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Abstract Effective antibiotic use that minimizes treatment failures remains a challenge. A better

understanding of how bacterial populations respond to antibiotics is necessary. Previous studies of

large bacterial populations established the deterministic framework of pharmacodynamics. Here,

characterizing the dynamics of population extinction, we demonstrated the stochastic nature of

eradicating bacteria with antibiotics. Antibiotics known to kill bacteria (bactericidal) induced

population fluctuations. Thus, at high antibiotic concentrations, the dynamics of bacterial clearance

were heterogeneous. At low concentrations, clearance still occurred with a non-zero probability.

These striking outcomes of population fluctuations were well captured by our probabilistic model.

Our model further suggested a strategy to facilitate eradication by increasing extinction

probability. We experimentally tested this prediction for antibiotic-susceptible and clinically-

isolated resistant bacteria. This new knowledge exposes fundamental limits in our ability to predict

bacterial eradication. Additionally, it demonstrates the potential of using antibiotic concentrations

that were previously deemed inefficacious to eradicate bacteria.

DOI: https://doi.org/10.7554/eLife.32976.001

Introduction
The frequent failure of antibiotic treatments is a serious public health threat. A recent study projects

treatment failures caused by antibiotic resistance will lead to 300 million deaths and a healthcare

burden of $100 trillion by 2050 (O’Neill, 2016). This epidemic is further exacerbated by our inability

to reliably eradicate antibiotic-susceptible bacteria. For example, antibiotic treatments of infections

caused by antibiotic-susceptible bacteria never achieve a success rate of 100%, often failing to eradi-

cate them unexpectedly (Doern and Brecher, 2011; Weidner et al., 1999; Gopal et al., 1976;

Ficnar et al., 1997; Forrest et al., 1993). To design effective treatments and avoid antibiotic failure,

there is a strong need to better understand the dynamics of bacterial populations exposed to

antibiotics.

Previously, laboratory studies have extensively characterized how large bacterial populations

(e.g., ~108 cells in a culture) decline under antibiotic treatment; e.g., see (Nielsen et al., 2011;

Ferro et al., 2015; Regoes et al., 2004). These studies have led to the current, deterministic model

of the pharmacodynamics, that is, the population dynamics of bacteria exposed to antibiotics follows

a predetermined course and can be predicted deterministically a priori; see (Regoes et al., 2004;

Czock et al., 2009) and references therein. This deterministic framework successfully captures the

reproducible dynamics of a large bacterial population declining to a small population under antibi-

otic treatments. However, due to their experimental detection limits (e.g., >>100 cells

[Nielsen et al., 2011; Ferro et al., 2015]), the dynamics of a small population undergoing extinction

have not been directly characterized.
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Inoculum size as small as a few cells can produce infections (Jones et al., 2006; Haas and Rose,

1994; Jones et al., 2005; Tuttle et al., 1999; DuPont et al., 1989; Hara-Kudo and Takatori, 2011;

Kaiser et al., 1992). Thus, if antibiotics manage to reduce a large bacterial population to a very

small population but fail to eradicate it, the survivors may replicate and restore infections. Addition-

ally, these survivors are more likely to develop antibiotic resistance, making subsequent antibiotic

treatment of the restored population more difficult (Gullberg et al., 2011; Kohanski et al., 2010;

Lopatkin et al., 2016; Dagan et al., 2001; Allen et al., 2014). Thus, in many cases, including life-

threatening infections or even minor infections in immuno-compromised patients, treatment success

depends on complete clearance of the infection-causing bacteria. To effectively clear bacteria using

antibiotics, it is critical that we understand not only how a large population of bacteria declines to a

small population, but also how a small population eventually goes extinct. Extensive studies focused

on the former process (discussed above). The present study focuses on the latter process.

By employing a conventional plate assay, single-cell microscopy, and quantitative modeling, we

directly characterized the extinction dynamics of antibiotic-susceptible Escherichia coli populations.

We found that antibiotics known to kill bacteria (i.e., bactericidal drugs) induce population fluctua-

tions. At high drug concentrations, all populations go extinct (as expected), but the extinction time

is highly variable and cannot be deterministically predicted a priori. Even at low drug concentrations,

due to these fluctuations, populations go extinct with a non-zero probability. We found that the Mar-

kovian birth-death model quantitatively accounted for the probabilistic occurrence of population

extinction. Informed by the model, we then altered the extinction probability by manipulating cell

growth and showed that a bacterial population could be eradicated at low drug concentrations that

were previously deemed inefficacious. Our work demonstrates that the deterministic knowledge

obtained from previous studies of large bacterial populations cannot be extrapolated to population

extinction. Our findings also have significant implications for the prediction of treatment outcomes,

development of innovative therapies, and assessment of antibiotic efficacy.

Results

Contrasting trends in plating efficiency for bacteriostatic and
bactericidal drugs
Previous studies of large populations have established the ‘minimum inhibitory concentration’ (MIC;

the lowest concentration of the drug that inhibits population growth) as the most critical parameter

for characterizing the dynamics of a bacterial population under antibiotics (Regoes et al., 2004;

Czock et al., 2009; Craig, 1998; Falagas et al., 2012). The dynamics of bacterial populations

exposed to different concentrations of antibiotics have been examined and modeled deterministi-

cally in relation to the MIC, as follows. First, without drugs, the growth rate of cells, l, is higher than

the death rate, f (i.e., l > f), and thus a bacterial population always grows. When drug concentra-

tion increases, as long as the concentration remains below the MIC (i.e., sub-MIC), growth rate is

higher than death rate (l > f), and thus a population still grows, albeit at slower rates. When the

drug concentration increases further and reaches the MIC, growth rate becomes equal to death rate

(l = f), and the population size is maintained at a constant level. Only at drug concentrations above

the MIC does a bacterial population decline. Extrapolating this deterministic knowledge to popula-

tion extinction, studies often claimed that maintaining drug concentrations above the MIC was abso-

lutely essential to eradicate bacterial populations. As will become evident later, our data challenge

this deterministic framework.

As a first step to examine the dynamics of a small population in relation to the MIC, we used a

plate assay and characterized how single E. coli cells grew and formed colonies at various antibiotic

concentrations. Antibiotic-susceptible, wild-type (WT) E. coli cells were cultured in liquid LB medium

without antibiotics and then spread on LB agar plates containing increasing concentrations of antibi-

otics. After 18 hr of incubation, the number of colony-forming units (NCFU) was determined. By nor-

malizing the NCFU to that for an antibiotic-free plate (N0
CFU), we then obtained the plating efficiency

(=NCFU/N
0
CFU), which indicates the fraction of cells forming colonies. Following the definition of MIC

as the lowest drug concentration that inhibits population growth, the lowest concentration yielding

no visible colonies on the plates was defined as the MIC here. See Figure 1—figure supplement 1
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for a detailed illustration of this procedure and Supplementary file 1 for the MIC values for all of

the antibiotics examined.

When we performed this plate assay for various antibiotic drugs, we observed two strikingly dis-

tinct trends, which depended on whether the drug used was bacteriostatic (which suppresses cell

growth) or bactericidal (which induces cell death). For bacteriostatic drugs, at increasing concentra-

tions, the plating efficiency remained nearly constant and abruptly dropped to zero when the drug

concentration reached the MIC (Figure 1A); the grey line was obtained from a linear regression anal-

ysis of the whole data set below 0.75 � MIC (see Figure 1A caption for details). This trend indicates

that almost every single cell spread on the plate grew and formed colonies at a wide range of sub-

MIC drug concentration, and no cells formed colonies at (and above) MIC. This observation, sug-

gesting homogeneous population dynamics, agrees with the deterministic prediction discussed

above. Additionally, we observed a decrease in colony size at increasing drug concentrations (Fig-

ure 1—figure supplement 2).

