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Predicting radiocephalic arteriovenous fistula success with

machine learning
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After creation of a new arteriovenous fistula (AVF), assessment of readiness for use is an important clinical task. Accurate prediction
of successful use is challenging, and augmentation of the physical exam with ultrasound has become routine. Herein, we propose a
point-of-care tool based on machine learning to enhance prediction of successful unassisted radiocephalic arteriovenous fistula

(AVF) use. Our analysis includes pooled patient-level data from 704 patients undergoing new radiocephalic AVF creation, eligible for
hemodialysis, and enrolled in the 2014-2019 international multicenter PATENCY-1 or PATENCY-2 randomized controlled trials. The
primary outcome being predicted is successful unassisted AVF use within 1-year, defined as 2-needle cannulation for hemodialysis
for 290 days without preceding intervention. Logistic, penalized logistic (lasso and elastic net), decision tree, random forest, and
boosted tree classification models were built with a training, tuning, and testing paradigm using a combination of baseline clinical
characteristics and 4-6 week ultrasound parameters. Performance assessment includes receiver operating characteristic curves,

precision-recall curves, calibration plots, and decision curves. All modeling approaches except the decision tree have similar
discrimination performance and comparable net-benefit (area under the ROC curve 0.78-0.81, accuracy 69.1-73.6%). Model
performance is superior to Kidney Disease Outcome Quality Initiative and University of Alabama at Birmingham ultrasound
threshold criteria. The lasso model is presented as the final model due to its parsimony, retaining only 3 covariates: larger outflow
vein diameter, higher flow volume, and absence of >50% luminal stenosis. A point-of-care online calculator is deployed to facilitate

AVF assessment in the clinic.
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INTRODUCTION

Functional vascular access is necessary for hundreds of thousands
of patients in the United States living with end stage kidney
disease (ESKD) and undergoing chronic intermittent hemodialy-
sis’. Organized efforts to promote autogenous hemodialysis
access, most notably the National Kidney Foundation’s Kidney
Disease Outcomes Quality Initiative (KDOQI), have resulted in a
shift away from prosthetic accesses and tunneled central venous
catheters (CVCs) toward arteriovenous fistulae (AVF)?3. Despite
efforts to promote the utilization of autogenous access, nearly half
of AVFs created are never used successfully, and 80% of patients
initiate hemodialysis with a CVC*”. Underlying the considerable
variation in successful AVF use is uncertainty in determining
access readiness for use. Newly created AVFs require a period of
maturation, where vessel remodeling results in a durable
cannulation segment that can be used for hemodialysis®. Ideally,
the maturation process takes place over about 6 weeks. Some
AVFs will require additional maturation time or interventions prior
to use due to slow or maladaptive remodeling (e.g. intimal
hyperplasia), while others may be used successfully without
intervention. Significant experience is needed to determine access
readiness with physical exam, yet the availability of skilled
providers is highly variable®'°, Uncertainty about access readiness
may lead to prolonged dependence on CVCs and either
unnecessary or delayed interventions.

All members of the ESKD care team, including primary care
doctors, nephrologists, surgeons, nurses, and technicians, should
be empowered to evaluate the health of hemodialysis accesses. To
that end, rules for determining hemodialysis access readiness for
use have been developed using ultrasound as a relatively
inexpensive, noninvasive, and simple tool to benchmark matura-
tion progress. Existing rules are based on static thresholds which
place patients into two categories: ready for use and not yet ready
for use. The commonly used existing thresholds include the prior
KDOQI criteria (=600 mL/min flow volume, =6 mm diameter, and
<6mm deep to skin) and the University of Alabama at
Birmingham criteria  (UAB; =500 mL/min flow volume and
>4 mm diameter)®'". The current work is motivated by recogni-
tion that substantial information about access maturation is lost
by dichotomizing the outcome of readiness for use with static
criteria. Additionally, the existing criteria were developed and
validated in smaller heterogenous cohorts with a minority of
forearm accesses, making their application to the radiocephalic
AVF unclear®®. Statistical models for prediction of AVF use have
been developed by the Hemodialysis Fistula Maturation (HFM)
study investigators, but the HFM observational cohort contained a
minority of forearm accesses. Herein, we describe the develop-
ment of a new tool for the prediction of successful radiocephalic
AVF use which allows for a more nuanced clinical interpretation of
access readiness with improved prediction performance when

