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Abstract: In this study, the antibacterial and antifungal properties of silver nanoparticles synthesized
with the aqueous plant extract of Acer oblongifolium leaves were defined using a simplistic, environ-
mentally friendly, reliable, and cost-effective method. The aqueous plant extract of Acer oblongifolium,
which served as a capping and reducing agent, was used to biosynthesize silver nanoparticles. UV
visible spectroscopy, X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and
scanning electron microscopy were used to analyze the biosynthesized Acer oblongifolium silver
nanoparticles (AgNPs). Gram-positive bacteria (Bacillus paramycoides and Bacillus cereus) and Gram-
negative bacteria (E. coli) were used to test the AgNPs’ antibacterial activity. The presence of different
functional groups was determined by FTIR. The AgNPs were rod-like in shape. The nanoparticles
were more toxic against Escherichia coli than both Bacillus cereus and Bacillus paramycoides. The Ag-
NPs had IC50 values of 6.22 and 9.43 and mg/mL on HeLa and MCF-7, respectively, proving their
comparatively strong potency against MCF-7. This confirmed that silver nanoparticles had strong an-
tibacterial activity and antiproliferative ability against MCF-7 and HeLa cell lines. The mathematical
modeling revealed that the pure nanoparticle had a high heat-absorbing capacity compared to the
mixed nanoparticle. This research demonstrated that the biosynthesized Acer oblongifolium AgNPs
could be used as an antioxidant, antibacterial, and anticancer agent in the future.

Keywords: green synthesis; silver nanoparticles; antibacterial activity; antiproliferative activity

1. Introduction

Nanotechnology has burgeoned as one of the most exciting and vast fields of study,
with great opportunities [1]. Owing to the idiosyncratic properties of nanoparticles, includ-
ing the high ratio of surface area to volume and magnetic, mechanical, optical, and chemical
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properties, they have remarkable prospects in emerging fields such as food, biomedicine,
agriculture, and genetics [2]. Noble metal NPs, such as copper, silver, platinum, gold,
zinc, magnesium, and titanium, have received a lot of recognition for their multifunctional
theragnostic abilities in biomedical applications [3].

Nanoparticle synthesis has been achieved using chemical and physical techniques;
however, these methods are not beneficial to the environment. As nanoparticles include
plant extracts, animal proteins, agro-waste, pigments, bacteria, fungi, and small viruses,
which are difficult to handle with conventional methods, green synthesis of nanoparticles
is recommended [4]. Plants also include bioactive secondary metabolites such as aldehydes,
ketones, terpenoids, polyphenols, tannins, polysaccharides, flavonoids, proteins, amines,
and alkaloids, which serve as stabilizing and capping agents, and can reduce metal ions
into metal nanoparticles, synthesizing required NPs with previously reported beneficial
properties [5].

The actual situation of the pandemic fetched silver nanoparticles to the attention of
researchers with special characteristics concerning antibacterial and antiviral protection [6].
Silver nanoparticles are among the most widely studied nanoparticles because they have
flourished their wide applicability in the fields of biomedical applications, catalysis, elec-
tronics, and antimicrobial applications [7]. The last decade has seen a rise in research in
the field of green synthesis of silver nanoparticles owing to environmental concerns [7].
To broaden the knowledge in the field of green synthesis of nanoparticles that have cat-
alytic activity, biosynthesis of silver nanoparticles using spent coffee grounds for catalytic
degradation of an organic contaminant has also been reported [8].

The properties of nanoparticles are exceptionally sensitive to their morphology, which
increases the capability for their applications but at the same time makes their precise
and reproduceable synthesis imperative [7]. Higher concentrations of silver are toxic;
the literature shows that lower concentrations of AgNO3 have better intrinsic therapeutic
prospects, catalytic activity, chemical stability, and biocompatibility [9]. Compared to bulk
metals and their salts, AgNPs have been reported to have anticancer and antimicrobial
activity [10]. Among the best attributes of silver nanoparticles is the gradual and controlled
release of silver. Moreover, Padnya et al. [11], in their review, discussed the attractiveness
of silver nanoparticles as an alternative to costly gold nanoparticles. AgNPs, apart from
being used for medical purposes, are being exploited for their redox stability in biosensors
with the assistance of cyclophanes [11].