For bactericidal drugs, at increasing concentrations, the plating efficiency decreased gradually

from 1 to 0 (Figure 1B); the grey line was obtained from a linear regression analysis of the whole

data set (see Figure 1B caption for details). This trend contrasts with our finding for bacteriostatic

drugs (compare the grey lines in Figure 1A and B) and cannot be explained by the deterministic

model. In the literature, other studies have reported a similar gradual decrease in the plating effi-

ciency (Liu et al., 2011; Ernst et al., 2002; Dong et al., 2000). However, those studies primarily

concerned how to better determine the MIC in the face of such a gradual decrease, and have not

characterized population dynamics underlying the gradual decrease.

A subsequent plate assay reveals a lack of heritable resistance
The plating efficiency between 0 and 1 indicates heterogeneous colony formation. In the plate assay

above, we found that at ~0.6 � MIC, the plating efficiency was ~0.5, meaning that approximately

50% of the cells plated formed colonies and 50% did not. One possible explanation is that the col-

ony-forming cells were intrinsically more resistant to the drugs than the cells that did not form colo-

nies, subsequently giving rise to resistant daughter cells (i.e., heritable resistance). To examine this

possibility, for each bactericidal drug used in the experiment (for which the results are shown in

Figure 1B), we picked colonies from agar plates exhibiting a plating efficiency of ~0.5 (near 0.6 �

MIC), suspended them in liquid medium, and immediately plated them on fresh agar plates contain-

ing various concentrations of the same drug. The results were plotted in Figure 1C and Figure 1—

figure supplement 3. Contrary to our expectation, the plating efficiency of the second plating was

about the same as that of the first plating, or in some cases, marginally lower (possibly because cells

were challenged with drugs twice consecutively). This observation rules out heritable resistance as

an explanation for heterogeneous colony formation at sub-MIC drug concentrations.

Bactericidal drugs induce stochastic fluctuations in population dynamics
Our data above showing the absence of heritable resistance in the surviving populations suggest the

possible involvement of stochasticity. That is, bactericidal drugs might induce stochastic fluctuations

in the bacterial population size. To investigate this possibility, we performed a plate assay as above

and followed the population dynamics of growing micro-colonies at single-cell resolution; we spread

cells on agar plates, and rather than waiting for 18 hr and counting colonies visible to the naked eye,

we examined how isolated single cells grew to form micro-colonies using time-lapse microscopy.

First, as a control, we examined the dynamics in the absence of antibiotics (Video 1). We counted

the number of growing cells in each colony and plotted the number versus time (Figure 2A). The

colonies proliferated homogeneously, meaning that different colonies grew similarly. We then

repeated the experiment using a bacteriostatic drug (chloramphenicol, thiolutin, or tetracycline) at a

sub-MIC level. Visually inspecting the image sequences, we found that cells stably grew, albeit at

lower rates (Video 2). The number of growing cells in each micro-colony increased homogeneously

and similarly (Figure 2B and Figure 2—figure supplement 1). Previously, we developed a microflui-

dic chemostat for cell culture (Kim et al., 2012; Deris et al., 2013). When we repeated these experi-

ments using this device, we again observed the same homogeneous population dynamics

(Figure 2—figure supplement 2A).
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Figure 1. Contrasting trends in plating efficiency at increasing concentrations of bacteriostatic and bactericidal drugs. (A) When we performed the

plate assay using bacteriostatic drugs, NCFU was generally maintained at increasing drug concentrations. See Figure 1—figure supplement 1 for a

detailed illustration of how this plot was made. A linear regression analysis was performed for the whole data set below 0.75 � MIC, resulting in the

grey line (slope = �0.05, intercept = 0.9942, R-squared = 0.99). Colony size decreased at increasing drug concentrations (Figure 1—figure supplement

2). (B) For bactericidal drugs, NCFU decreased at increasing drug concentrations, indicating heterogeneous population dynamics of bacteria. A linear

regression analysis was performed for the whole data set, and the result was plotted as a grey line (slope = �1.07, intercept = 1.10, R-squared = 0.79).

For both groups of drugs, the lowest concentration yielding no colonies was defined as the MIC. The Supplementary File 1 lists the MICs for all drugs

examined in this study. We plotted plating efficiency for each antibiotic in separate panels in Figure 1—figure supplement 4. (C) For each bactericidal

drug used in the experiment (for which the results were shown in Figure 1B), we picked a few colonies from the agar plate exhibiting a plating

efficiency of ~0.5 (e.g., near 0.6 � MIC) and plated them immediately on fresh agar plates containing various concentrations of the same drug. The

plating efficiency was similar or marginally lower on the second plating, possibly because exposure to the antibiotics on the first plate adversely

affected the cells and rendered them more susceptible to the antibiotics on the second plating. See Figure 1—figure supplement 3 for similar results

for other drugs. Therefore, the ability of bacteria to grow and form colonies on plates containing bactericidal drugs was not heritable. We performed at

least two biological repeats for all the experiments and plotted the mean here. The error bars represent one standard deviation from the repeats.

DOI: https://doi.org/10.7554/eLife.32976.002

Figure 1 continued on next page
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Next, we characterized population dynamics for a bactericidal drug (cefsulodin, ofloxacin, kana-

mycin, or 6-APA), at a sub-MIC level. We found that the population dynamics were highly stochastic

(Video 3). Visual inspection of such image sequences indicated that within a given population, some

cells were killed stochastically, whereas other cells survived and divided. Such demographic stochas-

ticity would lead to random fluctuations in the population size. Indeed, the number of growing cells

in each colony fluctuated randomly over time (Figure 2C and Figure 2—figure supplement 3A–C).

These fluctuations led to dramatically different dynamics for different colonies, even though they

originated from genetically identical cells and were cultured under homogeneous antibiotic condi-

tions. When we repeated these experiments using the microfluidic chemostat, we again observed

significant population fluctuations (Figure 2—figure supplement 2B–D).

Importantly, the fluctuations drove some colonies into extinction (the light red-shaded area in

Figure 2C). We counted the number of colonies that went extinct and plotted the probability of col-

ony extinction at various drug concentrations; here, we are interested in colony extinction because it

is equivalent to bacterial clearance, which means treatment success. Figure 2—figure supplement 4

showed that the extinction probability increased with increasing drug concentrations. This increase

in the extinction probability agrees with the trend of decreasing plating efficiency we found above

(Figure 1B).

The effects of bactericidal drugs
on cell growth and death
A population will undergo extinction if cells die

more frequently than divide. Because bacteri-

cidal drugs induce cell death, an increase in

extinction probability at higher drug concentra-

tions is expected to be due to an increase in the

rate of cell death, f. Additionally, bactericidal

drugs inflict damage on cells (Belenky et al.,

2015; Lobritz et al., 2015). Thus, the rate of cell

growth, l, might decrease at higher drug con-

centrations, which could also contribute to col-

ony extinction. We next sought to determine

how bactericidal drugs affect f and l. Previous

studies of population growth have shown that at

a higher concentration of bactericidal drugs, the

‘net growth rate’, which is equal to l� f,

decreases (Regoes et al., 2004). But, to sepa-

rately resolve changes in f and l, the growth

and death of cells must be examined at single-

cell resolution. We analyzed the single-cell-level

image sequences we obtained above (see Fig-

ure 2—figure supplement 5 for details of the

Figure 1 continued

The following figure supplements are available for figure 1:

Figure supplement 1. We illustrated how we obtained Figure 1A and B, using the results for rifampicin as an example.

DOI: https://doi.org/10.7554/eLife.32976.003

Figure supplement 2. We spread cells on agar plates containing various concentrations of bacteriostatic drugs, and after 18 hr of incubation,

measured the size of the colonies (using ImageJ software).

DOI: https://doi.org/10.7554/eLife.32976.004

Figure supplement 3. For each bactericidal drug used (for which the results were shown in Figure 1B), we picked a few colonies from an agar plate

exhibiting the plating efficiency of ~0.5 (e.g., near 0.6 � MIC) and plated them immediately on fresh agar plates containing various concentrations of

the same drug.

DOI: https://doi.org/10.7554/eLife.32976.005

Figure supplement 4. We previously plotted plating efficiency for all the antibiotics tested in two panels (Figure 1A–B).

