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1  | INTRODUC TION

Seasonal and other oscillatory periodicities are widespread and 
important phenomena in ecosystem dynamics, climate science, 
health data, economic trends and many other important contexts. 
Seasonality is particularly critical in the study of infectious disease. 
Acute immunizing infections can manifest strong seasonal incidence 
as a result of climatic variation or periodic changes in crowding 

(e.g. school calendars; Dorelien, Ballesteros, & Grenfell, 2013; Ferrari 
et al., 2008, 2010; Grenfell, Bjørnstad, & Finkenstadt, 2002). The 
dynamic balance between susceptible recruitment (typically births) 
and herd immunity can amplify these fluctuations; often leading to 
long-term fluctuations such as biennial or more exotic(multi-annual) 
epidemics (Dalziel et al., 2016; Grenfell et al., 2002). Though births 
often demonstrate strong seasonal cycles, fluctuations in births only 
impact seasonality of acute immunizing infections in the absence 
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Abstract
1. Many demographic and ecological processes generate seasonal and other peri-

odicities. Seasonality in infectious disease transmission can result from climatic 
forces such as temperature and humidity; variation in contact rates as a result of 
migration or school calendar; or temporary surges in birth rates. Seasonal drivers 
of acute immunizing infections can also drive longer-term fluctuations.

2. Tensor decomposition has been used in many disciplines to uncover dominant 
trends in multi-dimensional data. We introduce tensors as a novel method for de-
composing oscillatory infectious disease time series.

3. We illustrate the reliability of the method by applying it to simulated data. We 
then present decompositions of measles data from England and Wales. This paper 
leverages simulations as well as much-studied data to illustrate the power of ten-
sor decomposition to uncover dominant epidemic signals as well as variation in 
space and time. We then use tensor decomposition to uncover new findings and 
demonstrate the potential power of the method for disease incidence data. In 
particular, we are able to distinguish between annual and biennial signals across 
locations and shifts in these signals over time.

4. Tensor decomposition is able to isolate variation in disease seasonality as a result 
of variation in demographic rates. The method allows us to discern variation in the 
strength of such signals by space and population size. Tensors provide an oppor-
tunity for a concise approach to uncovering heterogeneity in disease transmission 
across space and time in large datasets.
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of other forcing mechanisms (Dorelien et al., 2013). Where con-
tact rates vary seasonally (e.g. as a result of school terms), these 
seasonal forces thus dominate any seasonality in births (Dorelien 
et al., 2013).

In the case of measles in England and Wales (E&W), and many 
other contexts, the predominant transmission forcing is via contact in 
schools (Dorelien et al., 2013; Finkenstadt & Grenfell, 2000; Grenfell 
et al., 2002). Effectively deterministic measles dynamics occur in large 
populations, where susceptible replenishment is substantial enough 
that infections will wane but never disappear altogether; the thresh-
old for this epidemic equilibrium is approximately 300,000 in Europe 
and North America (Bartlett, 1957; Dorelien et al., 2013; Grenfell 
et al., 2002). In small populations, the pathogen will go extinct until 
it is reintroduced via imports; imported infections can trigger a large 
epidemic when susceptible numbers have built up sufficiently. While 
large locations have outbreaks at the same time every year or every 
other year, small towns experience more stochastic, violent outbreaks 
(Bartlett, 1957; Bharti, Xia, Bjornstad, & Grenfell, 2008; Bolker & 
Grenfell, 1995; Grenfell, Bjørnstad, & Kappey, 2001).

Wavelet analysis is used frequently to explore nonstationary 
cyclicality and heterogeneity in ecological time series (Bjornstad, 
Peltonen, Liebhold, & Baltensweiler, 2002; Cazelles et al., 2008; 
Grenfell et al., 2001; Grinsted, Moore, & Jevrejeva, 2004). For mea-
sles in particular, wavelets have been used to determine seasonal 
and longer period outbreaks as well as spatial variation in the lag 
between epidemics (Grenfell et al., 2001). Local dynamics of mea-
sles transmission in E&W are generally composed of seasonal (driven 
by the school term) and long-term cycles usually annual or biennial 
driven by susceptible replenishment. The strength of these lon-
ger-term cycles can vary between places and across time.

