
1Scientific Reports |         (2019) 9:12726  | https://doi.org/10.1038/s41598-019-49088-y

www.nature.com/scientificreports

Construction of three-dimensional 
temperature distribution using a 
network of ultrasonic transducers
Xuehua Shen   1, Huanting Chen1, Tien-Mo Shih2, Qingyu Xiong3 & Hualin Zhang1

Although the ultrasonic technique for measuring temperature distributions has drawn much attention 
in recent years, most studies that adopt this technique focus on two-dimensional (2D) systems. 
Mathematically, extending from 2D to 3D requires higher construction-performing algorithms, as well 
as more complicated, but extremely crucial, designs of ultrasonic transducer layouts. Otherwise the 
ill condition of governing-equation matrices will become more serious. Here, we aim at constructing 
3D temperature distributions by using a network of properly-installed ultrasonic transducers that 
can be controlled to transmit and receive ultrasound. In addition, the proposed method is capable 
of performing this construction procedure in real time, thus monitoring transient temperature 
distributions and guarantee the safety of operations related to heating or burning. Numerical 
simulations include constructions for four kinds of temperature distributions, as well as corresponding 
qualitative and quantitative analyses. Finally, our study offers a guide in developing non-intrusive 
experimental methods that measure 3D temperature distributions in real time.

Ultrasonic techniques for non-intrusive measurements have been used in both the academia and the indus-
try1–19. Particularly, in reference3, a method of ultrasonic scattering measurement is presented for nondestructive 
testing of additively manufactured material, which can avoid both missed detections and false positives. Due to 
temperatures’ characteristics of spatial distributing and time-varying, the ultrasonic method has drawn much 
attention in areas of heat transfer and thermometry in recent years6–11. Particularly, by ultrasonic pulse-echo 
measurements, the inverse ultrasonic technique raised in reference8 can be used for high-accurately determining 
internal transient temperature distributions in heat materials. According to references9–12, the ultrasound velocity 
varies dependently on temperature. Particularly, a one-to-one relationship exists between the ultrasound veloc-
ity and the temperature, allowing the temperature to be computed after the ultrasound velocity is acquired13,14. 
Conversely, within a given 3D space, the temperature distribution may be constructed if the distribution of ultra-
sound velocity is acquired by some means15.

In the proposed study, we focus on constructing 3D temperature distributions using a network of 
properly-installed ultrasonic transducers that can be controlled to transmit and receive ultrasounds in different 
times. Under such circumstances, ultrasound signals will propagate among ultrasonic transducers and will be 
distributed within the 3D space. In fact, constructing temperature distributions based on ultrasound signals con-
stitutes an inversion process generally accompanied by ill-conditioned matrices9. Therefore, mathematical meth-
ods of Multi-quadric radial basis approximation and singular-value decomposition are adopted, incorporating 
advantages of fitting sparse data and solving inversion problems16. To validate the constructing performance, we 
carry out a series of numerical simulations in which temperature-distribution models with different complexity 
levels are designed. Qualitative and quantitative analyses of simulations theoretically indicate that this ultrasonic 
method can construct 3D temperature distributions with adequate accuracy, strong anti-interference and satis-
factory real-time capability.

Description of Temperature Distribution Construction
As mentioned above, the ultrasound velocity changes depending on temperatures. In gases, the relationship 
between ultrasound velocity and temperatures is described as6,17,18
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κ= =v R
M

T B T ,
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where v denotes the ultrasound velocity; T the absolute temperature; R the universal gas constant; κ and Mg 
respectively the adiabatic exponent and the average molecular weight of the gas. As constants, κ, Mg and R can be 
grouped and replaced by another constant B.

Figure 1.  Illustration of single-path ultrasonic method.

Figure 2.  The network of ultrasonic transducer and ultrasound paths.

Figure 3.  Dividing of the cubic area.
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For situations with uniform temperatures, the simplest device illustrated in Fig. 1 will meet most demands. 
This device is composed of an ultrasonic transmitter and an ultrasonic receiver. Since distance L between the 
transmitter and the receiver is fixed, we can compute the uniform temperature by

=T L t B( / ) / , (2)2 2

if t is measured.
However, in various realistic situations with non-uniform temperatures, average temperatures no longer suf-

fice. For constructing 3D temperature distributions, numerous ultrasonic transducers should be installed spatially 
to ensure adequate precision.

A network of 32 ultrasonic transducers is represented by black dots and installed uniformly on each edge of 
the cube (Fig. 2). These transducers can be regarded as transceivers due to their ability of working as transmitters 
and receivers, which are controlled to transmit and detect ultrasonic signals in different times16. Ultrasound sig-
nals propagate from one transducer to another transducer and generate ultrasound paths, which are represented 
by blue lines. Theoretically, ultrasound paths exist between every two transducers17. However, since ultrasound 
paths on edges or surfaces contribute little to the construction of internal temperatures, they are non-essential 
and have been eliminated from Fig. 2. Totally, these 32 ultrasonic transducers generate 172 effective ultrasound 
paths. We obtain

∫ ∫= =t v x y z dl f x y z dl1/ ( , , ) ( , , ) ,
(3)

k
l lk k

where lk denotes the kth ultrasound path, tk travelling time of the ultrasound path lk, and f(x, y, z) the reciprocal 
of v.