DOI: https://doi.org/10.7554/eLife.32976.006

Video 1. The growth of micro-colonies in the absence

of a drug. We characterized how cells grew and formed

micro-colonies on LB agar using time-lapse

microscopy. An example image sequence is shown

here. The time interval between each frame is 20 min.

DOI: https://doi.org/10.7554/eLife.32976.014
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Figure 2. Stochastic population dynamics of bacteria exposed to bactericidal drugs. We characterized how cells grow and form micro-colonies on LB

agar plates containing different concentrations of antibiotics using time-lapse microscopy. At time zero, we transferred cells growing in antibiotic-free

LB liquid medium to a LB agar plate, and confirmed that individual cells were spread out and isolated. Setting up a time-lapse imaging experiment

after the transfer took 1 ~ 2 hr, which is why there is a gap in the data immediately after time zero (dashed lines). The experiments were independently

repeated twice (biological repeats) and the data from one experiment are shown here. (A, B) We counted the number of growing cells in each micro-

colony (represented by a different color). In the absence of antibiotics (panel A) or with a sub-MIC level of a bacteriostatic drug (panel B, 0.7 � MIC of

chloramphenicol), the number increased similarly for different colonies, revealing homogeneous population growth. Example image sequences are

shown in Videos 1 and 2. The data are replotted on a semi-log scale (insets). Such homogeneous population growth was observed for other

bacteriostatic drugs (thiolutin and tetracycline) as well; see Figure 2—figure supplement 1. When we repeated the experiment using a microfluidic

device, we again observed the same homogeneous population dynamics (Figure 2—figure supplement 2A). (C) In contrast, the population dynamics

of bacteria exposed to a bactericidal drug were highly heterogeneous. An example image sequence was shown in Video 3. The number of growing

cells within micro-colonies at 0.8 � MIC of cefsulodin is plotted here; the result shows stochastic population fluctuations. Such population fluctuations

were again observed when experiments were repeated using other bactericidal drugs (ofloxacin, kanamycin, and 6-APA); see Figure 2—figure

supplement 3A–C. The light red-shaded region indicates the number equal to zero (i.e., population extinction). When we repeated these experiments

using a microfluidic device, we again observed population fluctuations (Figure 2—figure supplement 2B–D). (D) Our model predicts that the

probability of population extinction increases linearly with death rate, with the slope being 1 / l (the solid line). We experimentally characterized the

extinction probability (Figure 2—figure supplement 4), and the death rate (Figure 2—figure supplements 5–6), at different concentrations of

bactericidal drugs. Using these data, we obtained the relationship between the extinction probability and the death rate, and plotted it here (green

circles: cefsulodin, pink squares: ofloxacin, and grey triangles: 6-APA). We found good agreement between the model prediction and experimental

Figure 2 continued on next page
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analysis), and determined l and f at various concentrations of bactericidal drugs. We found that at

increasing drug concentrations, f increased (Figure 2—figure supplement 6A). But l changed little,

remaining nearly constant (Figure 2—figure supplement 6B). Therefore, bactericidal drugs have sig-

nificant effects on cell death, but not on cell growth.

A simple, stochastic model of the population dynamics accounts for
stochastic clearance of bacterial populations
Our data above suggest that an increase in the probability of population extinction at higher drug

concentrations (Figure 2—figure supplement 4)

is likely due to an increase in the rate of cell

death (Figure 2—figure supplement 6). To

quantitatively understand the relationship

between the extinction probability and death

rate, we employed a stochastic model, known as

the Markovian birth-and-death process, that has

been widely used to study the basic features of

stochastic population dynamics

(Novozhilov et al., 2006; Pavel Krapivsky and

Ben-Naim, 2010; Kendall, 1948). This model

contains two parameters, the rate of cell growth

and death, l and f, respectively. Each individual

cell can divide or die stochastically with the

probabilities determined by these parameters.

Due to this demographic stochasticity, the num-

ber of cells within a population, n, fluctuates

over time. Thus, n cannot be predicted deter-

ministically but only probabilistically, and the

probability is described as follows,

Pn

:
¼ l n� 1ð ÞPn�1 � lþfð ÞnPn þf nþ 1ð ÞPnþ1; (1)

where Pn refers to the probability of n cells

being present in a population. The key boundary

condition in this model is that once n reaches 0,

Figure 2 continued

data. Note that at increasing drug concentrations, l changed little (Figure 2—figure supplement 6B), and thus was taken as a constant in the analysis

here.

DOI: https://doi.org/10.7554/eLife.32976.007

The following figure supplements are available for figure 2:

Figure supplement 1. We characterized how cells grew and formed micro-colonies at sub-MIC levels of bacteriostatic drugs (chloramphenicol,

thiolutin, and tetracycline) at single-cell resolution.

DOI: https://doi.org/10.7554/eLife.32976.008

Figure supplement 2. Previously, we developed a microfluidic chemostat for cell culture (Kim et al., 2012; Deris et al., 2013).

DOI: https://doi.org/10.7554/eLife.32976.009

Figure supplement 3. We show population dynamics of bacteria exposed to bactericidal drugs (0.8 � MIC or 1.2 � MIC).

DOI: https://doi.org/10.7554/eLife.32976.010

Figure supplement 4. As discussed in the main text, we analyzed single-cell-level image sequences, and counted the number of colonies that went

extinct.

DOI: https://doi.org/10.7554/eLife.32976.011

Figure supplement 5. We determined the rates of cell growth l and death f at sub-MIC drug concentrations, by analyzing the time-lapse microscopy

images of colony growth.

DOI: https://doi.org/10.7554/eLife.32976.012

Figure supplement 6. Following the procedure described in Figure 2—figure supplement 5, we determined the rates of cell growth l and death f at

different drug concentrations (green circles: cefsulodin, pink squares: ofloxacin, and grey triangles: 6-APA).

DOI: https://doi.org/10.7554/eLife.32976.013

Video 2. The growth of micro-colonies with a

bacteriostatic drug We characterized how cells grew

and formed micro-colonies on LB agar using time-lapse

microscopy. 0.7 � MIC of chloramphenicol was used.

An example image sequence is shown here. The time

interval between each frame is 19 min.

DOI: https://doi.org/10.7554/eLife.32976.015
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it cannot change afterward. Known as an

‘absorbing boundary’, this condition reflects the

biological reality that once a population goes

extinct, it cannot revive. Therefore, a solution of

this model for n = 0 (i.e., Pn=0 or simply P0)

describes the dynamics of population extinction.

Please see Appendix 1 for the detail and

solution.

We first considered the extinction probability

P0 at low drug concentrations in which the death

rate is lower than the growth rate (f < l). In this

range, P0 is given by their ratio, P0 = f / l; see

Equation A6. Thus, if the death rate is zero

(f = 0), the extinction probability P0 is 0, mean-

ing n always increases (this makes intuitive

sense). As the death rate increases (0 < f < l),

P0 increases and becomes non-zero, meaning

that n may stochastically reach the absorbing

boundary, agreeing with our observation of sto-

chastic population extinction at sub-MIC drug

concentrations; Figure 2C shows that some pop-

ulations reached n = 0 (marked by the light red-

shaded area), while other populations thrived

(also see Figure 2—figure supplement 3A–C).

The solution P0 = f / l predicts that the extinc-

tion probability increases linearly with death rate, with the slope being 1 / l (the solid line in

Figure 2D). We sought to test this prediction quantitatively by comparing it with experimental data.

Above, analyzing time-lapse microscope images, we obtained the probability of population extinc-

tion (Figure 2—figure supplement 4), and the death rate (Figure 2—figure supplement 6), at dif-

ferent concentrations of bactericidal drugs. Using these data, we obtained the relationship between

the probability of population extinction and the death rate, and plotted it in Figure 2D. We found

good agreement between the model prediction and experimental data (compare the solid line and

symbols in Figure 2D).