"Division of Vascular and Endovascular Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. 2Center for Surgery and Public
Health, Brigham and Women'’s Hospital, Boston, MA, USA. >Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston,
MA, USA. “Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA. ®Division of Vascular Surgery
and Li Ka Shing Knowledge Institute, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada. ®Department of Surgery, King Faisal Specialist Hospital and Research

Center, Riyadh, Saudi Arabia. *email: mhussain7@bwh.harvard.edu

Published in partnership with Seoul National University Bundang Hospital

npj


http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-022-00710-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-022-00710-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-022-00710-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-022-00710-w&domain=pdf
http://orcid.org/0000-0001-6030-6923
http://orcid.org/0000-0001-6030-6923
http://orcid.org/0000-0001-6030-6923
http://orcid.org/0000-0001-6030-6923
http://orcid.org/0000-0001-6030-6923
http://orcid.org/0000-0003-0264-7898
http://orcid.org/0000-0003-0264-7898
http://orcid.org/0000-0003-0264-7898
http://orcid.org/0000-0003-0264-7898
http://orcid.org/0000-0003-0264-7898
http://orcid.org/0000-0003-2471-8167
http://orcid.org/0000-0003-2471-8167
http://orcid.org/0000-0003-2471-8167
http://orcid.org/0000-0003-2471-8167
http://orcid.org/0000-0003-2471-8167
https://doi.org/10.1038/s41746-022-00710-w
mailto:mhussain7@bwh.harvard.edu
www.nature.com/npjdigitalmed

an P. Heindel et al.

PATENCY-1

n =311

PATENCY-2

n =603

NS

No Progression to

Registry
n=914

Hemodialysis During Study

Administrative Censoring, n = 88 -

Loss of Secondary Patency, n = 87
Lost to Followup, n = 15
Death, n = 10

A4

Transplant, n =10

Eligible for Hemodialysis

n =704
Complete 4-6 Week Ultrasound Complete 12 Week Ultrasound
n =591 n =560
Training Set Testing Set
n=413 n=178
Y
Validation with
Resampling
Model Tuning
Prediction
Modeling

Fig. 1 Cohort selection flowchart. Depicts flow from PATENCY-1 and PATENCY-2 randomized trials into prospective registry, eligibility for
hemodialysis, receipt of postoperative ultrasound, and ultimate entry into predictive modeling cohort.

compared to both the UAB and KDOQI ultrasound threshold
criteria.

RESULTS

Summary statistics

The model-building cohort of those eligible for hemodialysis
during the study follow-up and with complete 4-6 week
ultrasound data comprised 591 patients (Fig. 1), 55% of whom
were on hemodialysis at the time of AVF creation. The mean age
was 57 (SD 13) years, 22% were female, and 65% were white
(Table 1). Radiocephalic AVFs were created at the wrist (75.3%),
proximal forearm (22.3%), or anatomic snuffbox (2.4%). The mean
intraoperative vein diameter was 3.37 mm (SD 0.82) and the mean
artery diameter was 2.75mm (SD 0.67). Patients with complete
4-6 week ultrasound data in the model-building cohort shared a
similar covariate profile with the overall cohort (n =914, Table 1).
Median follow-up in the model-building cohort was 719 days (IQR
458-1068).

