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Genome‑wide comparative 
analyses of GATA transcription 
factors among seven Populus 
genomes
Mangi Kim1,2, Hong Xi1,2, Suhyeon Park1,2, Yunho Yun1,2 & Jongsun Park1,2*

GATA transcription factors (TFs) are widespread eukaryotic regulators whose DNA-binding domain is 
a class IV zinc finger motif (CX2CX17–20CX2C) followed by a basic region. We identified 262 GATA genes 
(389 GATA TFs) from seven Populus genomes using the pipeline of GATA-TFDB. Alternative splicing 
forms of Populus GATA genes exhibit dynamics of GATA gene structures including partial or full loss 
of GATA domain and additional domains. Subfamily III of Populus GATA genes display lack CCT and/
or TIFY domains. 21 Populus GATA gene clusters (PCs) were defined in the phylogenetic tree of GATA 
domains, suggesting the possibility of subfunctionalization and neofunctionalization. Expression 
analysis of Populus GATA genes identified the five PCs displaying tissue-specific expression, providing 
the clues of their biological functions. Amino acid patterns of Populus GATA motifs display well 
conserved manner of Populus GATA genes. The five Populus GATA genes were predicted as membrane-
bound GATA TFs. Biased chromosomal distributions of GATA genes of three Populus species. Our 
comparative analysis approaches of the Populus GATA genes will be a cornerstone to understand 
various plant TF characteristics including evolutionary insights.

A transcription factor (TF) is a protein that controls the rate of transcription by binding to specific DNA 
sequences, including promoter regions. TF can also combine and interact with cis-acting elements in the pro-
moter region as well as interact with other proteins to regulate the start site of transcription1. In plant, TF plays 
important roles such as controlling flower developments2, 3, circadian clock4, carbon and nitrogen regulatory 
networks5, protein–protein interaction6, cell differentiation7, pathogen and hormone responses8, and disease 
resistance9.

Due to a large number of plant genomes available (2,220 genomes from 725 species; Plant Genome Database 
Release 2.75; http://​www.​plant​genome.​info/; Park et al., in preparation), many genome-wide analyses of plant 
TFs have been conducted10–15. One of the genome-wide TF databases is the plantTFDB which identifies 58 TF 
families from 165 plant species11. Some of these TF families are plant-specific, including AP2/ERF16, NAC17, 
WRKY18, and GRAS19, 20, and some are general in eukaryotic such as bHLH (basic helix-loop-helix)21, 22, bZIP 
(basic leucine-zipper)23, and GATA​24–27. With the published plant genomes, various genome-wide analyses of 
TF families have been conducted; AP2/ERF, NAC28–31, bHLH32–34, bZIP23, 35–37, GRAS20, 38, 39, and GATA​25, 40, 41 
TF families displaying their features in various aspects including evolutionary aspect. Genome-wide analyses of 
TF families in Arabidopsis thaliana have also been studied, presenting 122 AP2/ERF genes42, 105 NAC genes28, 
162 bHLH genes34, 75 bZIP genes23, 32 GRAS genes20, 29 GATA genes25 as well as 566 GATA genes from 19 A. 
thaliana genomes43.

GATA TFs contain more than one highly conserved type IV zinc finger motifs (CX2X17–20CX2C) followed 
by a basic region that can bind to a consensus DNA sequence, WGA​TAR​ (W means T or A; R indicates G 
or A)25, 44, 45. Most plant GATA TFs contain a single GATA domain of which pattern is CX2CX18CX2C (type 
IVb) or CX2CX20CX2C (type IVc)27. Except for these known types, additional patterns were also identified: e.g., 
CX4CX18CX2X, which have four amino acids in the first Cysteine-Cysteine, named as type IV4

43.
Plant GATA TFs have various roles like the chloroplast development46, photosynthesis and growth47, epithe-

lial innate immune responses48, seed germination49, hypocotyl and petiole elongation50, and cryptochrome1-
dependent response51. Genome-wide analyses and/or expression analyses of GATA TFs have been reported in 
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21 plant species25, 40, 41, 43, 52–66 (Table S1), including P. trichocarpa of which genome-wide identification of GATA 
genes was conducted based on the old gene model (Version 3.0; Table S1).

Populus genus is a model system for investigating the wood development, crown formation, and disease 
resistance in perennial plants67, which has several advantages including rapid growth, ease of cloning, and small 
genome68. Owing to it, its genome was sequenced as a first wood plant genome69, and then additional genome 
sequences of Populus species have been sequenced and analyzed55, 70–75 (Table 1), which is an excellent resource 
to identify genus-wide analyses of Populus GATA TFs. These species were classified into independent three clades 
based on phylogenetic studies using single-copy76 nuclear genes and whole chloroplast genome sequences77, 78: 
(i) P. tremuloides, P. tremula, and P. tremula x alba, (ii) P. pruinosa and P. euphratica, and (iii) P. trichocarpa and 
P. deltoides. In spite of abundant resources of Salicaceae genomes including Salix purpurea79, there is only one 
study for characterizing the biological function of Populus GATA gene (PdGNC), which regulates chloroplast 
ultrastructure, photosynthesis, and vegetative growth in Arabidopsis80, suggesting genome-wide identification 
of Populus GATA genes are strongly required.

Here, we conducted genome-wide identification, phylogenetic analyses, expression level analysis, identifica-
tion of amino acid patterns and transmembrane helix of GATA TFs in seven Populus genomes with the GATA-
TFDB (http://​gata.​genef​amily.​info/; Park et al., in preparation). Our comparative and comprehensive analyses 
conducted with the integrated bioinformatic pipeline provided by the GATA-TFDB will be a cornerstone to 
understand various plant TF characteristics including evolutionary insights.