Next, using the quantitative relationship we found above (P0 = f / l), we will specify the condition

for the MIC. In our plate assay (Figure 1B), we observed that the plating efficiency decreases at

higher drug concentrations (in the sub-MIC range) and reaches zero at the MIC. Also, the quantita-

tive relationship we found above showed that extinction probability increases at higher drug concen-

trations (consistent with a decrease in the plating efficiency), reaching one when the death rate is

equal to the growth rate (see the dashed line in Figure 2D); thus, P0 = 1 at f = l. The extinction

probability equal to one (P0 = 1) means that all colonies go extinct, which corresponds to zero plat-

ing efficiency. The drug concentration at which the plating efficiency reaches zero is the MIC

(Figure 1B). Taken together, at the MIC, the plating efficiency is zero because extinction probability

is one (P0 = 1), and the extinction probability is one because the growth rate and death rate are

equal to each other (f = l). In short, f = l at the MIC.

Next, we considered drug concentrations above the MIC, where the death rate is higher than the

growth rate (f > l). In this range, the model predicts that all populations eventually go extinct

(P0 = 1 in Equation A6); this makes intuitive sense. Importantly, due to population fluctuations, pop-

ulations are expected to go extinct at various times (Equation A5), meaning that the number of live

populations (the populations that have not undergone extinction yet) decreases gradually over time.

The model predicts that this decrease can be approximated by an exponential decay in the long

time limit (t � 1= f� lj j); see Equation A7. We tested these model predictions by repeating time-

lapse microscope experiments at drug concentrations above the MIC. All the populations indeed

went extinct at various times (Figure 3A and Figure 2—figure supplement 3D–F). When we

counted the number of live colonies, this number decreased gradually over time (Figure 3B). In this

semi-log plot, the decrease was linear (compare it with the dashed line), consistent with the model

prediction of an exponential decay (Equation A7).

Video 3. The growth of micro-colonies with a

bactericidal drug We characterized how cells grew and

formed micro-colonies on LB agar using time-lapse

microscopy. 0.8 � MIC of cefsulodin was used. An

example image sequence is shown here. The time

interval between each frame is 15 min.

DOI: https://doi.org/10.7554/eLife.32976.016
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Figure 3. Further characterization of stochastic population dynamics. (A, B) In Figure 2C and Figure 2—figure supplement 3A–C, we showed the

population dynamics of bacteria exposed to sub-MIC levels of bactericidal drugs. Here, we show the dynamics at drug concentrations above MIC

(1.2 � MIC). The number of growing cells within micro-colonies for cefsulodin is plotted in panel A. The results for other bactericidal drugs were plotted

in Figure 2—figure supplement 3D–F. We observed that all populations went extinct at various times. We then counted the number of live colonies

(colonies that have not undergone extinction yet) at various times (~150 colonies monitored). The number decreased gradually over time (green circles:

cefsulodin, pink squares: ofloxacin, and grey triangles: 6-APA); see panel B. The decrease was linear in a semi-log plot, consistent with the model

prediction of an exponential decay (Equation A7). (C) We characterized the extinction probability of populations starting with ~640 cells. We prepared

a large volume of a cell culture with the cell density of ~640 cells/ 200 mL, supplemented the culture with a low concentration of cefsulodin (23 mg/ml),

and then distributed 200 mL of the cell culture equally to 12 isolated chambers in a microtiter plate. We repeated this procedure using higher cefsulodin

concentrations (but maintaining the inoculum size). We then incubated the microtiter plate overnight. By counting the chambers that became turbid or

clear, we calculated the extinction probability. We used a heat map to graphically represent the probability; for illustration purpose, we also added the

values of the probability to the plot. At low cefsulodin concentrations (to the left of the dashed line), all chambers became turbid (P0 = 0). At high

concentrations (to the right of the solid line), all chambers were clear (P0 = 1); thus, the solid line indicates MIC. At intermediate concentrations

(between the dashed and solid lines), we observed heterogeneous results (only some chambers were clear, 0 < P0 < 1). (D) We repeated this

Figure 3 continued on next page
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A population with large inoculum size is subject to stochastic clearance
at sub-MIC drug concentrations
Our findings above indicate that the simple stochastic model can adequately capture the extinction

dynamics of populations exposed to bactericidal drugs. What is striking in our findings is that, due

to drug-induced population fluctuations, a bacterial population may undergo extinction even at sub-

MIC concentrations, the concentrations that were previously deemed inefficacious to clear bacteria.

We have established this result by examining the dynamics of colonies originated from single bacte-

rial cells, the smallest possible inoculum size. Clinical studies have characterized the bacterial inocu-

lum size that can produce infections (i.e., infectious dose). The infectious dose can be as low as one

(Jones et al., 2006; Haas and Rose, 1994; Jones et al., 2005), but is generally 10–100

(Tuttle et al., 1999; DuPont et al., 1989; Hara-Kudo and Takatori, 2011; Kaiser et al., 1992) or

larger (Kothary and BABU, 2001; Gama et al., 2012). It is expected that, with larger inoculum size,

a population experiences less fluctuations (because demographic stochasticity gets averaged out).

When we estimated the magnitudes of fluctuations by the coefficient of variation (CV), that is, the

standard deviation divided by the mean, using our model, Equation A16 shows decreasing CV with

increasing inoculum size, supporting the expectation above. Interestingly, Equation A16 also pre-

dicted that the magnitude of population fluctuations depends on rates of cell growth and death as

well (Equation A16); CV increases as the death rate approaches the growth rate, meaning that pop-

ulation fluctuations become intensified when neither growth nor death is a dominant event. This pre-

diction, together with our finding above that the death rate approaches the growth rate as the drug

concentration increases to the MIC (Figure 2D), suggests that near the MIC, a population with rela-

tively large inoculum size may still be prone to stochastic extinction.

To test this possibility, we experimentally characterized stochastic clearance of a bacterial popula-

tion starting with different inoculum sizes. First, we prepared a large volume of a cell culture with

the cell density of ~640 cells/ 200 mL, supplemented the culture with a low concentration of cefsulo-

din (23 mg/ml), and then distributed 200 mL of the cell culture equally to 12 isolated chambers in a

microtiter plate. Here, an isolated cell culture in each chamber represents a separate population. We

repeated this procedure using higher cefsulodin concentrations (but maintaining the inoculum size).

We then incubated the microtiter plate overnight. We found that, at low cefsulodin concentrations

(to the left of the dashed line in Figure 3C), all chambers became turbid, meaning all populations

grew. Thus, the probability of population extinction was zero (P0 = 0). In Figure 3C, we used a heat

map to graphically represent the probability (we also added the values of the probability in the

graph for additional clarification). At high concentrations (to the right of the solid line), all chambers

were clear (P0 = 1); thus, the solid line indicates the MIC. At intermediate concentrations (between

the dashed and solid lines), we observed heterogeneous population growth; some chambers were

clear while others were turbid (0 < P0 < 1). Subsequent plating of the clear cultures on drug-free LB

agar plates yielded no colonies, indicating population extinction.

We then repeated this experiment by using different inoculum sizes and bactericidal drugs. The

results were plotted as heat maps in Figure 3D; here, the Y axis represents different inoculum sizes.

As above, a solid line represents the MIC, above which all chambers were clear (P0 = 1). MIC values

were higher at higher cell densities. We note that the higher MIC at higher cell density (inoculum

effect) has been observed previously and is being actively studied by others in the field

(Artemova et al., 2015; Brook, 1989; Tan et al., 2012; Karslake et al., 2016). Thus, it is not the

focus of our study; rather, we focus on stochastic clearance below the MIC. As above, a dashed line

represents the concentrations below which all chambers were turbid (P0 = 0). The area between the

dashed and solid lines indicates the range of drug concentrations and inoculum sizes that exhibited

heterogeneous population growth (0 < P0 < 1), meaning stochastic clearance. Figure 3D shows that

stochastic clearance occurs even for a population starting with as large as ~20,000 cells, inoculum

size much larger than infectious doses for many infectious diseases.