The process of constructing temperature distributions involves Multi-quadric radial basis approximation. To 
proceed, we divide the measured area into N elements, and then establish N radial basis functions whose centers 
correspond to centers of those elements (Fig. 3, N = 512 = 8 × 8 × 8).

The Multi-quadric radial basis function is established as

ϕ γ= − +x y z x y z x y z( , , ) ( , , ) ( , , ) , (4)i i i i
2 2

where ||·|| denotes the standard Euclidean norm; (xi, yi, zi) the center of Multi-quadric radial basis, or the mid-
point of the ith element; and γ the smooth factor related to the specific area as well as the network of transducers16.

Next, f(x, y, z) is expressed as a linear combination of N Multi-quadric radial basis functions:

∑ε ϕ= ⋅
=

f x y z x y z( , , ) ( , , ),
(5)i

N

i i
1

where εi is an undetermined coefficient describing the distribution of ultrasound velocity’s reciprocal.
Define aki as:

∫ ∫ϕ γ= = − + .a x y z dl x y z x y z dl( , , ) ( , , ) ( , , )
(6)

ki
l

i
l

i i i
2 2

k k

To compute coefficient εi, we can merge Eqs (3)–(6) to obtain

∫∑ ∑ε ϕ ε= = .
= =

t x y z dl a( , , )
(7)
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With definitions given as
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we can rewrite Eq. (7) into a matrix form as

ε= .t A (9)

Considering A as an ill-conditioned matrix, we adopt the singular-value decomposition to achieve regulariza-
tion estimation. According to matrix theory20, any real matrix ∈ ×A RM N  can be decomposed as

∑

∑ σ σ σ

=
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where ∈ ×U RM M  and ∈ ×V RN N  denote two orthogonal matrices; r  the rank of matrix A ; and 
σ σ σ≥ ≥ ≥ > 0r1 2  the r singular values of matrix A. Let us further define

∑

∑ σ σ σ
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then the generalized inverse matrix of A, i.e. ∈+ ×A RN M is obtained as

=+ +A VS U , (12)T

Thus, the undetermined coefficient ε can be rewritten as

ε = .+A t (13)

Since parameter γ is determined appropriately via the numerical method, elements of matrix A can be com-
puted in advance to predetermine A+. When matrix of travelling times t are measured, undetermined coefficients 
ε will be obtained. Thus, the reciprocal of ultrasound velocity f(x, y, z) and then ultrasound velocity v(x, y, z) can 
be eventually determined. Finally, the temperature distribution T(x, y, z) is constructed as

∑ε ϕ= ⋅ =




 ⋅




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 .

=
T x y z

B
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By the expression T(x, y, z), not only the temperature of any position with exact coordinates, but also the tem-
perature distribution of the whole measured area can be constructed.

Numerical Simulations and Analysis
To validate the temperature distribution construction performance of this ultrasonic method, we carry out a 
series of numerical simulations. As shown in Figs 2 and 3, the measured area is a cube of 8m × 8m × 8m, with 32 
ultrasonic transducers generating 172 effective ultrasound paths. The cube is divided into 512 uniform elements 
to establish 512 Multi-quadric radial basis functions. In addition, constant coefficient B in gaseous environment 
is 20.0318,19, and parameters γ is predetermined as 0.1. In simulations, four temperature distribution models with 
different complexity levels are set up to serve as references to constructions below.

One-peak symmetrical temperature distribution:

=
. × + + +

T x y z
x y z

( , , ) 1800
0 5 ( 1)

,
(15)1 2 2 2

One-peak asymmetrical temperature distribution:

=
. × + + + + +
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Two-peak temperature distribution:
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Four-peak temperature distribution:
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Known from practical experiences, travelling times of ultrasound paths obtained via actual measurements 
may be influenced by various interferences21–23. Thus, to investigate the anti-interference of this ultrasonic 
method, we implement experiments respectively in both ideal condition and non-ideal condition. In the for-
mer, travelling times are theoretically computed from Eq. (19). In the latter, travelling times are assumed to be 
theoretical values over laid with Gaussian noise, whose mean deviation and standard deviation are 0 and 0.001 
respectively.
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To make comprehensive evaluations, we analyze simulations qualitatively and quantitatively. The former 
includes slice maps and scatter plots of temperature distributions, the latter consists of temperature mean relative 
error Em, temperature root-mean-square percent error Er, as well as average construction time. Here, Em and Er 
are respectively defined as:

Figure 4.  One-peak symmetrical temperature distribution model and its constructions, the left one is slice 
map of temperature distribution, and the right one is scatter plot of temperature distribution: (a) Model; (b) 
Construction without noise; (c) Construction with noise.
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Figure 5.  One-peak asymmetrical temperature distribution model and its constructions, the left one is slice 
map of temperature distribution, and the right one is scatter plot of temperature distributions: (a) Model; (b) 
Construction without noise; (c) Construction with noise.
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Models

Without noise With noise

Em Er Em Er

T1 (x, y) 0.281 0.115 3.103 0.956

T2 (x, y) 0.602 0.319 2.977 1.187

T3 (x, y) 1.640 1.067 3.233 1.651

T4 (x, y) 7.854 3.965 8.680 4.212

Table 1.  Quantitative temperature errors of constructions (%).