Wavelets provide very detailed data on seasonal signals of indi-
vidual localities; in this paper, we present tensor decomposition as a 
method for characterizing the wavelet spectra of many places at once. 
Tensor decomposition is a multi-dimensional generalization of matrix 
decomposition methods such as principal components analysis (PCA) 
or singular value decomposition (SVD). Analogous to these matrix 
methods, tensor decomposition reduces the dimensionality of the data 
by providing lower-dimensional components which describe much of 
the variance in the data (Cichocki et al., 2015; Kolda & Bader, 2009; 
Rabanser, Shchur, & Günnemann, 2017; Sidiropoulos et al., 2017).

Tensor decomposition has been used successfully in a number 
of fields to uncover trends in large, multi-dimensional datasets. 
The method has been used in neuroscience (Cong et al., 2012, 
2015; Lee, Kim, Cichocki, & Choi, 2007; Vanderperren et al., 2013), 
text analysis (Acar, Camtepe, Krishnamoorthy, & Yener, 2005; 
Ifada, 2014; Zheng, Ding, Lin, & Chen, 2016) and photogrammetry 
(Guo, Huang, Zhang, & Zhang, 2013). In neuroscience, tensors have 
been a useful method for feature extraction and pattern detection 
in electroencephalography (EEG) signals. Tensor decomposition has 
successfully isolated task-related brain activity from the mixture of 
unrelated brain activity, interference and noise (Cong et al., 2012, 
2015; Lee et al., 2007; Vanderperren et al., 2013). The method can 
also extract differences in EEG signals among individual subjects, 

experimental conditions, or tasks (Cong et al., 2012; Vanderperren 
et al., 2013). These studies use data in some variation of a channel–
time–subject format; in other words, data which can be represented 
coherently across three dimensions. In general, these dimensions 
are comprised of a subject such as an individual person or place 
or task, and two dimensions which represent categories (such as 
channels or frequencies or subject areas) and time. A data structure 
amenable to tensor decomposition is a one in which one dimension 
represents a discrete unit of observation (a trial, a person, a sub-
ject), and the other two can be easily interpreted as vectors (such as 
changes in power overtime across channels or frequencies). Though 
tensor decomposition for data structures beyond three dimensions 
is certainly possible, we focus on applications to three-dimensional 
data both for its relative ease of understanding as well as its rele-
vance to our project. Fields such as neurology and computer sci-
ence have utilized tensors in processing signal data in a myriad of 
settings meanwhile applications to ecological data lag behind.

We validate the value of the method for disease incidence data 
by decomposing simulated epidemic data; we simulate epidemics 
under three different birth regimes and demonstrate the method's 
ability to identify these differences. We then apply the method to 
the well-studied E&W measles data to uncover previously undocu-
mented variation in measles seasonality.

2  | MATERIAL S AND METHODS

2.1 | Simulations

We simulate epidemics using a discrete-time stochastic susceptible-
infected-recovered (SIR) model (Becker & Grenfell, 2017; Bharti 
et al., 2008; Bjørnstad & Grenfell, 2008; Caudron et al., 2014; 
Siettos & Russo, 2013). At each time step, each individual is assumed 
to be either susceptible to infection, infected or recovered (dead or 
immune). Once an individual recovers, we assume they can never be 
infected again. We simplify the simulation process by assuming that 
any individual infected at time t will be recovered at time t + 1.

New suscpetibles are supplied by births determined by a pre-de-
fined annual crude birth rate (CBR) which we distribute uniformly 
across each time step. Imported cases are determined by drawing 
from a binomial distribution with a 10% probability of importation. 
We use a starting population of 300,000 for all simulations, and ini-
tial infected population of 10 and initial susceptible population of 
1,000. The susceptible dynamics are determined by:

We add births (Bt−1) and subtract new infections (It). The expected 
number of infected individuals at time t is defined as a function of 
transmission rate (β), local susceptible (S) and infected individuals (I) 
as well as imported infections (ι):

(1)St = St − 1 − It + Bt−1.