Acer oblongifolium, also known as Himalayan maple, Kashmir maple, or evergreen
maple, belongs to an Asian maple species of the soapberry family [12]. It is a medium-sized,
perennial to semi-deciduous tree that grows to around 15–22 m (49–72 feet) in height [13].
This maple is one of the few that remains green in winter. Acer oblongifolium is found in
eastern, central, and southeastern Asia, from northeast India and Tibet to Japan, including
northern Indochina and southern China [14].

Researchers have explored the medical importance of this plant species extensively,
but it has yet to be explored for its possible use in stabilizing and reducing the effects of
green chemistry [15]. It has some medicinal properties with anti-tumor and antimicrobial
activity, as well as a higher polyphenol and flavonoid content, which plays an important
part in reducing metallic salt in stable nanoparticles.

Antibiotic resistance among microbes, on the other hand, is becoming a global concern
because of its widespread use. Noble metals (including Au, Ti, Pt, Pd, and Ag) have long
been known to be effective antimicrobials against bacteria such as Staphylococcus aureus,
Klebsiella pneumoniae, Pseudomonas aeruginosa, and Salmonella typhimurium, as well as fungi
such as Rhizoctonia solani, Aspergillus niger, and Candida [16].

Additionally, AgNPs have not been fully explored in terms of their utilization against
pathogens. These include Escherichia coli, a Gram-negative bacterium that causes cholecys-
titis, bacteremia, cholangitis, urinary tract infection, and traveler’s diarrhea [17]. Bacillus
cereus is a Gram-positive foodborne pathogen that can produce toxins and cause emetic
(vomiting) and diarrheal syndromes. Bacillus cereus, on the contrary, plays a part in fire
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blight, a contagious plant disease. Bacillus paramycoides is a Gram-positive bacterium that
causes necrotic lesions in channel catfish [18]. Several studies, including the recent work
of Platania et al., 2022 [19], have focused on the potential of AgNPs against many of these
pathogens. In one such study, three colloidal suspensions of silver nanoparticles with
different ionic ratios were synthesized and characterized for antibacterial activity. This
study provided some of the first evidence that AgNPs’ bactericidal activity increases along
with an increase in the concentration of silver nanoparticles [19].

In a similar study, the green synthesis of silver nanoparticles was orchestrated with
the aim of increasing crop production, growth, and resistance to disease. The synthesized
nanoparticles were analyzed for their antifungal and antibacterial properties against several
plant pathogens and strengthened the foundation for the synthesis of silver nanoparti-
cles [20]. Following this, the current study reports an unprecedented, one-step, cost-
effective method for AgNPs biosynthesis at room temperature from Acer oblongifolium
plant leave extract. Antimicrobial activity against pathogenic bacteria was also investi-
gated; cytotoxicity assay, as well as physicochemical parameters of AgNPs, were assessed
using mathematical approaches [21]. In this study, AgNPs were synthesized using the
plant extract Acer Oblongifolium, and antibacterial activity against pathogenic bacteria with
antiproliferative activity against MCF-7 and HeLa cell lines was shown.

The current study is different from previous studies in many respects. First, in this
study, the Acer oblongifolium plant was used for silver nanoparticle synthesis for the first
time. This plant has no use in any kind of nanoparticle formation in previously reported
studies. Furthermore, the physiochemical properties (e.g., the size or shape) of synthesized
nanoparticles are proximal to standards and have strong biological potency for exploration
of their nanodelivery aspect. Moreover, the velocity and temperature profiles of pure
nanoparticles and mixed nanoparticles (AgNPs mixed with water) are given for the first
time in the current study of a green synthesis approach. Additionally, the IC50 values in
the antiproliferative activity performed in the current study were far lower than in some
other recent studies, revealing that the nanoparticles synthesized in the current study have
more cytotoxic potential than previously synthesized nanoparticles [22–25].