Results and discussions
Identification of GATA TFs from seven Populus genomes.  We identified 262 GATA genes (389 
GATA TFs) from seven Populus genomes available in public using the pipeline of the GATA-TFDB (http://​gata.​
genef​amily.​info/; Table S2). The number of GATA genes for each Populus genome ranges from 33 to 40 (Table 1), 
which is larger than those of A. thaliana (29 to 30 GATA genes)25, 43, V. vinifera (19 GATA genes), and O. sativa 
(28 GATA genes)81; while is smaller than that of G. max (64 GATA genes)40. The phylogenetic relationship of 
the seven Populus species inferred from the complete chloroplast genomes (Fig. 1a), congruent to the previous 
studies76, 78, shows no correlation with the number of GATA genes. It can be explained that the number of GATA 
genes is rather affected by the accuracy of the gene model (e.g., the largest number of GATA TFs is not from P. 
trichocarpa, which is the model Populus species; Fig. 1b). The proportion of Populus GATA genes against whole 
genes ranges from 0.08% (P. deltoides) to 0.13% (P. euphratica; Table 1), which is similar to that of A. thaliana 
(0.11%) and is slightly higher than those of V. vinifera (0.07%), G. max (0.06%), and O. sativa (0.05%).

Among Populus genomes, P. euphratica has the largest number of GATA genes (40); while P. tremula contains 
the smallest (33; Fig. 1b): difference of the number of GATA genes between the largest and the smallest is seven. 
Similarity, three Arabidopsis genomes, Arabidopsis halleri, Arabidopsis lyrata, and A. thaliana, contain 22, 28, and 
30 GATA genes, respectively (Fig. S1) and four Oryza genomes, O. sativa, Oryza glaberrima, Oryza brachyantha, 
and Oryza rufipogon, showed 28, 25, 24, and 28 GATA genes, respectively25 (Fig. S1), displaying similar interspe-
cies differences. While, Gossypium raimondii, Gossypium arboretum, and Gossypium hirsutum presented 46, 46, 
and 87, respectively because G. hirsutum is a tetraploid species52. These interspecific differences of GATA genes 
indicate that many evolutionary events including the gain and loss of GATA genes were occurred in three genera.

Except P. pruinosa genome not containing alternative splicing forms, numbers of GATA TFs are larger than 
those of GATA genes (Table 1). Numbers of GATA genes which have alternative splicing forms range from 7 to 
16 (Table 1 and Table S3), accounting for 30.22% of Populus GATA genes, which is similar that of A. thaliana (9 
out of 30 GATA genes; 30.00%). PdGATA6 from P. deltoides contains nine alternative splicing forms, which is the 
largest number. In addition, P. tremula (PtaGATA26) and P. trichocarpa (PtrGATA12) show seven, P. euphratica 
(PeGATA35) displays six, P. tremula x alba (PtaaGATA36) presents five, and P. tremuloides (PtsGATA3, 17, 22, 
27, 30, 35, and 36) has two. Average numbers of alternative splicing forms of GATA genes range from 2.00 (P. 
tremuloides) to 3.43 (P. deltoides). These differences can be partially explained by that alternative splicing forms 
are controlled via multilayered regulatory network82, however, further studies are required.

Differences in the number of alternative splicing forms of GATA genes in Populus genus can be caused by 
(i) different gene prediction programs83–85 and (ii) amount of evidence transcript sequences, covering fully 

Table 1.   Characteristics of identified GATA TFs from seven Populus genomes. *It shows that total ratio (B/A) 
of Populus genomes except P. pruinosa.

Populus species name Version # of GATA genes (A) # of GATA TFs

# of GATA genes 
having alternative 
splicing forms (B)

# of GATA TFs having 
alternative splicing 
forms # of genes # of proteins Ratio (B/A) (%)

Populus trichocarpa 3.1 39 67 13 41 42,950 63,498 33.33

Populus pruinosa 1 37 37 0 0 35,131 35,131 0.00

Populus euphratica 1 40 55 9 24 30,688 49,676 22.50

Populus deltoides 2.1 38 55 7 24 44,853 57,249 18.42

Populus tremuloides 1.1 37 44 7 14 36,830 48,320 18.92

Populus tremula 1.1 33 60 16 43 35,309 83,720 48.48

Populus tremula x alba 1.1 38 71 16 49 41,335 73,013 42.11

Total 262 389 68 195 267,096 410,607 30.22*

http://gata.genefamily.info/
http://gata.genefamily.info/
http://gata.genefamily.info/
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characterized genes, expressed sequences tags (ESTs), and/or RNA-Seq data. In the gene prediction process, 
evidence sequences are essential to achieve accurate prediction of genes as well as alternative splicing forms. 
More available EST or RNA-Seq sequences will bring plentiful alternative splicing forms of GATA genes: e.g., 
the human genome contains around averagely of 10 alternative splicing forms per one gene, predicted from a 
large amount of transcript sequences86. Available RNA-Seq data of Populus genus (As of 2018 Jun) deposited in 
NCBI Short Read Archive show that P. trichocarpa and P. tremula presenting a large proportion of alternative 
splicing forms of GATA genes contain a large amount of RNA-Seq data (Table S4).