(2)�t = � ∗St − 1∗
(
It − 1 + �t

)�
.
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In Equation 2, α is a tuning parameter, fixed to 0.97, consistent 
with previous analyses and simulations of measles (Becker et al., 2016; 
Becker & Grenfell, 2017; Grenfell et al., 2002). We give transmission a 
seasonal shape consistent with what has been estimated for London 
(Becker & Grenfell, 2017; Bjørnstad, Finkenstadt, & Grenfell, 2002; 
Bjørnstad & Grenfell, 2008; Grenfell et al., 2002), with an average R0 
(or number of secondary infections per individual infection) set to 15 
for all simulations, within the range of typical estimates for measles 
(Bjørnstad et al., 2002; Grenfell et al., 2002; Guerra et al., 2017). We 
draw the number of infections using a Poisson distribution to introduce 
stochasticity (Becker & Grenfell, 2017; Bjørnstad & Grenfell, 2008):

We allow approximately 80 years for the epidemics to settle into equi-
librium and evaluate the following 20 years so the scale is comparable 
to the 22 years of E&W data. To alter the dynamics of each epidemic, 
we vary the CBR used in each simulation. We use three different birth 
regimes: a constant CBR of 0.015, a constant CBR of 0.03, and a vari-
able CBR which begins at 0.012 and increases to 0.036. The simulated 
birth rates cover the range of birth rates in the data we use; the tenth 
percentile of CBRs in E&W during this period is 0.012, 0.015 is approx-
imately the median, and the max is 0.035. We collect 50 time series for 
each birth regime.

2.2 | England and Wales urban districts 1944–1966

For our primary analysis, we consider measles cases in all 954 urban 
districts in England and Wales for the pre-vaccination period (1944–
1966) (Bharti et al., 2008; Bjørnstad et al., 2002; Caudron et al., 2014; 
Grenfell et al., 2001). We use annual births and population sizes to cal-
culate the CBR for each year and evaluate the relationship between 
epidemic cycles and demographic conditions. In particular, we consid-
ered the CBR for locations above the critical community size for mea-
sles (Finkenstadt & Grenfell, 2000). The spatial influence of large cities 
on regional dynamics is substantial (Grenfell et al., 2001), and therefore 
we limit our analysis to larger locations as we have more confidence 
these locations are determining their own dynamics rather than echo-
ing the dynamics of endemic neighbours (Bartlett, 1957; Grenfell et al., 
2001). The post-war baby boom resulted both in a surge of birth rates 
as well as a large range in birth rates across districts; for these reasons, 
we examine baby boom CBRs in particular. The following sections de-
scribe the methods (wavelet transform and tensor decomposition) we 
use to evaluate the relationship between epidemic seasonality and de-
mographic conditions across all 954 locations.

2.3 | Continuous wavelet transform

To ground our analysis in previous studies, we performed a local wavelet 
analysis to the log-transformed data to assess the time-frequency vari-
ation in the signal (Grenfell et al., 2001). Generalizing Fourier analysis, 

wavelets allow insight into a potentially non-stationary epidemic signal 
by decomposing it into multiple frequencies over time (Gouhier, Grinsted, 
& Simko, 2019; Torrence & Compo, 1998). Like a Fourier Transform, 
wavelets decompose a complex signal into its component frequencies. 
However, in addition to learning which frequencies dominate the sig-
nal, wavelets allow us to determine whether and how those dominant 
frequencies change over time. Rather than using a sinusoid as in Fourier 
analysis, wavelet transformation uses wavelet basis functions which 
can explore local (in time) variations in frequency (Grenfell et al., 2001; 
Torrence & Compo, 1998). In this analysis, we used the Morlet wavelet 
function, essentially a damped complex exponential:

In Equation 4, ω0 is the nondimensional frequency. For a discrete 
sequence xn, the continuous wavelet transform (CWT) is defined as 
the convolution of xn with a scaled and translated version of Ψ0(η):

In Equation 5, (*) indicates the complex conjugate. By varying the 
wavelet scales and translating along the localized time index n, one 
can show both the amplitude of any features versus the scale and 
how this amplitude changes over time. To approximate the CWT the 
convolution should be done N times for each scale, where N is the 
number of points in the time series (Gouhier et al., 2019).