2. Materials and Methods
2.1. Sample Collections

Acer oblongifolium plant cultivated in the botanical garden of University of Punjab,
Lahore, was collected in November 2021, and fresh leaves were separated and further
processed for preparation of leaf extract.

2.2. Laboratory Preparation of Extracts from Plants

Acer oblongifolium fresh leaves were cleaned by washing under tap water and then
rinsed with deionized water. The leaves were then shadow dried for 2–3 days and ground
into powder using an electric blender. Leaf powder of 4 g was suspended in distilled water
(200 mL) and kept in a water bath at a temperature of 70–80 ◦C for 30 min in a beaker.
The remaining extracts were filtered in a conical flask using Whatman Grade 1 Filter Paper,
cooled down, and refrigerated at 4 ◦C for further use in the synthesis of AgNPs according
to the method described by Krithiga et al. and Pirtarighat et al. [26,27].

AgNO3 (25 mM, 1 M) solution was made by mixing AgNO3 flakes in deionized water.
This solution was used for synthesizing AgNPs with the aim of testing their antibacterial
activity.

2.3. Green Synthesis of AgNPs from the Extract

The solution of AgNO3 (25 mM, 1 M) was made by mixing AgNO3 flakes in deionized
water, followed by AgNO3 and leaf extracts to the ratio of 1:10 v/v, respectively, to produce
a volume of 50 mL in a reagent bottle wrapped with aluminum foil. The mixtures were
incubated at room temperature until the yellow color of the solution turned dark brown.
The samples were then centrifuged at 5000 revolutions per minute for 20 min, and the
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supernatant was discarded. Deionized water (5 mL) was added to the precipitate and
centrifuged again with the same specifications. The process was repeated. The final
precipitate was then placed in a hot air oven for 30 min at 60 ◦C, and the dried form was
utilized in further testing.

2.4. AgNPs Characterization
2.4.1. UV Visible Spectroscopy

The most important and simple technique for confirming the formation of nanoparti-
cles is ultraviolet visible (UV Vis) spectrophotometry. AgNP formation was verified using a
UV visible spectrophotometer, which monitored the band (300–700 nm) of surface plasmon
resonance.

2.4.2. X-ray Diffraction (XRD) Analysis

The crystalline nature of the biosynthesized AgNPs was analyzed using X-ray diffrac-
tion (XRD). A powdered sample was utilized, and in the scanning mode—operated at
30 mA current with 40 kV voltage and Cu/Kα radiation with 20◦–70◦ in 2θ angles—the
diffraction pattern was recorded. The average crystalline size of AgNPs was calculated
using the Debye–Scherrer equation. The equation is as follows:

D = kλβcosθ where k = shape factor (0.94).
λ = X-ray wavelength (λ = 1.5418 Å);
β = full width at half maximum (FWHM) in radians.
and θ = Bragg’s angle.

2.4.3. Fourier Transform InfraRed (FTIR) Spectrum

The Fourier Transform InfraRed Spectrophotometer (FTIR, Bruker, Billerica, MA,
USA) was used to determine the functional groups responsible for the synthesis of silver
nanoparticles and record the FTIR spectrum. These functional groups may aid in the
capping, reduction, and stabilization of silver nanoparticles. FTIR was performed in the
spectral array from 400–4000 cm−1. The solution of synthesized silver nanoparticles was
centrifuged for 30 min at 10,000 rpm for FTIR measurements.

2.4.4. Scanning Electron Microscope Analysis (SEM)

To determine the structure of the obtained nanoparticles, SEM was used. The dried
samples were placed on a double conductive tape fixed on a sample holder at a normal
temperature. A platinum-gold coating was applied to the samples to increase conductivity.
After this, the samples were visualized at 80 kV voltage.