In‑depth investigations of alternative splicing forms of Populus GATA genes.  We identified the 
phenomena that some alternative splicing forms originated from one Populus GATA gene encode the same 
amino acids. Each of the nine alternative splicing forms of PdGATA6, a typical example of this phenomenon, is 
composed of 232 aa, 295 aa, and 301 aa in protein length and exon is composed of between 3 and 5. Among the 
nine alternative splicing forms of PdGATA6, all except PdGATA6f and 6h present the same start and end posi-
tions of ORFs. The first ORF exons of the eight alternative splicing forms except PdGATA6f contain start methio-
nine without stop codon are classified into two types: one is 627 bp and the other is 645 bp. It results in two types 
of amino acid sequences from the eight alternative splicing forms, indicating that most of alternative splicing 
events are occurred in 5’ and 3’ UTR regions (Fig. 2). In addition, GATA domain sequences of eight alternative 
splicing forms of PdGATA6 are identical, suggesting that the GATA domain is important to bind DNA.

Interestingly, some of alternative splicing forms of Populus GATA genes display the same amino acids: one 
GATA gene from P. tremuloides, four from P. euphratica and P. deltoides, six from P. trichocarpa and P. tremula 
x alba, and eight from P. tremula. One of known roles of untranslated regions of messenger RNA is changing 
the amount of translated proteins87. The number of TFs will increase or decrease the transcription amount of 
target genes, so that these alternative splicing forms may be important to the regulatory network of GATA TFs.

We also identified that some alternative splicing forms of the twelve GATA genes of three Populus species 
(P. tremula x alba, P. tremula, and P. tremuloides; Table S5) missed GATA domain which was not included in 
the Populus GATA TFs list. Interestingly, GATA TFs without GATA domain can negatively regulate the target 
genes by competing with normal GATA TFs88, indicating that these twelve GATA genes containing alternative 
splicing forms without domain can also play a role of negative regulators. In addition, one Populus GATA gene, 
PtaGATA28 (from P. tremula), has five out of six alternative splicing forms that missed GATA domain, suggest-
ing that this gene might have a dominant role of negative regulation in contrast to the normal GATA genes even 
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Figure 1.   Phylogenetic tree of seven Populus species in complete chloroplast genomes. (a) shows a phylogenetic 
tree of seven Populus species in complete chloroplast genomes. Bootstrap analyses with 1000 pseudo-replicates 
were conducted with the same options. S. gracilistyla is aligned to the seven Populus genomes as an outgroup. 
Light blue and green lines indicate the gene loss of GATA TFs in P. deltoides and P. tremuloides lineage, 
respectively. Yellow star means gene duplication events of the 10 paralogous pairs. Black, green, blue letters of 
7 Populus genomes mean independent three clades based on phylogenetic studies. (b) presents the number of 
GATA genes and GATA TFs for each genome.
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though additional research such as expression level of each alternative splicing forms in various conditions are 
required. PtaGATA33 from P. tremula has two out of three, and the rest ten GATA genes have one.

Identification and investigation characteristics of Populus GATA subfamilies.  We constructed 
a neighbor-joining phylogenetic tree based on amino acid sequences of GATA domains of 389 Populus and 41 
Arabidopsis GATA TFs together to identify subfamilies (Fig. 3a), resulting those four subfamilies (I to IV; see 
Material and Methods; Table S2) were successfully identified. Subfamily I has the largest number of Populus 
GATA genes; while subfamily IV contains the smallest number (Table S6) as same as A. thaliana25, V. vinifera89, 
and G. max40 except O. sativa81, monocot species. Subfamily III presents the largest average number of alterna-
tive splicing forms (1.81) and subfamily II displays the lowest (1.15; Table S6). GATA domains belonging to sub-
families I, II, and III are located adjacent to the C-terminal; however, those in subfamily IV are at the N-terminal 
as same as A. thaliana25, V. vinifera89, G. max40, and O. sativa81.

Amino acid lengths of Populus GATA TFs in each subfamily present a wider range than those of A. thaliana 
(Fig. 3b). However, three Populus GATA TFs display extremely short lengths: PdGATA18 belonging to subfamily 
I is 82 aa, PtsGATA29 and PdGATA36 from subfamily III are 46 and 86 aa, respectively (Table S2). Interest-
ingly, some of GATA TFs of the other plant species including A. thaliana also display the short GATA TFs: 120 
aa (AtGATA23) in A. thaliana25, 109 aa (VvGATA13) in V. vinifera89, 80 aa (GmGATA10) in G. max40, and 101 
aa (OsGATA8b) in O. sativa81. It indicates that the three shortest Populus GATA TFs may be functional GATA 
TFs, suspecting that the gene prediction program can miss some of exons nearby the exon containing the GATA 
domain.

Two Populus GATA TFs in subfamily II have unique domains in comparison to those of A. thaliana; 
PpGATA21 contains NIR domain (IPR005343) found in the Noc2 gene family in Arabidopsis. This domain seems 
to be involved in protein–protein interaction, indicating that PpGATA21 may have partner protein for forming 
protein complex to regulate target genes. In addition, PpGATA23 covers two HMA domains (IPR006121), which 
can bind heavy metal ions90. These two Populus GATA genes will have unknown additional functions like WC1, 
which is involved in circadian clock mechanism of Neurospora crassa with light-sensing domain91.
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Figure 2.   Diagram of alternative splicing forms of PdGATA6. It shows the gene structure of the PdGATA6 
gene (P. deltoides). Orange thick boxes indicate translated regions and black thick boxes display untranslated 
regions. Black thin lines mean intron and black dotted lines are intergenic regions. Green dotted and solid lines 
indicate the conserved and different structure of GATA genes including exon, intron, and, untranslated regions, 
respectively. The number around the boxes display relative positions of translated, untranslated, and exons based 
on the start position of PdGATA6b. Names of alternative splicing forms of the PdGATA6 gene are displayed in 
the left part of each gene diagram.
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A. thaliana GATA TFs in subfamily III contain two known additional domains: CCT domain (IPR010402) 
found in circadian clock and a flowering control gene (CONSTANS92) and TIFY domain (IPR010399) to medi-
ate homo- and heteromeric interactions between TIFY proteins and other specific TFs93, 94. In contrast to A. 
thaliana25 and G. max40, fourteen GATA TFs in six Populus species except P. euphratica lack CCT and/or TIFY 
domains. Some of GATA TFs of O. sativa also presented the same phenomenon81. In detail, nine of the 14 GATA 
TFs are the unique transcript, indicating that they completely lost CCT and/or TIFY domains during evolution, 
similar to those of V. vinifera89. The remaining five GATA TFs have other alternative splicing forms, presenting 
the selective loss of these domains.