Figure 3 continued

experiment using different inoculum sizes and bactericidal drugs. Please note that although we prepared a large volume culture and distributed it

equally to chambers, the number of cells in each chamber might vary. We found that the variation was ~10% or less. See Appendix 3 for details.

DOI: https://doi.org/10.7554/eLife.32976.017
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Alteration of the extinction probability to facilitate bacterial
eradication at sub-MIC drug concentrations
Previously, antibiotic treatment at sub-MIC levels was not considered a viable option for bacterial

eradication, because the deterministic model predicts that all bacterial populations should grow at

sub-MIC levels (i.e., antibiotic treatment failure). However, our experimental results and stochastic

model above indicate that at sub-MIC levels of bactericidal drugs, a population might undergo

extinction stochastically. An increase in this probability while keeping the drug concentration low

would be therapeutically useful; with an increased probability of extinction, sub-MIC ranges of drugs

could be used to eradicate bacteria reliably. We therefore employed our model to explore how the

extinction probability can be altered by means other than changing the bactericidal drug

concentration.

Our model indicates that the extinction probability is determined by the ratio of the death and

growth rates (P0 = f /l; Equation A6). Thus, based on the model, a reduction in growth rate

(denominator) should lead to an increase in the extinction probability. Growth rate can be reduced

by using poor growth media, or alternatively using bacteriostatic drugs. This means, for a sub-MIC

concentration of a bactericidal drug (for which the extinction probability is less than 1), either a

switch to poor growth media or addition of a sub-MIC level of a bacteriostatic drug would lead to

an increase in the extinction probability. We note that the latter represents combination therapies,

and other studies have characterized bacterial responses to combination therapies (Bollen-

bach, 2015). However, these studies primarily concerned deterministic changes in the MIC of a large

population. Conversely, our study focuses on how combination therapies affect stochastic occur-

rence of population extinction. Another difference is our focus on sub-MIC drug ranges, an impor-

tant point given previous research showing that the effects of drug combinations at the MIC might

differ from those at sub-MIC levels (Ocampo et al., 2014).

To characterize the extinction probability, we introduced the plating inefficiency (= 1 – plating

efficiency); the plating efficiency reflects the probability that a bacterial cell forms a population of a

bacterial colony, and therefore, the plating inefficiency reflects the probability of population extinc-

tion. We first calculated the plating inefficiency using the plate assay results in Figure 1B and plotted

it as white columns in Figure 4A; thus, white columns represent the extinction probability in rich

growth media (LB) with bactericidal drugs alone. To test the effect of our growth reduction strategy,

we repeated the plate assay, either by replacing LB with casamino acids (a poor nutrient source that

leads to slower growth than LB; see Figure 4—figure supplement 1), or by adding a sub-MIC con-

centration of chloramphenicol or tetracycline. The plating inefficiency obtained with these treat-

ments was plotted as solid columns in Figure 4A. The rise of solid columns above white columns

indicates that growth reduction indeed led to an increase in the extinction probability, in agreement

with our prediction.

We next examined how generally such an increase in the extinction probability might occur. The

extinction probability depends on the growth rate (l) and death rate (f), which we assumed to be

independent. Because the probability is equal to their ratio (f/l; Equation A6), this growth reduc-

tion strategy might not work when f is not independent but decreases in response to a decrease in

l. Such coupling between f and l could occur for bactericidal drugs that kill only growing cells, pos-

sibly because these drugs target processes critical for cell growth. This means that, for bactericidal

drugs that exhibit a killing rate of zero for non-growing cells (i.e., ffi 0 when lfi 0), neither the

switch to poor growth medium nor addition of bacteriostatic drugs would increase the extinction

probability. To test this possibility, we first identified such bactericidal drugs; we stopped cell growth

in cultures by depriving the cells of nutrients, added bactericidal drugs at concentrations capable of

eradicating growing cells, and then determined which drugs were no longer capable of killing the

bacteria. As shown in Figure 4—figure supplement 2, killing was completely abolished for kanamy-

cin and 6-APA, indicating that ffi 0 when lfi 0. As expected, for these drugs, neither the switch to

poor growth medium nor addition of bacteriostatic drugs resulted in an increase in the extinction

probability (Figure 4—figure supplement 3).

Furthermore, our model does not consider specific drug-drug interactions. For example, a previ-

ous study showed bacteriostatic translation-inhibiting drugs and bactericidal quinolone drugs affect

gene expression in a way to negate their effects (Bollenbach et al., 2009). Consistent with this

study, we failed to observe significant changes in the extinction probability when ofloxacin or
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Figure 4. Increasing the population-extinction probability by a growth reduction strategy. (A, B) Previously, we

plated WT (antibiotic-susceptible) E. coli cells on LB agar plates at various concentrations of cefsulodin and

plotted the plating efficiency in Figure 1B. Here, we plotted the plating inefficiency (1- plating efficiency) as white

columns in the top row; the plating inefficiency represents the extinction probability. We then repeated a plate

assay, either by using casamino acids agar plates (left), or by adding a sub-MIC concentration of a bacteriostatic

drug, chloramphenicol (0.7 � MIC, middle) or tetracycline (0.5 � MIC, right), to LB agar plates. Note that casamino

acids lead to slower growth than LB; see Figure 4—figure supplement 1. We plotted the plating inefficiency

Figure 4 continued on next page
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ciprofloxacin (quinolone drugs) is used with and without bacteriostatic translation-inhibiting drugs

(Figure 4—figure supplement 4).

Extending the growth-reduction strategy to antibiotic-resistant strains
Above, we tested the growth reduction strategy for a WT (antibiotic-susceptible) E. coli strain.

Although the strategy did not work for some drugs due to their complex effects on cells, for those

that worked, the strategy substantially increased the chance of bacterial clearance at sub-MIC drug

concentrations. We wondered if this strategy could be applicable to antibiotic-resistant strains.

Resistant strains are difficult to eradicate because their MICs are very high, to levels that are toxic to

hosts. Therefore, the development of therapies that utilize sub-MIC doses would be highly useful.

To test if our growth-reduction strategy would work for antibiotic-resistant bacteria, we repeated a

plate assay using resistant strains. Laboratory evolution of rifampicin resistance has been frequently

reported in the literature (Goldstein, 2014). By plating WT (antibiotic-susceptible) E. coli cells on a

LB agar plate containing the rifampicin concentration equal to 2 � MIC, we isolated a rifampicin-

resistant (Rifr) mutant; the MIC of this mutant was ~10 fold higher than that of the parent strain. We

then plated the mutant on LB agar plates containing various rifampicin concentrations. Additionally,

we acquired clinically-isolated E. coli strains that were resistant to either cefsulodin or vancomycin

(see Methods), and plated them on LB agar plates with increasing concentrations of cefsulodin or

vancomycin. These resistant strains exhibited non-zero plating inefficiency at sub-MIC concentrations

of bactericidal drugs (white columns in Figure 4B), indicating stochastic clearance. We then

repeated the experiments either by replacing LB with casamino acids or by adding a sub-MIC con-

centration of a bacteriostatic drug. As with the antibiotic-susceptible strain, these treatments led to

an increase in the plating inefficiency (Figure 4B), indicating that our growth reduction strategy facil-

itated the clearance of antibiotic-resistant bacteria at sub-MIC concentrations.

Discussion
Antibiotic treatment typically targets mature infection which contains a large number of bacterial

cells (e.g., �108) (Smith and Wood, 1956; Palaci et al., 2007; Feldman, 1976; Canetti, 1965; Can-

etti, 1956). To clear infections and avoid post-treatment relapse, not only the reduction of a large

population of bacteria to a small population, but also the complete extinction of the small

Figure 4 continued

obtained with these treatments as solid columns in panel A. We repeated this procedure for rifampicin (middle

row) and vancomycin (bottom row), for kanamycin and 6-APA (Figure 4—figure supplement 3), and for

ciprofloxacin and ofloxacin (Figure 4—figure supplement 4). Note that how generally growth reduction leads to

an increase in the extinction probability depends on whether f is dependent on l or not; see the main text and

Figure 4—figure supplement 2. We then used antibiotic-resistant strains and repeated these experiments (panel

B). Please note that the MICs of these mutants were five to ten fold higher than those of the WT strain. The rise of

solid columns above white columns indicates an increase in the extinction probability. We performed at least two

biological repeats for all the experiments and plotted the mean. The error bars represent one standard deviation

from the repeats.