Figure 6.  Two-peak temperature distribution model and its constructions, the left one is slice map of 
temperature distribution, and the right one is scatter plot of temperature distribution: (a) Model; (b) 
Construction without noise; (c) Construction with noise.
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Models Average reconstruction time

T1 (x, y) 0.0837

T2 (x, y) 0.0921

T3 (x, y) 0.0943

T4 (x, y) 0.1008

Table 2.  Average reconstruction times (s).

Figure 7.  Four-peak temperature distribution model and its constructions, the left one is slice map of 
temperature distribution, and the right one is scatter plot of temperature distribution: (a) Model; (b) 
Construction without noise; (c) Construction with noise.
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where n denotes the number of computed points; TRj and TMj temperatures of point (xj, yj, zj) respectively of the 
construction and its model; and TMm the mean temperature of model.

Figures 4–7 display the slice map and scatter plot of temperature distributions, respectively of models and 
their constructions. As figures show, these constructions resemble, and almost look identical to, their correspond-
ing models. Even for the most complex four-peak temperature distribution and under the influence of noise, it is 
difficult to distinguish constructions from the model via the visual inspection.

Quantitative temperature errors and construction times are computed and respectively displayed in Tables 1 
and 2, which can further evaluate the construction performance. Considering impact of random factors, sim-
ulations that construct a certain temperature distribution model are repeatedly done 1000 times. Thus, these 
quantitative temperature errors and construction times are average values.

Observing from Table 1, we find out that errors in constructions of complex two-peak and four-peak tem-
perature distributions are relatively larger than those of simple ones. And for a specific temperature distribution, 
errors under influence of noise are slightly larger than those without influence of noise. On the whole, construc-
tions in various situations are accurate enough, as Em and Er are respectively within 8.7% and 4.3%.

Conclusions can be drawn from qualitative error figures and quantitative errors. First, although constructions 
may be accompanied by some errors, they can accurately describe how temperatures distribute over the whole 
area, especially for hot peaks. Second, construction errors have tendency to increase with complexity of temper-
ature distributions and influences of noise.

To some extent, average construction times demonstrate the real-time capability of this ultrasonic method 
(Table 2). Clearly, the proposed method can construct various temperature distributions within about 
0.089s–0.102s and provide real-time temperature distributions in most situations.

Conclusion
Based on the one-to-one relationship between the ultrasound velocity and the temperature, we have developed a 
non-intrusive and real-time ultrasonic technique that can compute 3D temperature distributions using a network 
of properly-installed ultrasonic transducers. Due to the ill-posed condition in the process, multi-quadric radial 
basis approximation and singular value decomposition are adopted, incorporating advantages of fitting sparse 
data and solving inversions. To validate the constructing performance, we further carry out a series of numerical 
simulations in which temperature distribution models with different complexity levels are designed.

This paper performed numerical simulations but not experimental validation is in three considerations. First, 
this study focuses on the theoretical feasibility of constructing 3D temperature distributions using ultrasonic 
technique, and numerical simulations are convincing enough. Second, the experimental validation requires 
absolutely accurate realistic temperature distributions for references, but it is difficult and even impossible to 
accurately measure realistic temperature distributions using existing thermometry techniques. Third, inaccurate 
travelling times of ultrasound paths may cause unsatisfactory constructed temperature distributions, whether 
the construction algorithm is excellent enough or not. Therefore, in realistic situations, the measured travelling 
times of ultrasound paths frequently affected by uncertain interferences may lead to an incorrect assessment of 
the ultrasonic technique in temperature distribution constructions.

Since this paper has demonstrated the theoretical feasibility of the ultrasonic technique in constructing 3D 
temperature distributions, our future studies will focus on its experimental validation and engineering applica-
tion, including the selection of hardware components, the design and establishment of experimental platform, the 
performance optimization of ultrasonic transducers, the processing, extraction and transformation of ultrasonic 
signals, etc. The main factors affect the accuracy of realistic temperature distribution constructions may lie in 
the uniformity of the measured media, the flow of gas, the size and layout of ultrasonic transducers, and the time 
delay in transmitting and receiving of ultrasound signals, etc., and these therefore must be emphases in our future 
studies.

Data Availability
The datasets generated and analyzed during the current study are available from the corresponding author on 
reasonable request.
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