Comparisons of the principal component analysis of seven Populus species.  In a previous study, 
six Populus species except P. tremula x alba were used for conducting the phylogenetic analysis based on a total 
of 76 morphological properties for buds, leaves, inflorescences, flowers, and fruits95, which is congruent to the 
chloroplast phylogenetic tree (Fig. 1), except P. trichocarpa and P. deltoides. The incongruency of the two species 
is caused by limited species in Fig. 1. However, the principal component analysis of Populus GATA genes shows 
one cluster covering P. euphratica, P. tremula x alba, P. tremuloides, and P. trichocarpa (Fig. S2), which is incon-
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Figure 3.   Sequence characteristics of Populus GATA TFs. (a) shows that the phylogenetic tree of GATA domain 
sequences constructed by the neighbor-joining method. Black triangles on the tree indicate a group of Populus 
GATA domains. Names of the Populus GATA genes not condensed were displayed with blue colors. Bootstrap 
values calculated from 10,000 replicates are shown on the node except that those are lower than 50. The scale 
bar corresponds to 0.050 estimated amino acid substitutions per site. Ranges of subfamilies were presented with 
lines on the right side. (b) displays distribution of amino acid length of Populus and A. thaliana GATA TFs. The 
length distribution of GATA genes in each subfamily was plotted separated with the dotted lines. The Y-axis 
represents an amino acid length of GATA TF. Bold lines mean average length of GATA genes. Thin lines present 
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splicing forms of GATA genes among six Populus. The X-axis displays a list of PCs. Y-axis indicates Populus 
species name. Z-axis shows the ratio of the number of GATA TF per GATA gene. (d) presents the pattern 
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respectively.
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gruent to the aforementioned two phylogenetic trees. It reflects that GATA TFs may not evolve in the similar to 
species evolution due to their widely regulatory roles96.

Identification of Populus GATA gene clusters (PCs) on phylogenetic tree of Populus GATA 
genes.  To understand the phylogenetic relationship of Populus GATA genes clearly, we clustered them in the 
phylogenetic tree (Fig. 3a), resulting in 21 distinct Populus GATA gene clusters (PCs; Fig. 3a and Table S7). All 
PCs except PC11 containing five species except P. tremuloides and P. tremula covers all seven Populus species, 
displaying conserveness of Populus GATA genes. Eleven of the 21 PCs (52.38%) contain the same amount of 
GATA genes for each Populus species, while the rest 9 PCs (42.86%) show different numbers (Table S8). PC03, 
PC05, and PC14 lack of only one GATA gene from P. pruinosa, P. tremula, and P. deltoides, respectively; while 
PC12 and PC20 have additional GATA gene of P. deltoides and P. euphratica, respectively. The remaining 4 PCs 
display a complex pattern of the number of GATA genes for each Populus species (Table S8), indicating complex 
history of gain and loss of GATA genes in the Populus genus.

Subfamily I, containing the largest Populus GATA genes, displays the most complex structure with the largest 
number of PCs (Fig. 3a). Interestingly, AtGATA3, AtGATA10, AtGATA11, AtGATA13, AtGATA14, and PC12 
do not show neighbor GATA genes like an independent clade (Fig. 3a). Subfamily II shows the largest ratio of 
the number of PCs to the number of GATA genes, implying faster evolution might be occurred. In addition, 
four Populus GATA genes (PpGATA21, PpGATA23, PeGATA19, and PeGATA23) are not clustered into PCs 
(Fig. 3a), presenting species-specific GATA genes. In subfamily III, PC01, containing four Populus GATA genes 
per species, might be experienced a gene duplication event in comparison to the other PCs. In addition, PC01 
and PC02 seem to be independent of three Arabidopsis GATA genes (Fig. 3a), suggesting Populus-specific GATA 
genes, while PC03 and PC04 have their partner Arabidopsis GATA genes (Fig. 3a). Subfamily IV covers only one 
PC and two Arabidopsis GATA genes, the smallest subfamily (Fig. 3a).

Among six Populus species except P. pruinosa, PCs that have a relatively high average of the ratio of the num-
ber of GATA TF per GATA gene are PC01 (2.58), PC12 (2.36), and PC21 (2.17) (Fig. S3), suggesting that GATA 
TFs in these PCs may have diverse biological functions, similar to the case of OsGATA2381. In the species level, 
PC01 in P. euphratica (3.50) and P. tremula x alba (4.00), PC12 in P. deltoides (3.67) and P. trichocarpa (6.00), 
PC04 in P. tremuloides (2.00), and PC18 in P. tremula (4.00) display the high ratio, while five PCs (PC07, PC10, 
PC11, PC15, and PC19) have one GATA TF per GATA gene (Fig. 3c). We suspected that GATA TFs of each 
Populus species might have dynamic features of their functional diversification, including subfunctionalization 
and neofunctionalization97–99.