Ultrasound parameters

A total of 591 patients and 560 patients had complete ultrasound
data at 4-6 weeks and 12 weeks from the index surgery,
respectively (Fig. 1, Table 2). Among the model-building cohort,
277 patients (46.8%) achieved unassisted AVF use within 1 year.
Flow volume was lowest in those without AVF use and highest in
those with unassisted AVF use at both the 4-6 week ultrasound
(mean difference 250 mL/min, 95% confidence interval [Cl]
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175-326, Fig. 2a) and 12 week ultrasound (mean difference
235 mL/min, 95% Cl 136-334, Fig. 2b). Cephalic vein diameter was
smallest in those without AVF use and largest in those with
unassisted AVF use at both 4-6 weeks (mean difference 0.69 mm,
95% confidence interval [CI] 0.48-0.90, Fig. 2a) and 12 weeks
(mean difference 0.95 mm, 95% Cl 0.70-1.2, Fig. 2b). Flow volume
(mean difference 67.8 mL/min, 95% Cl 39.5-96.1) and vein
diameter (mean difference 043 mm, 95% Cl 0.37-0.49) both
increased between the 4-6 week and 12-week ultrasounds.
Patients with successful unassisted AVF use were more likely to
meet UAB (x%[2] = 53.0, p < 0.001, Pearson’s Chi-squared test) and
KDOQI (x’[2] = 31.6, p < 0.001, Pearson’s Chi-squared test) criteria
at their 4-6 week ultrasound. Among those with successful
unassisted AVF use within 1-year, 73% and 52% did not meet
KDOQI criteria at 4-6 weeks and 12 weeks, respectively.

Model Performance

Discrimination performance of models based on 4-6 week
ultrasound measurements and baseline characteristics in predict-
ing 1-year unassisted AVF use are shown in Fig. 3 and Table 3. The
performance of UAB and KDOQI criteria approximations based on
flow and diameter thresholds were also assessed. The Lasso model
(AUROC 0.794, AUPRC 0.719, accuracy 72.5%) performed nearly as
well as the elastic net (AUROC 0.807, AUPRC 0.737, accuracy
71.3%) in discriminating unassisted use at one year with a much
more parsimonious model (Table 3). The discrimination perfor-
mance of all models was superior to that of KDOQI and UAB flow
and diameter thresholds in predicting 1-year unassisted AVF use,
and the models demonstrated more balanced sensitivity and
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Table 1. Characteristics of all trial participants and prediction model-
building cohort.

Baseline Characteristics All Trial Participants Predictive Modeling

N=914 N =591

57 (13)
203 (22%)

57 (13)
130 (22%)

Age (Years)
Sex (Female)

Race

White 619 (68%) 382 (65%)
African American 219 (24%) 149 (25%)
Other 76 (8.3%) 60 (10%)
Hispanic 156 (17%) 99 (17%)
BMI 31 [26,37] 31 [26,37]
Smoking Status

Current 131 (14%) 91 (15%)
Former 403 (44%) 257 (43%)
Never 380 (42%) 243 (41%)

Medical History
Diabetes
Hypertension

580 (63%) 382 (65%)
885 (97%) 573 (97%)
(

Heart Failure 252 (28%) 166 (28%)
Coronary Artery Disease 260 (28%) 172 (29%)
Peripheral Artery Disease 95 (10%) 47 (8.0%)
Cerebrovascular Disease 129 (14%) 79 (13%)

Any Antithrombotic
Statin Use

499 (55%)
499 (55%)

336 (57%)
312 (53%)

Prior Renal Transplant 37 (4.0%) 26 (4.4%)
Prevalent HD 409 (45%) 326 (55%)
Duration of Prior HD 9 (5,19) 9 (5,19)

(Months)
Current or Prior CVC
Location of AVF

444 (49%) 343 (58%)

Wrist 669 (73%) 445 (75%)
Forearm 220 (24%) 132 (22%)
Snuffbox 25 (2.7%) 14 (2.4%)
Intraop. Vein Diameter

> 4.0 mm 282 (31%) 186 (31%)
3.0-3.9mm 451 (49%) 296 (50%)
<3.0mm 181 (20%) 109 (18%)

Intraop. Artery Diameter

> 3.0mm 433 (48%) 274 (47%)
2.0-2.9mm 450 (49%) 293 (50%)
<20mm 28 (3.1%) 22 (3.7%)
Anesthesia

General/Local 205 (22%)

709 (78%)

124 (21%)
Regional 467 (79%)
Site Enroliment Volume
Lower (< 20)
Mid (21-49)

Upper (= 50)

316 (35%)
303 (33%)
295 (32%)

197 (33%)
181 (31%)
213 (36%)

Data are presented as mean (standard deviation), count (percentage), and
median [interquartile range].

specificity. The Lasso model had slightly decreased calibration
when compared to the simple logistic regression model, but all
models except the pruned tree demonstrated acceptable calibra-
tion (Supplementary Fig. 1). Except for the pruned tree, all models
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had a higher net-benefit than either the no-information strategies
(use all and use none) or the existing static threshold strategies
(UAB and KDOQI) across all reasonable threshold probabilities
(Supplementary Fig. 2). Additional model details are included in

the supplementary materials (Supplementary Table 1, Supple-
mentary Figs. 3-6).