2.5. In Vitro Biological Application
2.5.1. Antimicrobial Activity

All the equipment and media were autoclaved for 30 min at 115 ◦C and 15 psi. The disc
diffusion method was performed to check the bacterial activity against Gram-positive
Bacillus cereus and Bacillus paramycoides and Gram-negative E. coli. Stock LB broth was
prepared to refresh the bacterial stain, from which 5 mL was taken in a falcon tube and
injected into the pure culture of E. coli, Bacillus cereus, and Bacillus paramycoides, which
was dipped into the nutrient broth incubated in a shaking incubator round the clock at
37 ◦C. A stock solution of Mueller Hinton Agar (MHA) was prepared for Petri dishes,
20 mL solution was put into each Petri dish and left until it solidified, and 1 mL of the
overnight grown culture of each stain (E. coli., Bacillus cereus, and Bacillus paramycoides) was
spread on the Mueller Hinton Agar plates and placed on an antibiotic disc (amoxicillin and
cefpodoxime). 5 µL (4 mg/mL in DMSO) 25 mM, 1 M of AgNPs, and 1 mL of pure plant
extract were placed on a petri dish and incubated for 24 h at 37 ◦C. The inhabitation zone
around the disk was calculated and compared to the positive control. The antibacterial
activities of the respective solutions were confirmed by the appearance of an inhibition
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zone around the disc, which was also previously recorded by Kivrak et al. [28]. If the zone
of inhibition is equal to or greater than 12 mm, then it is significant [29].

2.5.2. Cell Culture for Cell Line

Cryopreserved cancer cells (HeLa and MCF-7) were thawed, centrifuged, re-suspended,
transferred to flasks for culturing, and incubated overnight at 37 ◦C in a standard CO2
incubator. The HeLa lines were cultured in RPMI-1640 medium containing 10% FBS and
1% penicillin/streptomycin. MCF-7 cells, however, were cultured in DMEM containing
1% penicillin/streptomycin and 15% FBS. The cells were detached using 1 mL of trypsin-
EDTA, diluted 10×, after three washes with sterile PBS. Cells were centrifuged for 3 min at
1500 rpm after being given 5 mL of media. The supernatant was removed, and the cells
were suspended again, counted, and diluted as required.

2.5.3. Assay for Cell Viability

MTT-based cell viability assessment was carried out to investigate the cytotoxic po-
tential of silver nanoparticles in adenocarcinoma cells of the human breast, MCF-7, and
adenocarcinoma cells of the human cervix, HeLa. Flat-bottomed, 96-well culture plates
were used to culture (2.5 × 104/mL) the cells in a volume of 90 µL and were held in a 5 per-
cent CO2 incubator at 37 ◦C. AgNPs-treatment of the cells was performed (1 mg/mL) after
an overnight incubation, followed by a further 24 h incubation. To crystallize the viable
cells, the media were expelled, and MTT reagent (100 µL) was applied to all wells. The cul-
ture plate was incubated at 37 ◦C for 4 h with 5% CO2 before 100 µL of the reagent was
added (1:1 of 10% SDS and 50% isopropanol). It was then incubated at room temperature
for another 30 min, and a microplate reader at a 570 nm wavelength (Bio-Tek ELx 800TM,
Winooski, VT, USA) measured the optical density. The findings were determined as %
inhibition scores with the average of three different values (SEM) from all the experiments,
which were done in triplicate. GraphPad Prism 5.0 Software Inc., San Diego, CA, USA,
was used to calculate the inhibitory concentration (IC50) values for derivatives that showed
equal to or greater than 50% inhibition.

2.6. Physicochemical Parameters

To explore the strength and nature of the interaction between AgNPs and solvents,
thermodynamic parameters, such as density, specific heat, and thermal conductivity with
water and without water, were derived to explain the physicochemical behavior after
mixing the AgNPs. Density, specific heat, and thermal conductivity were measured using
a mathematical equation at various temperature values in the range of 15–45 ◦C for pure
silver nanoparticles (AgNPs) and nanoparticles mixed with water. Furthermore, at the
same temperature ranges, the data were taken by mixing the AgNPs with water in different
ratios—1:2, 1:4, and 1:6 (in mL)—as shown in Tables 1–3.