In total, 23 out of 556 (4.14%) amino acid positions in the CX2-4CX18-20CX2C region (inter-species variations) 
show more than one amino acid (Fig. 3d), which is larger than that of 19 A. thaliana genomes43 (intraspecific 
variations; 0.93%). Positions of variable amino acids in the CX2-4CX18-20CX2C region are scattered throughout 
this region along with PCs (Fig. 3d). Most variable positions are 9th in PC01 (four amino acids) and 21st in 
PC15 (three amino acids; Fig. 3d); while the maximum number of different amino acids in Arabidopsis GATA 
genes is 243.

Genome‑wide inference of GATA TF functions based on characterized A. thaliana GATA 
TFs.  Till now, biological functions of one Populus80 and 15 A. thaliana GATA TFs have been characterized43. 
Nine of 15 characterized Arabidopsis GATA genes were also successfully mapped based on the PCs (Fig. 3a and 
Table 2) and similarity of amino acids, resulting in that seven PCs are related to the characterized Arabidopsis 
GATA genes. 129 Populus GATA TFs in the seven PCs are candidates for deducing their functional roles in 
Populus. In addition, PdGNC from P. nigra x (P. deltoides x P. nigra), a uniquely characterized GATA TF, known 
to regulate chloroplast ultrastructure, photosynthesis, and vegetative growth in Arabidopsis80 is successfully 
mapped to PtrGATA19 (PC09) with 98.02% amino acid similarity. It supports this inference method because 
both GNC in Arabidopsis and PdGNC are in the same PC with the similar functions even though Arabidopsis 
and Populus belong to Brassicaceae and Salicaceae and are an herb and a tree species, respectively. Moreover, 
OsGATA12 involved in the seedling stage based on expression profile, is similar to that of BME3 in A. thaliana81. 
Based on this result, researchers can efficiently and systematically identify the biological functions of Populus 
GATA genes in the near future.

Expression level analysis of GATA genes in P. deltoides and P. pruinosa.  Based on available RNA-
Seq raw reads obtained from leaf, phloem, xylem, and root tissues of P. deltoides and P. pruinosa (Table S9), 
expression levels of Populus GATA TFs were calculated (Fig. 4). In the four tissues, three GATA genes in the PC9 
were well clustered displaying leaf and phloem specific expressions (Fig. 4a), which is congruent to the putative 
functions of GATA genes in PC9, such as regulation of chloroplast development, growth, and divisions (Table 2). 
In addition, four clusters covering GATA genes in PC13, PC1, PC6, and PC5, also presented similar expression 
patterns across the tissues, but these clusters did not cover all members in each PC. PC1 and PC5 showed high 
expression in all four tissues; while PC13 was leaf and phloem specific and PC6 was expressed lowly, especially 
in xylem, which can be a clue to understand their biological functions due to lack of homologous genes of which 
biological functions were characterized. Expression profiles of each tissue exhibited that some clustered GATA 
genes from the same PC were same as those in the four tissues and the rest were not (Fig. 4b–e), showing that 
expression level of Populus GATA genes partially reflects their conserveness across the species.

Domain types of Populus GATA genes.  The DNA-binding motif of GATA TFs was classified into three 
types designated as type IVa (CX2CX17CX2C), IVb (CX2CX18CX2C), and IVc (CX2CX20CX2C) among which Type 
IVb and IVc are common in plants25, 40, 81, 89. Additional types, including type IVp (p indicates partial; mentioned 



7

Vol.:(0123456789)

Scientific Reports |        (2021) 11:16578  | https://doi.org/10.1038/s41598-021-95940-5

www.nature.com/scientificreports/

Table 2.   Function inference of Populus GATA gene clusters (PCs) based on characterized A. thaliana GATA 
TFs.

PC name GATA gene Biological functions Subfamily References

PC03 AtGATA25 Hypocotyl and petiole elongation
III

50

PC04 AtGATA28 (ZML2) Mediation of cryptochrome1-dependent response 133

PC08
AtGATA15 (GATA15) Cytokinin-regulated development, including greening, hypocotyl elongation, phyllotaxy, floral organ initiation, 

accessory meristem formation, flowering time, and senescence

II

135

AtGATA16 (GATA16)

PC09 AtGATA21 (GNC)

a nitrate‐inducible member important for chlorophyll synthesis and glucose sensitivity 136

Modulation of chlorophyll biosynthesis (greening) and glutamate synthase (GLU1/Fd-GOGAT) expression 137, 138

Downstream effectors of floral homeotic gene action by controlling two MADS-box TFs 139

Control of convergence of auxin and gibberellin signaling 140, 141

Control of greening, cold tolerance, and flowering time 142

Regulation of chloroplast development, growth, and division as well as photosynthetic activities 143, 144

Cytokinin-regulated development, including greening, hypocotyl elongation, phyllotaxy, floral organ initiation, 
accessory meristem formation, flowering time, and senescence

135

PIF- and light-regulated stomata formation in hypocotyls 145

PC10 AtGATA18 (HAN)

Regulation of shoot apical meristem and flower development 145–149

Stable establishment of cotyledon identity during embryogenesis 148

Position the proembryo boundary in the early Arabidopsis embryo 149

PC19
AtGATA2 (GATA-2)

Regulation of light-responsive genes I 45AtGATA4 (GATA-4)

PC20 AtGATA1 (GATA-1)