Figure 1 provides an illustration of the wavelet power spectra 
for London (1944–1994). For each location (and simulation), we pro-
duce a matrix where the column indices represent time steps, and 
the row indices represent frequencies. The (i, j)-th element in the 
matrix represents the power of the ith frequency at the jth time 
step. We then assemble these matrices into a cube by stacking them 
as in Figure 2.

2.4 | Tensor decomposition

Tensor Decomposition. Once we have compiled our three-dimensional 
data, we can decompose it into vector components. Tensor decompo-
sition can be understood as a multi-dimensional generalization of PCA 
(Cichocki et al., 2015; Fanaee-T & Gama, 2016; Kolda & Bader, 2009). 
As with PCA, we seek to reduce the dimensionality of the data by ex-
pressing it in terms of components which capture the most variance 
in the data. In the CWT case, each component consists of a location 
vector, a frequency vector and a time vector. The outer product of 
the frequency and time vector produce a general wavelet power spec-
trum as in Figure 1. For the ith location, the ith scalar in the location 
vector describes the amount the power spectrum contributes to that 
location's original signal. In other words, each component describes a 
particular frequency and its power as a function of time. The location-
specific scalars represent how much that signal is magnified or damp-
ened within that location's data.

(3)It ∼ Poisson
(
�t
)
. (4)Ψ0(�) = �−1∕4e(−i�0�)e(−�2∕2).

(5)Wn(s) =

N−1∑

n=0

xn, Ψ∗

[
(n� − n)�t

s

]
.
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To reconstruct the original data for a specific location, we com-
pute and add such a matrix for each component (Cichocki et al., 2015; 
Guo et al., 2013; Kolda & Bader, 2009). If our tensor decomposition 

had three components and we wanted to reconstruct an estimate of 
our original data, we would calculate and sum three wavelet power 
spectra using the three time and frequency vectors along with the 

F I G U R E  1   Wavelet power spectra 
for London (1944–1994). Darker blues 
indicate more power, red areas indicate 
time/frequencies that were determined to 
be statistically significant by Monte Carlo 
methods. The parabolic line indicates the 
cone of influence, the boundary of points 
that may be affected by edge effect 
artifacts. Similar to spectral analysis, 
errors will occur at the beginning or the 
end of time series. Padding the data 
with zeros introduces discontinuities 
into the data, as we increase in scale, the 
amplitude is decreased as more zeros 
enter the analysis. For the regions outside 
the cone of influence, it is not clear if 
decreases in variance are due to the 
additional zeros

F I G U R E  2   Tensor: array of wavelet spectra across locations. After calculating the wavelet power spectra, we store each of the 
time × frequency matrices in a three-dimensional tensor with one matrix for each location. This creates a cube of dimensions n × f × t for n 
places, t time steps and f frequencies
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location-specific score (Figure 3). To calculate the tensor decompo-
sition, we use the canonical polyadic decomposition (CPD). We can 
formalize CPD for a three-way tensor as follows:

In Equation 6, R denotes the rank of the tensor (Kolda & 
Bader, 2009). This definition is illustrated in Figure 3 for a rank-three 
tensor. We use an alternating least squares algorithm to calculate X

⋀

. 
In the case, when min

X

⋀��X − X

⋀

�� = 0, X
⋀

 is referred to as an exact low-
rank approximation of X. In that case, we can write out the matrix 
form of X

⋀

 as:

Each X
⋀

(i) is a component, and each ar, br, cr are factor vectors, and 
A, B, C are factor matrices. These are analogous to components and 
loadings in PCA (Cichocki et al., 2015; Fanaee-T & Gama, 2016; Kolda 
& Bader, 2009). To estimate these components, we fix all except one 
of the factor matrices and optimize the remaining matrix. For example, 
we may fix matrices B and C and optimize A given these matrices. We 
repeat this for each matrix until we reach our stopping criteria (Kolda & 
Bader, 2009; Li, Bien, & Wells, 2018). In our case, we optimize until the 
Frobenius norm of the error matrix is below 0.0001 (Li et al., 2018). 
For the three-way tensor instance, this can be formalized as follows:

Characterizing the rank of a tensor is a complex mathematical 
problem without a simple solution (Alexeev, Forbes, & Tsimerman, 

2011; Ballico, Bernardi, Chiantini, & Guardo, 2018; Kolda & 
Bader, 2009; Stegeman & Friedland, 2017). Therefore, we attempt 
tensor decomposition beginning by selecting a single component, 
and increasing the number of components until the algorithm con-
sistently converges.

3  | RESULTS

3.1 | Simulations

Our simulations demonstrate comparable epidemic behaviour to 
that of E&W (Figure 4). The CPD algorithm consistently converged 
at three components for the simulated data. In Figure 5, each column 
corresponds to a component of the decomposition, each row repre-
sents the dimensions of the tensor: simulation group (A), period (B) 
and time (C).

The first row of Figure 5 shows the variation in score on each com-
ponent by group. The third component is able to distinguish group two 
(higher birth rate) from group three (increasing birth rate). This compo-
nent identifies a temporal shift where 1-, 2- and 3-year periodicities 
shift in strength from the beginning to end of the time series (Figure 5, 
panel c). The power of the signal peaks in the first quarter, changes 
sign at halfway, and reaches a nadir in the final quarter. A positive 
score on the third component indicates stronger signals in the first 
half of the time series and a reduction in the second half. A negative 
score on this component would indicate the opposite—weaker signals 
in the first half of the time series and increasing 1-, 2- and 3-year peri-
odicities in the second half.

Note that the period and time vectors for both the first and sec-
ond component are negative, which means their product is positive. 
The first component therefore demonstrates an increase in biennial 
and annual signal over time, the second component describes an in-
crease in 1.5- and 3-year signals over time.

Adding components with group specific scores results in a con-
sistent annual and triennial periodicity for the first group (low birth 
rate); consistent annual and biennial cycles in the second (high birth 

(6)min
X

⋀��X − X

⋀

�� where X
⋀

=

R�

r

ar ⊗ br ⊗ cr = [A, B, C].

(7)

X

⋀

(1) = (C⊗ B) AT

X

⋀

(2) = (C⊗ A) BT

X

⋀

(3) = (B⊗ A) CT.

(8)

A ← argminA
���X
⋀

(1) − (C⊗ B) AT���
B ← argminB

���X
⋀

(2) − (C⊗ A) BT
���

C ← argminC
���X
⋀

(3) − (B⊗ A) CT��� .

F I G U R E  3   Theoretical canonical polyadic decomposition for tensor X from Figure 2. The outer product of each of the fi × ti vectors 
produces a wavelet power spectra and each of the n places has a score in the nj vector specific to that wavelet power spectra. In this way we 
can use the three rank one tensors to approximate the original power spectra for each of the n original places. We can think of the matrix 
formed by the outer product of ti × fi as a component in the principal component analysis sense. Where each entry in the matrix determines 
the loading of the that time, frequency value. Each entry in the nj vector represents a place-specific score which determines the contribution 
of that matrix in the final wavelet power spectrum
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rate); and a transition from sporadic epidemics to annual and biennial 
signals in the third group (increasing birth rate). These results concur 
with samples of the time series (Figure 4) as well as reconstructions 
of the CWT for each group (Figure S1).

3.2 | England and Wales urban districts 1944–1966

We found four components provided the most consistent conver-
gence with the CPD algorithm for the E&W tensor (Figure 6). The 

most succinct way of classifying variation in measles dynamic across 
the country is variation in the strength of the annual component 
throughout the 1944–1965 time period, and whether the biennial 
component peaks at the beginning or the end of the era.

The dominance of the annual and, in particular, the biennial signal 
in these data has already been documented (Grenfell et al., 2001). If 
we were naive regarding the importance of these signals, we could 
investigate variation in biennial patterns regionally—including syn-
chronicity and temporal lag. Bjorn tad and Grenfell have investigated 
such patterns in this dataset (Grenfell et al., 2001).