Table 1. Variation of density, $ (kg/m3) with change in temperature (◦C) and amount of solvents.

Temperature (◦C) $ 1b $ 2b $3b $ 4b

15 1007.101 894.880 863.323 840.852
20 1002.476 886.721 856.992 936.769
25 993.112 881.204 851.638 829.848
30 986.746 875.128 846.117 825.632
35 980.174 870.998 840.264 820.987
40 975.417 863.724 834.339 815.548
45 969.105 858.301 825.114 811.716

$ 1b = density of silver nanoparticles (AgNPs); $ 2b, $ 3b, $ 4b = density after mixing nanoparticles and water in the
ratio 1:2, 1:4, 1:6 (in mL).
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Table 2. Variation of specific heat (J/K/mol) of nanofluid (nf ) with temperature (◦C) and amount of
solvents.

Temperature (◦C) $C p $C p2 $C P3 $C p4

15 461.71 435.62 333.15 275.61
20 480.45 424.31 321.71 261.64
25 494.36 411.51 304.14 249.36
30 507.69 396.75 292.80 231.43
35 519.14 388.64 277.90 217.87
40 527.43 371.72 264.81 199.32
45 534.77 356.70 249.33 181.56

$C p = Speed of sound of AgNPs; $C p2, $C p3, $C p4 = Specific heat of AgNPS after mixing nanoparticles and
water in 1:2, 1:4, 1:6 (in mL).

Table 3. Variation of thermal conductivity (Knf) with temperature (◦C) and amount of solvents.

Temperature (◦C) Knf 1 Knf 2 Knf 3 Knf 4

15 466.1 537.2 652.7 731.2
20 453.5 550.4 669.2 749.7
25 444.3 562.1 688.5 775.4
30 436.0 571.6 707.1 802.8
35 430.4 592.3 727.9 822.0
40 424.7 607.5 748.4 848.3
45 419.2 624.0 769.0 874.1

Knf 1 = Thermal conductivity of AgNPs; Knf 2, Knf 3, Knf 4 = Thermal Conductivity of AgNPs after mixing
nanoparticles and water in 1:2, 1:4, 1:6 (in mL).

2.7. Mathematical Formulation

The momentum equation with coupled mixed convection and a uniform magnetic
field:

u
∂u
∂x

+ v
∂u
∂y

=
K

ρn f δ

∂

∂y

(∣∣∣∣∂u
∂y

∣∣∣∣n−1 ∂u
∂y

)
+

1
ρn f

λT − σB0
2U0

ρn f
u−

νn f

ρn f K∗
u− F

ρn f
u2 (1)

Heat transfer equation:

u
∂T
∂x

+ v
∂T
∂y

=
κn f

(ρCp)n f

∂

∂y

(∣∣∣∣∂T
∂y

∣∣∣∣n−1 ∂T
∂y

)
+

κn f

(ρCp)n f

(
∂u
∂y

)2
(2)

Boundary conditions are:

u = 0, v = 0, T = 0 at y = 0
u = U0, v = 0, T = T0 at y→ ∞

(3)

where U0 velocity of the sheet at x = 0, T0 temperature at the sheet surface, ρn f density of
nanofluid, µn f viscosity of nanofluid, (ρCp)n f specific heat of the nanofluid.