Figure 4.   Heatmap of GATA genes in four tissues of P. deltoides and P. pruinosa. Dendrograms at the left side of 
heatmaps are the result of hierarchical clustering of each expression data using hclust function in R package stats 
version 4.0.3. Heatmaps present expression levels based on FPKM values calculated by cufflink with gradient 
colors from blue to red displayed in the legend on the right side. Dendrograms at the left side of heatmaps 
are the result of hierarchical clustering of each expression data. Labels consist of GATA gene and PC names 
separated with ‘:’. Green dotted boxes indicate the case that some of members in the same PC were clustered. 
Blue dotted boxes mean that all members in the PC were clustered together. (a) displays heatmap of GATA 
genes of two Populus species in the four tissues, (b)–(e) are for heatmaps in leaf, phloem, xylem, root tissues.
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in Arabidopsis43 and G. max GATA TF analyses25) and type IV4 (four amino acids between the first two cysteines, 
which seems to be functionally active43), were also found.

In Populus GATA TFs, type IVb is the most abundant (272 of 389; 69.92%), and type IVc is the second (102; 
26.22%). Type IVb, a common type of DNA-binding motifs of plant GATA TFs, occupies the largest proportion 
in Populus GATA TFs and is found in subfamilies I, II, and IV and Type IVc, the second largest, is a common in 
subfamily III of Populus GATA TFs, which is similar to those of A. thaliana, G. max, V. vinifera, and O. sativa. 
Type IV4 is found only in eight Populus GATA TFs (2.06%) belonging to subfamily II. It was also identified in 
some species including A. thaliana and G. max, suggesting that this type was independently occurred during 
evolution by adding two amino acids only in the first two cysteines of subfamily II. In contrast, type IVp is found 
in all subfamilies of Populus GATA TFs as well as those of A. thaliana, G. max, and O. sativa, suggesting that 
random modifications of GATA domains of all subfamilies have been occurred during evolution. Interestingly, 
type IVp can be generated by alternative splicing forms: PtaaGATA36d is GATA TF displaying type IVp; while 
the rest four alternative splicing forms of PtaaGATA36 show type IVc domain, which is similar to the cases of 
OsGATA881 and AtGATA26. Type IVp was also considered as an ancestral form of GATA zinc finger40, requiring 
more research of Type IVp with additional GATA genes from many plant genomes.

Amino acid patterns of GATA domains in seven Populus species and A. thaliana.  Amino acid 
sequences of 422 GATA domain from 382 Populus and 40 A. thaliana GATA TFs excluding seven type IVp 
domains of Populus and one Arabidopsis were used for multiple sequence alignment (Fig. 5a). Subfamily IV of 
Populus displays the most conserved manner (49 of 55 conserved amino acids are identical.) in their domains, 
while subfamily II of Populus shows the least conserveness (18 of 66 conserved amino acids). Considering with 
the number of Populus GATA genes in each subfamily, subfamily I, the largest subfamily, is more conserved than 
subfamilies II and III. Some of dominant amino acids in GATA domain are different among Populus species (e.g., 
the 5’ region of GATA domains; Fig. 5a).

Subfamily IV displays incongruent of conserved amino acids between Populus and A. thaliana at 8th and 47th 
(Fig. 5a; blue-colored transparent boxes), indicating that subfamily IV was evolved and stabilized in early stage. 
In addition, six, one, and two amino acids which are 100% conserved in Populus genus but not in A. thaliana are 
found in subfamilies I, II, and IV, respectively (Fig. 5a; red-colored transparent boxes), suggesting that subfamily 
I has been most diversified in the lineage of A. thaliana.

Twelve conserved amino acids of Populus and A. thaliana belonging to the zinc finger motif 
(CX2-4CX18-20CX2C) are identical in all subfamilies (Fig. 5a) suggesting that the zinc finger motif is the most 
conserved and important region in the GATA domain. 22nd and 28th conserved amino acids in subfamilies I, 
II, and IV are Tryptophan and Glycine, respectively; while subfamily III displays methionine and glutamic acid 
(Fig. 5a). These differences can be key factors to classify four subfamilies.

As expected, the zinc finger motif, which can bind to DNA and is the most important region in GATA domain, 
contains a smaller number of different amino acids (Fig. 5b). Despite of large number of species in Populus genus 
used in this study, four positions in this region show a high number of amino acids in A. thaliana (Fig. 5b), sug-
gesting that selection pressures have been differently applied in the two lineages. This phenomenon is also found 
outside this region (Fig. 5b). It is congruent to the findings described in the previous paragraph. Once more 
plant genomes including the large number of resequencing data of A. thaliana and P. trichocarpa are analyzed, 
the detailed evolutionary history of the GATA domain will be uncovered.

Identification of transmembrane helix (TMH) of GATA gene family in seven Populus 
genomes.  Membrane-bound transcription factors (MTFs) are docked in cellular membranes using their 
transmembrane domains100. MTFs have usually been found in plant species101 of which are related to seed 
germination102, cell division101, heat stress103, and salt stress104. Mechanisms of MTFs are well known in two 
major plant TF families: NAC TF family and bZIP TF family105 (Fig. S4). NTL6 (NAC TF) of A. thaliana is 
localized in the plasma membrane under normal conditions; while under stress conditions, NTL6 is processed 
by an as-yet-unidentified intramembrane protease and SnRK2.8 kinase phosphorylates NTL6 and facilitates its 
nuclear import105. (ii) Intracellular movement of Arabidopsis bZIP60 and bZIP28 was characterized105. bZIP60 
and bZIP28, which are other MTFs in Arabidopsis, were localized on the membrane of the endoplasmic reticu-
lum and then transported to nucleus by cleaving TMH.