Final prediction model

The Lasso logistic regression model was favored as the optimal
prediction model due to its combination of performance and
parsimony. The final model retained only three covariates: larger
outflow vein diameter in US (per mm, odds ratio [OR] 1.95, 95% Cl
1.48-2.60), higher flow volume in US (per 100 mL/min, OR 1.08, 95%
Cl 1.00-1.17), and absence of >50% luminal stenosis on US (OR 2.74,
95% Cl 1.65-4.60). No preoperative or intraoperative characteristics
were retained by the Lasso. The importance of the three ultrasound
variables was shared across many modeling approaches, with vein
diameter and flow volume contributing more to prediction
performance than all other variables in the elastic net, pruned tree,
random forest, and boosted tree models (Supplementary Fig. 3).
Predicted probabilities of successful unassisted AVF use by 1-year for
an individual patient can be calculated using the cross-table
(Extended Data Supplementary Fig. 4), the nomogram (Supplemen-
tary Fig. 5), or the online calculator application (https:/
patrickheindel.shinyapps.io/predict-avf/).

DISCUSSION

We applied machine learning methods to prospectively collected
data from rigorously conducted randomized clinical trials to develop
a practical tool for estimating the probability of successful unassisted
radiocephalic AVF use. Our tool incorporates information from
standardized postoperative duplex ultrasounds and 23 baseline
clinical variables in a cohort of 591 patients with newly created
radiocephalic AVFs. The final prediction model retained only three
predictors (AVF flow volume, vein diameter, and > 50% stenosis
measured at 4-6 weeks postoperatively using duplex ultrasound)
and exceeded the performance of both the UAB and KDOQI
ultrasound criteria. Additionally, our model outputs predicted
probabilities rather than strict class predictions (e.g., use/non-use),
allowing for a more nuanced interpretation of the output.

Prediction of successful AVF use is done routinely in the clinic
with physical exam, but accuracy depends on substantial skill and
experience, with even the most experienced clinicians achieving
an accuracy of about 80%°'°. Often, ultrasound is used to
supplement physical exam, and existing threshold criteria guide
the assessment of AVF readiness for use. Making the correct
assessment has important implications for decisions regarding
duration of CVC use, surgical or endovascular interventions, timing
of hemodialysis initiation, and access patency—all of which
contribute collectively to ESKD-related morbidity and mortality.
Improving prediction of successful unassisted AVF use by
supplementing clinical assessments with point-of-care estimates
based duplex ultrasonography should, therefore, elevate the
quality of ESKD care. The development of the UAB and KDOQI
criteria have together contributed substantially to ESKD patient
care and inspired the present work. Recent advances in prediction
methodology, combined with the availability of high-quality
granular data representing a challenging study population,
motivated our development of an updated approach to AVF
assessment.

After tuning, fitting, and evaluating numerous models, the Lasso
was chosen as our final model. The Lasso model is appealing due
to its combination of simplicity and performance, with discrimina-
tion and calibration comparable to more complex methods like
random forest, and a net-benefit exceeding both UAB and KDOQI
across a wide range of thresholds. Discrimination refers to the
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Table 2. Successful radiocephalic arteriovenous fistula use at 1-year by ultrasound parameters at 4-6 weeks and 12 weeks.
4-6 Week US 12 Week US
Characteristic Not used or Assisted use Unassisted use Not used or Assisted use Unassisted use

indeterminate N=149 N=165 N=277 indeterminate N=125 N=164 N=271
Flow (mL/min) 515 (334) 592 (295) 766 (316) 607 (418) 666 (379) 841 (383)
Diameter (mm) 4.91 (0.96) 5.06 (0.79) 5.59 (0.89) 5.21 (1.10) 5.43 (0.93) 6.16 (0.98)
Stenosis 64 (43%) 64 (39%) 9 (14%) 43 (34%) 2 (32%) 4 (20%)
UAB Criteria Met 64 (43%) 90 (55%) 213 (77%) 66 (53%) 110 (67%) 224 (83%)
KDOQI Criteria Met 17 (11%) 13 (7.9%) 5 (27%) 21 (17%) 6 (22%) 9 (48%)