DOI: https://doi.org/10.7554/eLife.32976.018

The following figure supplements are available for figure 4:

Figure supplement 1. We cultured cells in either LB medium or N-C- medium supplemented with 2% of casamino

acids (Csonka et al., 1994).

DOI: https://doi.org/10.7554/eLife.32976.019

Figure supplement 2. We measured MICs of bactericidal drugs using exponentially-growing cultures and

confirmed that at 1.5 � MICs, all growing cells were eradicated; that is, survival fraction (SF) was equal to zero.

DOI: https://doi.org/10.7554/eLife.32976.020

Figure supplement 3. In Figure 4—figure supplement 2, we found that kanamycin and 6-APA do not kill non-

growing cells (i.e., ffi 0 when lfi 0).

DOI: https://doi.org/10.7554/eLife.32976.021

Figure supplement 4. A previous study showed bacteriostatic translation-inhibiting drugs and bactericidal

quinolone drugs affect gene expression in a way to negate their effects (Bollenbach et al., 2009).

DOI: https://doi.org/10.7554/eLife.32976.022
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population is desired (Tomita et al., 2002; Wilson et al., 2013; Bayston et al., 2007); this is espe-

cially so for immuno-compromised hosts and also for infections involving bacteria with a low infec-

tious dose. Previous studies of large bacterial populations adequately accounted for the former

process. This study focused on the latter process. Our results directly revealed that antibiotics induce

significant fluctuations in population size, leading to stochastic population extinction. Modeling pop-

ulation fluctuations using a probabilistic model, we then established a quantitative understanding of

stochastic extinction. This model further predicted how the extinction probability could be manipu-

lated to facilitate bacterial eradication at sub-MIC drug concentrations. We experimentally tested

how amenable the extinction probability is to manipulation.

One possible molecular-level mechanism that gives rise to population fluctuations could be cell-

to-cell variability in gene expression. Previous studies showed that variation in expression of antibi-

otic-resistance genes, marA, cat, kagG, ompC or bla, results in variation in antibiotic susceptibility to

carbenicillin, chloramphenicol, isoniazid, kanamycin or ceftriaxone, respectively (Deris et al., 2013;

El Meouche et al., 2016; Wakamoto et al., 2013; SanchezSánchez-Romero and Casadesus, 2014;

Wang et al., 2014). Although our study mostly focuses on antibiotic-susceptible bacteria, a similar

mechanism might play a role, leading to heterogeneous growth/death of bacterial cells and eventu-

ally population fluctuations. We note that there were attempts to stochastically model large popula-

tions of antibiotic-susceptible bacteria (e.g., see [Ferrante et al., 2005]). But, given the deterministic

nature of observed dynamics, the need for stochastic models was not clear, and the model predic-

tion of stochasticity was not tested in the work. On the other hand, previous theoretical studies of

the evolution of antibiotic resistance typically modeled the growth and death of newly-emerged

mutants as stochastic processes, showing how fluctuations in the size of small mutant populations

affect evolutionary dynamics; e.g., see (Hermsen et al., 2012; Nissen-Meyer, 1966). Our study vali-

dates this modeling approach.

Our findings expose fundamental limits in our predictive ability for bacterial clearance. Clinical

studies of antibiotic therapies have often reported unexpected failures of eradicating antibiotic-sus-

ceptible bacteria (Doern and Brecher, 2011; Weidner et al., 1999; Gopal et al., 1976;

Ficnar et al., 1997; Forrest et al., 1993). Laboratory studies of simple model organisms such as

worms have reported similar observations (Moy et al., 2006; Needham et al., 2004; Kaito et al.,

2002). The variability in host environments could certainly contribute to such unexpected antibiotic

failures. For example, a recent study showed the effects of variability in host immunity on infection

course (Duneau et al., 2017). Our study demonstrates that even in the absence of host variability,

bacterial clearance occurs stochastically due to antibiotic-induced population fluctuations. At sub-

MIC drug concentrations, bacterial populations may or may not go extinct. At drug concentrations

above the MIC, all populations eventually go extinct, but not all at once. Rather, the extinction time

is highly variable, meaning that in some cases, it can take significantly longer to eradicate bacteria.

This inherent stochasticity, together with host variability, makes it difficult (or even impossible) to

deterministically predict antibiotic-mediated clearance of bacterial infection.

More studies are needed to elucidate the impact of these population fluctuations on treatment

outcomes in clinical settings. However, we observed such fluctuations even for a relatively large pop-

ulation (~104 cells). In comparison, previous in vivo studies showed that the population size needed

to establish infections (i.e., infectious dose) can be as small as 1–100 cells (Jones et al., 2006;

Haas and Rose, 1994; Jones et al., 2005; Tuttle et al., 1999; DuPont et al., 1989; Hara-Kudo and

Takatori, 2011; Kaiser et al., 1992), which is well within the stochasticity range. This means that if

tens of cells (or even a few cells) happen to stochastically survive a fixed course of antibiotic treat-

ment, this small population can re-establish infections once antibiotics are removed, leading to treat-

ment failure. Importantly, a recent article raised an issue regarding the conventional wisdom of

‘complete the prescribed course’, and argued for re-consideration of antibiotic duration

(Llewelyn et al., 2017). We believe that our observation of stochastic extinction dynamics, especially

inherent variability in extinction time, has significant bearing on this issue.

Furthermore, our study may guide the design of new therapeutic strategies. Based on the deter-

ministic understanding of population dynamics, it has been generally accepted that only at drug con-

centrations above the MIC, bacterial populations go extinct. Contrarily, we observed that stochastic

population fluctuations drive a population to extinction even at sub-MIC drug concentrations. This

observation suggests an intriguing possibility that sub-MIC drug ranges can be used as a clinical

option to clear bacteria. We acknowledge that the stochastic nature in the population dynamics is a
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double-edged sword. Stochasticity can be advantageous because it can drive a population to extinc-

tion even at low drug concentrations. But, stochasticity makes it impossible to pre-determine

whether the bacterial population of particular interest will go extinct or not; this is disadvantageous

because we cannot predict a priori if a specific treatment will work or not. However, this disadvan-

tage can be minimized by manipulating population fluctuations and thereby increasing the probabil-

ity of extinction. In the present study, we explored this possibility with the help of the probabilistic

model, showing that it is possible to increase the probability of clearance. This idea of using sub-

MIC drug concentrations to clear bacteria is particularly attractive in the context of antibiotic resis-

tance. Antibiotic-resistant bacteria have very high MICs, often above the levels that are toxic to

hosts. Thus, antibiotic concentrations above the MIC cannot be administered, which is why antibiotic

resistance is a serious public concern worldwide (O’Neill, 2016). Our plate assay using bactericidal

drugs revealed that, like antibiotic-susceptible bacteria, resistant bacteria exhibited non-zero plating

inefficiency below the MIC, indicating a non-zero probability of clearance at sub-MIC drug concen-

trations. We also showed that this probability of clearance could be manipulated, facilitating the

clearance of antibiotic-resistant bacteria. For comparison, we note a recent study in the field of viral

infections, which showed that stochastic noise in HIV gene expression may be used to treat HIV

infections (Dar et al., 2014). This study further supports the idea that stochasticity can be advanta-

geous and be used to combat infections. We believe that the time is ripe for the development of

clinical treatment strategies to take advantage of stochasticity, especially so given recent advances

in our understanding of stochasticity in biological processes (Jones et al., 2014; Ackermann, 2015;

Tanouchi et al., 2015; Banerjee et al., 2017; Scott et al., 2007; Schmiedel et al., 2015;

Sigal et al., 2006; Blount et al., 2008; Ray and Igoshin, 2012).