Nanofluids are:

µn f
µ f

= 1
(1−ϕ)2.5 ,

ρn f
ρ f

= 1− ϕ + ϕ
ρs
ρ f

,
κn f
κ f

=
1+κ f−2ϕ(κ f +κs)

1+κ f +ϕ(κ f +κs)
(ρCp)n f
(ρCp) f

= 1− ϕ + ϕ
(ρCp)s
(ρCp) f

(4)

Similarity transmissions are as follows:

ψ = X
1

n+1 f (η), T = X−1θ(η), η =
Y

X
1

n+1
(5)
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And u =
∂ψ

∂x
, v = −∂ψ

∂x
(6)

The following similarity transformations [30] are considered for the reducing PDE’s to
ODE’s system,

f ′′′ =
| f ′′ |1−n

n
µn f

µ f

(
M f ′ − λθ −

ρ f

ρn f

1
n + 1

f f ′′ + K1
∗ f ′′ + Fr f ′′ 2

)
(7)

θ′′ = −Pr| f ′′ |1−n

κn f
κ f

(
f ′θ +

1
n + 1

f θ′ +
n− 1
nPr

1
| f ′′ |

(
M f ′ − λθ − 1

n + 1
f f ′
)
+

(ρCp) f

(ρCp)n f
Ec f ′′ 2

)
(8)

3. Results
3.1. Color Change of Solution

The Acer oblongifolium plant reduced the Ag ions, and the color of the solution changed
from yellow to black and brown with the addition of AgNO3 after 24 to 48 h at room
temperature, as shown in Figure 1. The silver nanoparticles were formed using a 1 to
10 ratio (1:10) for this 90 mL of plant extract and 10 mL of silver nitrate solutions mixed.
Therefore, as the incubation time passed, the color intensity increased, indicating the
reduction of Ag ions and the formation of AgNPs.
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3.2. UV Visible Spectroscopy

The synthesis and stability of reduced AgNPs in colloidal solution were examined
using a UV visible spectrophotometer. The maximum absorbance at 450 and 420 nm was
observed in the visible UV spectra, as shown in Figure 2, which corresponds to the surface
plasmon resonance (SPR) of the AgNPs. Surface Plasmon Resonance (SPR) patterns are
commonly used as indicative tools for metal nanoparticle formation, as SPR depends on
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various parameters, such as size and medium dielectric constant [31]. The Ag+ ions were
reduced extracellularly, indicating the formation of silver nanoparticles.
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3.3. X-ray Diffraction (XRD) Analysis

Phase identification, purity, and structure of green synthesized AgNPs were deter-
mined by X-ray diffraction. Confirmation of crystalline nature and purity of AgNPs were
conducted by XRD pattern with strong diffraction peaks analyzed at different 2θ, i.e.,
20.55◦, 38.21◦, 44.15◦, 46.9◦, 64.53◦, and 77.45◦ for 1M AgNPs, and for 25 mM diffraction
peaks were 21.6◦, 27.3◦, 31.85◦, 38.21◦, 43.9◦, 46.85◦, 64.5◦, and 77.1◦. Diffraction peaks of
AgNPs were confirmed at 38.21◦, 46.9◦, and 64.53◦ with miller indices of 111, 200, and 220,
as shown in Figure 3. The average crystallized sizes of 25 mM and 1 M green synthesized
AgNPs were predicted to be 3 nm and 5 nm.
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3.4. Fourier Transform Infrared (FTIR) Spectroscopy

The FTIR spectrum (Figure 4) of the reduced AgNO3 solution and capped by secondary
metabolites with plant extracts of Acer oblongifolium revealed significant absorption peaks
at 2865.16, 2031.92, 1478.96, and 845.35 cm−1. The appearance of the instinct band at
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2865.16 cm−1 (C-H) showed alkanes present, the band at 2031.92 cm−1 confirmed the
presence of alkynes, and the band at 1478.96 cm−1 revealed the N-C and N=C groups.
The C-O group at 845.35 cm−1 depicted the presence of =CH in aromatic compounds
in the biosynthesized silver nanoparticles [32], which is in accordance with previous
studies [33–35].
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3.5. Scanning Electron Microscope (SEM)