F I G U R E  4   Panel (a) shows a sample 
of simulations generated under different 
birth regimes. Group one is constant CBR 
of 0.015, group two is constant CBR of 
0.03 and group three is CBR beginning at 
0.012 and growing to 0.36. We see that 
group three begins with dynamics similar 
to those of group one; by the end of the 
20-year period, group three more closely 
resembles group two. Panel (b) shows 
case data from three cities of different 
cities and periodicities from the E&W data

F I G U R E  5   Three-rank tensor 
decomposition of the 150 simulated 
places. Panel (a) shows the distribution of 
scores on each of the three components 
for each of the three groups. Panel  
(b) shows the dominant periods explained 
by each component. Panel (c) shows the 
temporal trends for the periods depicted 
across panel (b). Each column gives a 
full description of each of the three 
components
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To validate the decomposition for such a large dataset, we re-
constructed the time series for four districts with distinct dynam-
ics (Figure S3). An illustration of the reconstruction for London 
(Figure 7) and Norwich (Figure 8) shows how each component con-
tributes different frequency-time power. These reconstructions 
demonstrated the ability of a few components to explain a large 
amount of time-frequency variation.

The strength of the score on all components depends largely 
on population size. This is consistent with previous work which has 
shown that dynamics in small, isolated places tend to be erratic 
rather than seasonal and thus do not have significant annual or bi-
ennial signals (Bartlett, 1957; Bjørnstad & Grenfell, 2008). Though 
small places consistently score near zero on each component, they 
generally have the largest scores on the second component rel-
ative to the others. Positive, nonzero scores on this component 
alone is consistent with irregular epidemics. As large districts 
tend to have higher magnitude scores on the other components, 

the influence of this irregularity component is reduced for those 
locations.

The third component uncovers the most variability in the dy-
namics of large places. Here negative values are associated with 
early (pre-1955) biennial signals and late (post-1955) annual sig-
nals. Positive values predict the opposite: early annual signals 
and late biennial signals. While all other signals tend to increase 
in magnitude with population size, the third component increases 
both in magnitude with varying sign, indicating a substantial de-
viation in the signal of large places. In addition to variation in the 
sign of the scores on this component, the magnitude of the scores 
is greater by nearly a factor of 10. We investigate this component 
further as it indicates an important dovetailing of epidemic dy-
namics across locations.

We examined CBRs over the entire time period as well as CBRs 
in the first four years of the time series. E&W experienced a post-
war baby boom between 1944 and 1948 which peaked in 1947. We 

F I G U R E  6   The four components of the tensor decomposition for E&W urban districts. Panel (a) shows each of the time components, 
panel (b) shows each of the period components and panel (c) shows the distribution of scores on each component by population size. 
Each column corresponds to a single component (e.g. the first column represents the time, period and district-specific scores for the first 
component of the decomposition). We see that small districts consistently score near zero on each component. This is consistent with 
previous work which suggests dynamics in small districts are highly irregular and lack the seasonal signature we see in large districts



     |  1697Methods in Ecology and EvoluonKOREVAAR Et Al.

took the average of the birth rates between 1944 and 1948. We find 
when we average CBRs across the 20-year time period, we see lit-
tle variation across locations. Baby boom CBRs have much greater 
variability. We see a statistically significant difference, where higher 
baby boom birth rates correspond to positive scores on the third 
component. This indicates locations with higher birth rates at the 

beginning of the time series have stronger annual signals early in 
the time series compared with their lower birth-rate counterparts 
(Figure S2). We know from mathematical models of measles trans-
mission that higher birth rates should lead to larger annual epidem-
ics, as a result of quicker susceptible replenishment. In concordance 
with these models, our decomposition shows that locations with 