Our study will also have positive impacts on in vitro assessment of antibiotic efficacy. MIC is the

most critical parameter to assess antibiotic efficacy. In the deterministic framework, MIC is defined

as the drug concentration at which the population size is maintained, which is realized when the

death rate is equal to growth rate (f = l); see Equation A2. Accordingly, in a broth dilution method,

the drug concentration that yields no change in the turbidity of bacterial cultures is defined as the

MIC. Above, we found that in the stochastic framework, at the MIC, the rates of death and growth

are equal (f = l; see Figure 2D) and the extinction probability is 1 (Equation A6), meaning all popu-

lations go extinct at the MIC. Therefore, in both deterministic and stochastic frameworks, at the

MIC, the condition, f = l, is satisfied, but population dynamics are very different (population main-

tenance versus population extinction). This clarification can reconcile two common ways to deter-

mine the MIC, a plate assay based on complete colony extinction and a broth method based on no

change in culture turbidity (population maintenance); although the MICs were determined based on

different population dynamics in these two cases, both methods identify the drug concentration at

which growth rate is equal to death as the MIC. This clarification is particularly important in light of

recent efforts to increase the efficiency of the broth method by using small culture volumes (which

include a few or tens of bacterial cells) (Avesar et al., 2017). With such small volumes, MIC should

be defined based on population extinction, not population maintenance.

Lastly, our findings have implications on bacterial persistence. Dormant cells are refractory to anti-

biotics, persisting through antibiotic treatments (Allison et al., 2011; Balaban et al., 2004). They

are present in very low frequencies (typically 10�5, meaning 1 out of 105 cells) (Lewis, 2010), and

thus have little effects on population dynamics in small populations considered here (<<105). How-

ever, a study of persister formation requires the enrichment of persisters. To enrich them, studies

often treat a large population using antibiotics and characterize a small population of survivors as

persisters. The inherently stochastic nature of a small population may lead to variability in this pro-

cess of enrichment and characterization, complicating studies of persisters. In fact, such variability

was reported by a recent quantitative study of persistence (Brauner et al., 2017). Therefore, our

findings on the dynamics of small populations could be useful for a better understanding of

persistence.
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Materials and methods

Bacterial strains and culture
Experiments were conducted using E. coli strain NCM3722 (Soupene et al., 2003; Lyons et al.,

2011; Brown and Jun, 2015). Bacteria were grown in 5 mL of Lysogeny Broth (LB, Fisher Biore-

agents) in 20 mL borosilicate glass culture tubes at 37˚ C with shaking (250 rpm). Our typical experi-

mental procedure is as follows. Cells were first cultured in LB broth overnight (pre-culture). The next

morning, the cells were sub-cultured into pre-warmed LB broth at the optical density (OD600)

of ~0.001 (measured using a Genesys20 spectrophotometer, Thermo-Fisher) and allowed to grow

exponentially. The culture at the OD600 of ~0.4 was used for a plate assay or for microscope

experiments.

We evolved a rifampicin-resistant mutant from our WT strain (NCM3722). We plated ~108 WT

cells on a LB agar plate containing 20 mg/ml (2 � MICWT). 18 colonies were formed next day. We

chose one colony and purified it by re-streaking. The mutant (EMK32) had the MIC of 160 mg/ml.

We obtained the cefsulodin-resistant strain (EMK35, MIC = 170 mg/ml) and vancomycin-resistant

strain (EMK36, MIC = 250 mg/ml) from Georgia Emerging Infections Program MuGSI collection (their

MuGSI strain numbers were Mu519 and Mu107, respectively.)

Plate assay
Cells were spread on LB agar plates containing different concentrations of various antibiotics (see

below). Through serial dilutions (using 1.16% (w/v) NaCl solution), we ensured the number of colo-

nies to be between 50 and 250 on a plate (100 � 15 mm Petri dish). The plates were then incubated

at 37˚C. After 18 hr of incubation, the number of visible colonies on plates was determined. As indi-

cated in the main text, we also used casamino acids agar plates. We dissolved 2% casamino acids in

N-C- minimal medium (Csonka et al., 1994) and filtered the medium. We separately autoclaved

agar, and when agar was cooled and felt warm to the touch, the casamino acids medium was

added.

Antibiotics
Stock solutions of ciprofloxacin (1 mg/ml), kanamycin (50 mg/ml), 6-APA (2 mg/ml), streptomycin (25

mg/ml), ofloxacin (1 mg/ml), erythromycin (10 mg/ml), vancomycin (100 mg/ml), and cefsulodin (30

mg/ml) were prepared in sterilized water. Stock solutions of tetracycline (50 mg/ml) and chloram-

phenicol (10 mM) were prepared in methanol. Stock solutions of thiolutin (2 mg/ml) and rifampicin

(50 mg/ml) were prepared in DMSO. Antibiotics were purchased from Biobasic Inc (Canada), Acros

Organics, or Sigma-Aldrich (St. Louis, MO.).

Time-Lapse microscopy
Cells were cultured as described above without antibiotics first. At OD600 of ~0.4, 2 mL of aliquot

from a culture was loaded into a pre-warmed 35 mm glass-bottom Petri dish (InVitro Scientific). A

pre-warmed LB agarose pad containing antibiotics was placed over them (this procedure marked

time zero). The dish was then moved into a pre-warmed (at 37˚C) inverted microscope (Olympus

IX83), and appropriate stage positions (typically ~50 positions) were selected. Selection of multiple

state positions and setting up the software for automatic image acquisition normally took 1 ~ 2 hr.

The microscope had an automated mechanical XY stage and auto-focus, and was controlled by the

MetaMorph software (Molecular Devices). Also, it was housed by a microscope incubator (InVivo Sci-

entific) which maintained the temperature of samples at 37˚C during experiments. An oil immersion

phase-contrast 60 � objective was used for imaging. Images were captured using a Neo 5.5 sCMOS

camera (Andor). We also cultured cells in a microfluidic chemostat (using LB broth as growth

medium). The detailed procedure for the microfluidic experiments was published in our previous

articles (Kim et al., 2012; Deris et al., 2013). Images were analyzed using MicrobeJ, a plug-in for

the ImageJ software (Ducret et al., 2016), and the analysis results were validated manually. In our

experiments, all cells that stopped growing eventually underwent lysis. Although dormant cells that

survive antibiotics (i.e., persisters) may complicate our analysis, their frequency is very low, ~10�5 (i.

e., 1 in 105 cells) (Lewis, 2010). Because our study involves small populations (less than 100 cells),

dormancy has little relevance to our study.
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Replicate culture using a microtiter plate
We first cultured cells in 5 mL LB medium to the OD600 of ~0.4, as described above. Previously, using

a plate assay, we determined that OD600 of 0.4 contains 2 � 108 cells per 1 mL. Using this relation,

we diluted the culture in 10 mL LB broth such that there were ~640 cells per 200 mL (we separately

confirmed this density by plating cells on LB agar plates containing no antibiotics and counting col-

ony-forming units). We supplemented this culture with various concentrations of antibiotics. We then

equally distributed 200 mL of this culture to 12 chambers in a microtiter plate. We repeated this pro-

cedure by varying cell density. Next day, we measured the OD600 of each chamber.
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We thank Jeff Gore, Véronique Perrot, and Bruce Levin for helpful comments on the manuscript. We

also thank Emily Crispell and David Weiss for sharing strains with us. This work was funded by

Research Corporation for Science Advancement (#24097) and the Human Frontier Science Program

(RGY0072/2015).

