number of the datasets in the

collages are huge, a major improvement to the existing software
would be to include a provision for batch processing. The datasets
in the collage could be processed automatically as much as possible
to reduce the time and effort needed for tracking the connectome.
Along with this, the existing algorithms will also be improved to
increase automation without compromising accuracy of results.

Most importantly, using the quantitative data available from
tracking and segmentations of complete connectomes, many
biological questions can be generated, such as: (i) the relationship
between the number of branches and the length of each segment in a
population of axons; and (ii) the spatial distribution of motor neurons
or the optimal layout of the motor neurons in a population of axons.
Questions such as whether the spatial distribution of the axons are
random in nature or follow a certain pattern can be answered. We
intend to employ data mining and biostatistics methodologies on the
datasets and wiring diagrams extracted from AxonTracker-3D to
address these questions.
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