F I G U R E  7   A component by 
component illustration of the 
reconstruction of the London wavelet 
spectra. Each time-frequency component 
is multiplied by the location-specific 
scalar. These scalars can amplify signals 
or switch their signs and determine the 
influence of each component on the final 
reconstruction. The bottom row compares 
the original with the reconstructed 
spectra
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F I G U R E  8   A component by 
component illustration of the 
reconstruction of the Norwich wavelet 
spectra. Each time-frequency component 
is multiplied by the location-specific 
scalar. These scalars can amplify signals 
or switch their signs and determine 
the influence of each component on 
the final reconstruction. If we compare 
this reconstruction to the London 
reconstruction, we can see how adjusting 
sign and magnitude of the scalars alters 
the reconstructed frequency-time 
spectra. The bottom row compares the 
reconstructed with the original spectra
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slightly lower CBRs would begin with more biennial seasonality and 
locations with crude higher birth rates would begin with more an-
nual seasonality and settle into biennial cycles later. The baby boom 
CBR has been identified as a crucial bifurcation point for measles 
cycles using simulations (Finkenstadt & Grenfell, 2000). This local 
dovetailing in dynamics as a result of variation in the CBR has not 
been previously illustrated.

4  | DISCUSSION

In this paper, we explore, to our knowledge, the first application of 
tensor decomposition to disease surveillance data to confirm pre-
vious findings regarding (a) the dominance of annual and biennial 
signals in the time series across locations; (b) the deterioration in 
the signal of epidemic seasonality in small populations and (c) the 
importance of crude birth rate in local dynamics using all 954 urban 
locations. We have also shed novel light on the well-known impor-
tance of baby boom births in local dynamics.

Tensor decomposition shows promise in its ability to distil 
multi-dimensional data into lower dimensional components. Though 
tensors have been used in many fields of research, their applica-
tions to epidemiological data are still under-explored. Here, we use 
tensor decomposition to reveal heterogeneities in time, space and 
frequency. Since many of the differences illustrated here are well 
documented in previous studies of this data, we are confident in the 
ability of tensor decomposition to uncover the dominant trends in 
the time series.

We have demonstrated the utility of tensor decomposition for in-
fectious disease data; more broadly, this method is applicable to any 
spatiotemporal cyclical phenomena in ecology or population science. 
Though we have only touched on all its applications here, this method 
can (a) reconstruct original signals without additional noise; (b) con-
cisely summarize dominant trends and heterogeneities in an otherwise 
unwieldy dataset; (c) identify the appropriate frequencies at which to 
evaluate phase differences, synchrony, and lag.

Figures 7 and 8 demonstrate the ability of tensor decomposi-
tion to capture variation across dominant signals in the data. In the 
case of this paper, these components focus on the shifts in annual 
and biennial signals. In these constructions, we see the backbone 
of the original signals with much of the noise removed. However, 
there may be cases in which this succinct representation is not 
desirable. For example, one may be interested in the frequencies 
which were dropped, such as 1.5-year or 3-year cycles. Tensor de-
composition, like PCA, will select the most efficient representation 
of the data; inherent to this method is the loss of some information. 
However, there are solutions which can increase the granularity of 
the components.

As with PCA, one can opt to decompose the data into additional 
components. We selected four components for this paper because 
the CPD algorithm reliably converged at four components, and be-
cause each additional component adds substantial computation 
time to the decomposition algorithm. For these data, if one were 

interested in more detailed information, one could select a subset 
of the total dataset which would allow for faster computation of ad-
ditional components. This subsetting could be done by location (e.g. 
a random sample or a sample of the largest, most dominant cities), 
or by frequency (e.g. selecting all data between annual and triennial 
frequencies).

A first pass naive tensor decomposition, such as the one pre-
sented in this paper, may guide additional decompositions. In the 
case of Norwich (Figure 8) that the 1.5-year cycle in the data is rep-
resented as a 2-year cycle in their construction. After a first pass 
tensor decomposition, the data could be pre-reduced by dropping 
frequencies. In this case, the data for 6-month periods and below 
accounts for very little variance in the entire data. Dropping these 
frequencies could allow the representation of additional cycles in 
the tensor components, as well as reducing overall computation 
time.

An additional extension of this analysis would be to use tensor 
decomposition on the phase or phase-differenced matrices for these 
locations in order to concisely summarize spatiotemporal dynamics 
of epidemics (Grenfell et al., 2001).
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