Additional information

Funding

Funder Grant reference number Author

Research Corporation for
Science Advancement

24097 Jessica Coates
Bo Ryoung Park
Dai Le
Emrah Şimşek
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Appendix 1

DOI: https://doi.org/10.7554/eLife.32976.025

A deterministic model of population dynamics
If cells replicate at rate, l, and die at rate, f, a general deterministic model of population

growth can be described by

dn

dt
¼ l � n�f � n; (A1)

where n is the number of cells in the population. Its solution is

n tð Þ ¼ n 0ð Þ � e l�fð Þ�t: (A2)

Previous studies modeled the population dynamics of bacteria exposed to antibiotics using

this solution; e.g., see (Regoes et al., 2004; Czock et al., 2009). At drug concentrations

below the MIC (sub-MIC), growth rate is higher than death rate (l > f); thus, a bacterial

population grows. When the drug concentration reaches the MIC, growth rate and death rate

are equal (l = f); thus, the population size is maintained. At drugs concentrations above the

MIC, growth rate is lower than death rate (l < f); thus, a bacterial population declines.

A stochastic model of population dynamics
We found that bactericidal drugs induce demographic stochasticity (i.e., cells may replicate or

die stochastically), and thus the population size fluctuates over time. To account for such

fluctuations, we use the Markovian birth-and-death process model, which represents the most

fundamental formulation of stochastic population growth (Novozhilov et al., 2006;

Pavel Krapivsky and Ben-Naim, 2010; Kendall, 1948) and consider the probability of there

being n cells at time t in a population, Pn(t). Temporal evolution of Pn(t) is given by the

following master equation,

Pn

:
¼ l n� 1ð ÞPn�1� lþfð ÞnPn þf nþ 1ð ÞPnþ1: (A3)

This equation can be solved analytically; see (Novozhilov et al., 2006; Pavel Krapivsky

and Ben-Naim, 2010; Kendall, 1948). For a population that originates from a single cell (e.g.,

a colony on agar originates from a single bacterium in our experiments), the initial condition is

P1(0)=1. Then, the solution is

Pn tð Þ ¼ A tð Þ � a tð Þn�1; (A4)

where A tð Þ ¼ E tð Þ � 1�f=l
E tð Þ�f=l

� �2

, a tð Þ ¼ E tð Þ�1

E tð Þ�f=l

� �

, and E tð Þ ¼ e
l�fð Þ�t.

For n = 0,

P0 tð Þ ¼
f

l

E tð Þ� 1

E tð Þ�f=l

� �

; (A5)

which represents the probability that a population has gone extinct before time t.

In the long-time limit, P0 tð Þ converges to

P0 ¼
1; if f� l
f

l
; if f<l

�

: (A6)

Because bactericidal drugs induce cell death, the death rate f can be increased by using

higher concentrations of drugs (Figure 2—figure supplement 6A). The solution (Equation A6)

indicates that, if f is equal to or greater than l, a population will always go extinct, meaning

that the lowest value of f that can consistently achieve population extinction is equal to l. This

means that the lowest drug concentration that guarantees bacterial eradication, c1, is
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determined by f (c1) = l. In our plate assay (Figure 1B), c1 corresponds to the lowest

antibiotic concentration at which no cells form colonies, that is, MIC; thus c1 = MIC.

Alternatively put, at the MIC, f = l; see the main text for details.

Above the MIC (f > l), all populations eventually undergo extinction (Equation A6), but

the extinction time cannot be predetermined. Equation A5 predicts that as time goes by, the

probability of population extinction converges to P0 tð Þ » 1þ l
f
� 1

� �

� e l�fð Þ�t. In our

experiments, we have counted the number of live colonies, i.e., colonies that have not gone

extinct yet (i.e., n6¼ 0). The probability of finding live colonies at time t, Pn6¼0 tð Þ, which is equal

to 1� P0 tð Þ, is

Pn6¼0 tð Þ ¼ 1�P0 tð Þ» 1�
l

f

� �

� e l�fð Þ�t : (A7)

Thus, at later times, the probability of finding live colonies can be approximated by an

exponential decay.

Using Equation A3, moment dynamics can be derived (Novozhilov et al., 2006;

Pavel Krapivsky and Ben-Naim, 2010; Kendall, 1948). The first moment,
P

¥

n¼0

nP, is equal to

the mean of n, hni, and the equation for the first moment is

_nh i ¼ l nh i�f nh i: (A8)

In our experiments, the initial condition, n 0ð Þ, is the same across the populations. For

example, for all our microscope experiments, n 0ð Þ ¼ 1:

Its solution is

n tð Þh i ¼ n 0ð Þ � e l�fð Þ�t: (A9)

These equation and solution are the same as the deterministic equation and solution we

discussed above (Equation A1 and A2); therefore, the mean of the stochastic variable n obeys

the deterministic model.

Next, we consider the mean number of dead cells nDh i. Because live cells die at the rate of

f, we have

_nDh i ¼f nh i: (A10)

Solving Equation A10 together with Equation A9, we have

nD tð Þh i ¼
f � n 0ð Þh i

l�f
� e

l�fð Þ�t � 1

h i

: (A11)

or alternatively,

nD tð Þh i ¼
f

l�f
� n tð Þh i� n 0ð Þ½ �: (A12)

We can also write an equation for the second moment,
P

n¼0
n
2
Pn,

d n
2


 �

dt
¼ 2 l�fð Þ n

2

 �

þ lþfð Þ nh i: (A13)

The solution is

n
2


 �

¼ n 0ð Þ
lþf

l�f
e

l�fð Þt
e

l�fð Þt � 1

h i

þ n 0ð Þ2e2 l�fð Þt: (A14)

Using Equation A9 and S14, we can calculate the variance Var n½ � ¼ n
2


 �

� nh i2,
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Var n½ � ¼ n 0ð Þ
lþf

l�f
� e l�fð Þ�t

e
l�fð Þ�t � 1

h i

: (A15)

Next, we quantified population fluctuations by calculating the coefficient of variation (CV),

that is, standard deviation relative to the mean. The standard deviation is equal to
ffiffiffiffiffiffiffiffiffiffiffiffiffi

Var n½ �
p

and can be calculated using Equation A15. The mean is given by Equation A9. Thus,

we have

CV ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi

Var n½ �
p

nh i
»

ffiffiffiffiffiffiffiffiffiffiffiffi

lþf

l�f

s

� n 0ð Þ�1=2: (A16)

Equation A16 holds for a sub-MIC region (l > f) and considers the long-time limit. It

indicates that the magnitude of fluctuations in population size depends on inoculum size (n(0)),

and the rates of growth and death.
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Appendix 2

DOI: https://doi.org/10.7554/eLife.32976.026

To rule out heritable resistance as an explanation for heterogeneous colony formation

(Figure 1B), we performed two rounds of plating at sub-MIC drug concentrations (Figure 1C

and Figure 1—figure supplement 3). We picked a few colonies from the agar plate exhibiting

a plating efficiency of ~0.5 (e.g., near 0.6 � MIC) and plated them immediately on fresh agar

plates containing various concentrations of the same drug. The plating efficiency was similar or

marginally lower on the second plating, possibly because exposure to the antibiotics on the

first plate adversely affected the cells and rendered them more susceptible to the antibiotics

on the second plating. This observation rules out heritable resistance as an explanation for

heterogeneous colony formation at sub-MIC drug concentrations. Of course, if we perform

multiple rounds of plating, we might eventually select for antibiotic-resistant mutants.

However, for each round, we collect ~105 cells from a previous plate and plate ~100 cells on a

fresh plate. This procedure creates a bottleneck effect, which reduces genetic variation and

effectively weakens selection pressure for antibiotic resistance. Therefore, we expect that the

evolution of antibiotic resistance is slow.
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Appendix 3

DOI: https://doi.org/10.7554/eLife.32976.027

We characterized the fluctuations in inoculum size by determining standard deviation and

percent variation; see Appendix 3—table 1. The variation was ~10% or less. In Figure 3D,

which shows the extinction probability at various (average) inoculum size, the probability

changes only gradually for two-fold increment in inoculum size (which is equivalent to a 100%

increase). Therefore, we do not believe that these fluctuations in inoculum size have a

significant effect on the results.

Appendix 3—table 1. Percent variation of inoculum size in a microtiter plate.

Average inoculum size Standard deviation Percent variation

11.4 1.49 13%

58.4 3.7 6.3%

135.8 7.8 7.8%

DOI: https://doi.org/10.7554/eLife.32976.028
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