Five Populus GATA TFs were identified with TMHs predicted by TMHMM106. PtrGATA14b, 14c (P. 
trichocarpa) in subfamily I, PpGATA21, 25 (P. pruinosa), and PtaaGATA23 (P. tremula x alba; Table S10), belong-
ing to subfamily II. These putative GATA MTFs have one TMH, which is the same as the previously characterized 
Arabidopsis MTFs107. As far as we know, this is the first time to report putative GATA MTFs in plant species; 
additional putative GATA MTFs were also identified in other plant species using our pipeline: VvGATA19 (V. 
vinifera; subfamily IV)89, GmGATA39 (G. max; subfamily I)40, OsGATA14 (O. sativa; subfamily II)81 with one 
TMH, while no GATA MTF was found in A. thaliana25. It is interesting that there are no common subfamilies 
containing putative GATA MTFs along with different species. In addition, some alternative splicing forms of 
PtrGATA14 (P. trichocarpa) have TMH, indicating that truncation of TMH region by alternative splicing may 
switch their functions by changing subcellular localization of GATA TFs, similar to the bZIP60 in A. thaliana105. 
With accumulating more data including expression profiles and subcellular localization, roles of these putative 
GATA MTFs can be uncovered. Moreover, these results can be a corner stone to understand plant GATA MTFs 
together with a large number of plant genomes available now108–110 in a broad taxonomic range of plant species.

Chromosomal distribution of P. trichocarpa, P. tremula x alba, and P. deltoides GATA gene 
family.  Chromosomal distribution of Populus GATA genes from the three species, P. trichocarpa, P. tremula x 
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alba, and P. deltoides belonging to the same clade (Fig. 6), presents several important features: (i) 38 of 39 GATA 
genes in P. trichocarpa, 37 out of 38 in P. tremula x alba, and 36 of 38 in P. deltoides were distributed on 15 of 
19 chromosomes (Fig. 6), presenting similar chromosomal distribution among three species. (ii) Chromosome 
5 in both species contains the largest number of GATA genes; while chromosomes 9, 13, and 19 in both spe-
cies contain the smallest (Fig. 6). This biased chromosomal distribution was also found in many plant species 
including A. thaliana25, V. vinifera89, G. max40, O. sativa81. (iii) In the three species, chromosome 7 shows the 
highest density of GATA genes in both species; and chromosome 5 is a second rank. (iv) Most of GATA genes of 
three species are in the same PCs and in similar chromosomal position (Fig. 6) except the four genes of which 
chromosomal positions are not assigned (See ChrUn in Fig. 6). It indicates that there might be no chromosomal 
rearrangement events and biological functions of GATA genes may have similar functions among the three spe-
cies. Interestingly, three of the four genes are additional copy of GATA TFs in PC12 and PC17, which is the result 
of independent gene gain events.

Based on paralogous GATA TFs of P. trichocarpa identified in the previous study111, 10 paralogous pairs were 
successfully mapped to GATA TFs from three Populus species (Fig. 6), displaying that all paralogous pairs contain 
three GATA TF from each species in the similar chromosomal positions, indicating that gene duplication events 
of the 10 paralogous pairs were occurred before speciation of three Populus species (see yellow star in Fig. 1a).
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Figure 5.   Conserved amino acids of GATA domain along with subfamilies and genera (A. thaliana and 
Populus). (a) shows the conserved amino acid in each position of the GATA domain. Yellow shaded characters 
mean 100% conserved amino acids and gray background color in amino acid indicate that there are gaps 
in the position. S I, S II, S III, and S IV are shortened forms of subfamily I, II, III, and IV, respectively. Blue-
colored transparent boxes show incongruent of conserved amino acids between the two species. Red-colored 
transparent boxes present amino acids which are 100% conserved in the Populus genus but not in A. thaliana. 
(b) The X-axis indicates each amino acid position of the aligned amino acids of GATA domain and Y-axis 
displays the number of different amino acids in the specific position of aligned GATA domain of Populus (blue 
line) and A. thaliana (orange line). Red dots on the graph mean position where A. thaliana has more different 
amino acids than that of Populus. The blue-colored transparent box presents the CX2CX18-20CX2C region.
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In addition, three PCs, PC14 (PtrGATA15 and PtaaGATA8 in chromosome 5), PC02 (PtrGATA35 and 
PdGATA36 in chromosome 17), and PC09 (PtrGATA37 and PtaaGATA28 in chromosome 18), have not complete 
set of Populus GATA TFs. PC14 and PC09 suggest the loss event of GATA genes in the lineage of P. deltoides 
(see the light blue line in Fig. 1). PC02 indicates another loss event occurred in the lineage of P. tremuloides (See 
green lines in Fig. 1). Taken together with the incongruency inferred from the PCA, GATA TFs were evolved 
with the events occurred in various lineages in Populus species, which is independent to their species evolution.