The surface morphology and particle size of the green synthesized AgNPs were
determined using a scanning electron microscope (SEM). A typical scanning electron
micrograph identifies that AgNPs are rod-like in shape. Moreover, the average crystalline
sizes for 25 mM and 1M AgNPs were found to be 5 nm and 8 nm, respectively; this is
similar to the size predicted by XRD, as shown in Figure 5.
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3.6. In Vitro Biological Application
3.6.1. Antibacterial Activity

The antimicrobial activity of silver nanoparticles synthesized from Acer oblongifolium
plant extract was studied using the disc diffusion method against Bacillus cereus, Bacillus
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paramycoides, and E. coli. Figure 6 shows the diameter of zones of inhibition around each
disc with silver nanoparticle solution. The antibacterial activity of AgNPs synthesized from
Acer oblongifolium extracts was shown to be highest against E. coli (18 mm), lower against
Bacillus cereus (17 mm), and lowest against Bacillus paramycoides (12 mm).
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3.6.2. Physicochemical Parameters

Density, specific heat, and thermal conductivity were measured using a mathematical
equation at various temperature values in the range of 15–45 ◦C for pure silver nanoparticles
(AgNPs) and nanoparticles mixed with water. Furthermore, at the same temperature ranges,
the data were taken by mixing the AgNPs with water in different ratios 1:2, 1:4, and 1:6
(in mL). The physicochemical parameters, including density, specific heat, and thermal
conductivity data, are given in Tables 1–3 and Figure 7a,b.
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The effect of pure nanoparticles’ parameters on the velocity profile without mixing
with water is shown in Figure 7a, and the effect of nanoparticles on the parameters of the
velocity profile after mixing with water is shown in Figure 7b. The deplanement of the
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volume fraction parameters positively affected the nanofluid velocity. By improving the
nanoparticles, the thickness of the boundary layer of the flow reduces, which results in an
increase in the velocity of the nanofluid. However, we observed that the behavior of the
velocity field is opposite in Figure 7b.

The effect of nanoparticles on the temperature profile is shown in Figure 8a,b, and
it can be noticed that the pure nanoparticles show more heat-absorbing capacity, while
the nanoparticles mixed with water show less heat-absorbing capacity. As a result, the
temperature of the nanofluid increases, which also destroys heat; therefore, the average
temperature of the fluid decreases (Figure 8b).
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Figure 9.
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3.6.3. Antiproliferative Activity against MCF-7 and HeLa Cell Lines

IC50 values of AgNPs synthesized from Acer oblongifolium plant extract against MCF-7
and HeLa cell lines. After 48–72 h of incubation, MCF-7 showed high antiproliferative ac-
tivity in comparison to the HeLa cell line, with values of 9.43 and 6.22 µg/mL, respectively.
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4. Discussion

The color transformation to dark brown from the original yellow confirmed the forma-
tion of silver NPs from Acer oblongifolium plant extract. Prasad and Elumalai [36] noticed
that silver nanoparticles come in a variety of colors, ranging from light yellow to brown.
Furthermore, because of surface plasmon excitation fluctuations in silver nanoparticles,
Prasad et al. [37] observed that these nanoparticles, in aqueous solutions, gave out a
yellowish-brown color. The maximum absorbance peak for silver nanoparticles synthe-
sized from the Acer oblongifolium plant extract was observed at 450 nm using the UV visible
spectrum. According to Prasad and Elumalai [36], a 430–450 nm peak of absorption is
observed in the silver NPs’ spectra present in the reaction media, whereas Kumar et al. [38]
narrowed the gap and reported an absorbance peak of 438 nm. Moreover, unmapped peaks
were also determined that indicate the phytochemical’s presence on the surface of AgNPs,
which aids in capping. Moreover, the average particle sizes predicted by Image J software
for 25 mM and 1 M AgNPs were 5 nm and 8 nm. This was in close proximity to the size
obtained from XRD [39]. Plant extracts’ reduction by stabilizing agents plays a role in the
reduction of Ag+ ions to Ag nanoparticles, according to FTIR study by Iqbal et al. [40].
Hemlata et al. [22] observed that silver nanoparticles bind to the carboxyl or amino groups
of extracted proteins. The amine (–NH), hydroxyl (–OH), and carboxyl (–C=O) groups of
leaf extracts are primarily engaged to fabricate silver nanoparticles, according to studies
conducted by [41]. Scanning electron microscopy (SEM) was utilized to determine particle
size as well as morphology of biosynthesized AgNPs [42]. The SEM micrograph predicted
the morphology, i.e., rod-like shape. Relevant morphological studies have also been found
in the literature [43].