Conclusion
Using the identification pipeline of GATA TFs in the GATA-TFDB, we successfully identified 262 GATA genes 
(389 GATA TFs) from seven Populus species. Alternative splicing forms of Populus GATA genes display the 
high number of alternative splicing forms (nine is maximum) with only changes in untranslated regions and 
loss of DNA-binding motif or additional domains. Populus GATA genes were classified into the four subfamilies, 
same to Arabidopsis GATA genes, except that some genes in subfamily III lack CCT and/or TIFY domains. 21 
Populus GATA gene clusters (PCs) were identified from the phylogenetic tree of GATA domain sequences and 
20 of 21 PCs cover the seven Populus species, displaying the conserveness of Populus GATA genes. Distribution 
of alternative splicing forms in the PCs exhibits the possibility of subfunctionalization and neofunctionalization 
of Populus GATA genes. Through the expression analysis of GATA genes of two Populus species, the five PCs 
which display similar expression patterns across the four tissues were identified for predicting their biological 
functions. Populus-specific conserved amino acids in the GATA domain were discovered in comparison to A. 
thaliana, suggesting a complex evolutionary history of the GATA domain. Five Populus GATA TFs contain one 
transmembrane helix (TMH), which is the first report of membrane-bound GATA TFs. Together with the biased 
distribution of GATA genes across the chromosomes, paralogous pairs of GATA genes suggested several gene 
duplication events in the lineages of Populus genus. Taken together, our first comprehensive analyses of genus-
wide GATA TFs in plants successfully provide characteristics of Populus GATA genes across the seven species 
as well as their putative functions and evolutionary traits of Populus GATA genes.
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Materials and methods
Collecting Populus genome sequences from various sources.  We utilized the seven Populus 
genomes sequences deposited from the Populus Comparative Genome Database108–110 (http://​www.​popul​usgen​
ome.​info/), which adopted-whole genome sequences from the Plant Genome Database (http://​www.​plant​
genome.​info/; Park et  al., in preparation). These genomes were originated from the NCBI genome database 
(http://​genome.​ncbi.​nlm.​nih.​gov/) and Phytozome (http://​www.​phyot​ozome.​info/)112 in the standardized form 
of genome sequences provided by the GenomeArchive® (http://​www.​genom​earch​ive.​info/)113.

Identifying GATA TFs from whole Populus genome sequences.  Amino acid sequences from seven 
Populus genomes were subjected to InterProScan114 to identify GATA TFs. The pipeline for identifying Populus 
GATA TFs implemented at the GATA-TFDB (http://​gata.​genef​amily.​info/; Park et al., in preparation), which is 
an automated pipeline for identifying GATA TFs with GATA DNA-binding motif InterPro term (IPR000679) 
and post-process to filter-out false positive results and for analyzing various analyses including domain sequence 
analysis, gene family analysis, as well as phylogenetic analysis. GATA-TFDB was constructed and maintained as 
one of members of the Gene Family Database (http://​www.​genef​amily.​info/; Park et al., in preparation).

Exon structure and alternative splicing forms of Populus GATA TFs.  Based on the Populus Com-
parative Genome Database (http://​www.​popul​usgen​ome.​info/; Park et al., in preparation), exon structure and 
alternative splicing forms of GATA TFs were retrieved. Diagrams of exon structure and alternative splicing 
forms of GATA TFs were drawn primarily based on the diagram generated by the GATA-TFDB (http://​gata.​
genef​amily.​info; Park et al., in preparation) with adding additional information manually.

Construction of phylogenetic tree of Populus GATA TFs.  Phylogenetic trees were constructed with 
a Neighbor-joining method with bootstrap option (10,000 repeats) by ClustalW 2.1115 based on the alignment 
of amino acids of GATA domains obtained from the GATA-TFDB (http://​gata.​genef​amily.​info; Park et al., in 
preparation) also by ClustalW 2.1115.

Chromosomal distribution of Populus GATA TFs.  We drew the chromosomal distribution map of Pop-
ulus GATA genes from three species based on the chromosomal coordination from their pseudo-molecule level 
assemblies deposited in the Plant Genome Database (http://​www.​plant​genome.​info/).

Prediction of transmembrane helixes on Populus GATA TFs.  Transmembrane helixes on Populus 
GATA TFs were predicted by TMHMM106 under the environment of the Plant Genome Database (http://​www.​
plant​genome.​info/).

Principal component analysis of Populus GATA TFs.  Principal component analysis (PCA) was con-
ducted based on 19 characteristics of GATA genes using prcomp function in R package stats version 4.0.3116. The 
result was visualized into a scatterplot including variance, with the first two principal components.

Expression analysis of GATA TFs based on Populus RNA‑seq data.  Raw reads of RNA-Seq experi-
ments of P. pruinosa and P. deltoides were downloaded from NCBI (Table S9). RNA-Seq raw reads were aligned 
against the whole genome of P. pruinosa and P. deltoides with hisat2 v2.2.0117 after generating datasets of each 
Populus genome. After generating bam file for each SRA raw reads, bam files from the same experiments were 
merged using samtools v1.9118. Expression levels of the merged bam files were calculated by cufflink v2.2.1119.

Hierarchical clustering was conducted for the five datasets: one covers four different conditions (four tissues) 
and the last four contain each condition (Fig. 4) using hclust function in R package stats version 4.0.3116.

Construction of phylogenetic tree of seven Populus species based on complete chloroplast 
genomes.  Complete chloroplast genomes of seven Populus chloroplast genomes69, 120–123 and Salix gracil-
istyla78, used as an outgroup, were aligned using MAFFT v7.450124. All chloroplast genome sequences were 
retrieved from the PCD (http://​www.​cp-​genome.​net; Park et al., in preparation). The maximum-likelihood trees 
were reconstructed in MEGA X125. During the ML analysis, a heuristic search was used with nearest-neighbor 
interchange branch swapping, the Tamura-Nei model, and uniform rates among sites. All other options were set 
to their default values. Bootstrap analyses with 1,000 pseudoreplicates were conducted with the same options. 
All bioinformatic processes were conducted under the environment of the Genome Information System (GeIS) 
used in the various previous studies43, 126–134.

Data availability
All GATA TFs identified in this study can be accessed at the Populus Comparative Genome Database (http://​
www.​popul​usgen​ome.​info/).
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