Acer oblongifolium-derived silver nanoparticles have a potent inhibitory effect on
E. coli, Bacillus cereus, and Bacillus paramycoides. Silver nanoparticles synthesized from
Acer oblongifolium leaves are very small size, due to which they have unique physical
and chemical properties. Nanoparticles have a more germicidal effect than the mass of
silver metal because of the reduction of size, increase of the ratio of surface to volume of
nanoparticles, and increase of the contact area with microorganisms.

Similarly, Jain et al. [44] published a human pathogen antibacterial assay using silver
nanoparticles synthesized from Papaya fruit extract, which was revealed to be highly toxic
against bacteria that are resistant to multiple drugs. Kumar [38] also found that AgNPs
were moderately toxic to E. coli, Pseudomonas species, including putida, aeruginosa, vulgaris,
and B. subtilis. The pathogens’ growth was hindered by the silver nanoparticles of the Acer
oblongifolium. We may infer that biosynthesized AgNPs are more toxic to MCF-7 cells than
to the HeLa cell line, based on the results of the antiproliferative activity study.

The activation of metallothioneins and the use of Ag+ chelating agents to prevent
cytotoxicity support this idea. The potential of the mitochondrial membrane was depolar-
ized by silver nanoparticles. The depolarized mitochondrial membrane potential is a key
element in apoptosis signaling pathways. Finally, silver nanoparticles produced early/late
apoptosis and necrosis in MCF7 and HeLa cells, with early apoptosis being the primary
cause of cell death. The activity of early apoptosis was 19 percent higher than that of late
apoptosis and necrosis [45]. Inducing the creation of reactive oxygen species and oxidative
stress, which lead to DNA damage and apoptosis, are two possible pathways of toxicity.
Toxicity in AgNP-treated cells is primarily induced by the release of Ag+ ions into the
cytosol following AgNP uptake via endocytosis and breakdown in an acidic environment.
As a result, the oxidative stress, DNA damage, and cell death observed in the presence of
AgNPs are mostly attributable to silver ions in the cytosol, impairing natural metabolic and
cell cycle mechanisms [46]. For MCF-7 cells, silver nanoparticles synthesized with Artemisia
vulgaris leaf extract had an IC50 value close to 60 g/mL [47]. The efficacy of the aqueous leaf
extract of Cucumis sativus against MCF-7 cells was also supported by another study [41].
Taraxacum officinale methanolic leaf extract also showed improved activity against MCF-7
cell lines. The current research is the first to compare the cell viability of Acer oblongifolium
leaf extract-mediated biosynthesized AgNPs against two cancer cell lines. The Acer oblongi-
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folium AgNPs demonstrated a difference in cytotoxicity toward different cell lines due to
the increased cellular absorption and retention of NPs. Because of their small size, NPs can
enter cells through endocytosis and are not subjected to efflux by P-glycoprotein [48,49].

5. Conclusions

In the current study, we have revealed the simple use of a natural, low-cost biological
reducing agent and Acer oblongifolium leaf extracts through efficient green nanochemistry
methodology, avoiding the presence of toxic solvents and waste. Silver nanoparticles made
from Acer oblongifolium leaf extract were found to be effective against human infections.
The antibacterial activity of the disc diffusion approach is well documented. Because of
these applications, this technology is potentially promising for the large-scale production
of nanoparticles. Prepared nanoparticles can be employed as antibacterial agents in wound
healing, water purification, and medicine.
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