Data are presented as mean (standard deviation) and count (percentage).

ability of a model to correctly differentiate between cases and
non-cases. AUROC is a metric that can be used to quantify the
overall discrimination performance of a model, and discrimination
performance over a range of possible classification thresholds (Fig.
3a, b). A classification threshold is the predicted probability that,
when exceeded, one would label an observation as a case. When
assessing metrics like sensitivity, specificity, and positive predictive
value, we chose a classification threshold of 0.5, a common default
for binary classification. Other classification thresholds could be
chosen by a clinician depending on the clinical need and
preference for prioritization of either sensitivity or specificity.

To permit valid predictions across a range of classification
thresholds, the estimated predicted probability must reflect the
true probability of the outcome in the population across all
possible probabilities—this property is called calibration. Calibra-
tion can be assessed visually by plotting deciles of predicted
probabilities against the true proportion within that decile
(Supplementary Fig. 1). A numeric assessment of calibration can
be made by calculating the slope and intercept of a model
regressing the outcome on the predicted log-odds of the
outcome, with the perfect model having slope = 1 and
intercept = 0.

The choice of classification threshold is analogous to the choice
between using either the KDOQI or UAB criteria—the KDOQI
criteria might be used when favoring high specificity at the
expense of sensitivity, while the UAB criteria reflects a prioritiza-
tion of sensitivity over specificity. Regardless, the model-based
approach has a higher net-benefit across a wide range of plausible
classification thresholds than either KDOQI or UAB (Supplemen-
tary Fig. 2). In decision curve analysis, net-benefit represents a
summary of number of true positives and false positives and is
useful in summarizing both discrimination and calibration across a
range of thresholds'% The strategy with the highest net benefit
across a plausible range of threshold values will be the optimal
choice for balancing true positives and false positives. Because
applying this model requires no additional information, cost, or
testing than what would be necessary for either the UAB or KDOQI
strategies, the model should be preferred to these static criteria
regardless of the clinician’s threshold preference.

Our work confirms and extends the findings of prior studies,
perhaps most notably those of the HFM study, a multi-institution
prospective observational cohort study concerned with better
understanding AVF maturation'3. Prior HFM work using a back-
ward elimination algorithm found that AVF flow volume, vein
diameter, and depth from skin were the most important
predictors of successful AVF use in a mixed cohort including
forearm (22.7%) and upper arm (77.3%) AVFs>. A goal of our study
was to see if the addition of expanded baseline clinical
characteristics with more granular detail would enhance pre-
dictive performance in a variety of modeling approaches.
Although the statistical methods employed by the HFM investi-
gators differ in their details, our results appear to replicate and
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confirm the findings of the HFM study. Complex modeling
strategies did not substantially improve the performance of more
parsimonious approaches, and ultimately, AVF flow volume and
diameter remained the most important predictors of successful
AVF use.

This study has some key strengths which should be highlighted.
The source data has very low missingness, high internal validity,
and likely very low misclassification of predictors and outcomes
due to the prospective nature of data collection for the purposes
of research. Additionally, the sample is homogenous with respect
to access configuration, with all participants undergoing new
creation of a radiocephalic AVF. Restriction to only radiocephalic
AVF eliminates any variability which may be due to inherent
differences between access configurations - radiocephalic AVFs
tend to be distal, smaller, and with lower flow volumes then
brachiocephalic AVFs, for example. As noted above, our model’s
performance exceeds that of the static criteria without requiring
additional testing. The model (PREDICT-AVF) is easily accessible
and practical for point-of-care applications through use of the
online calculator, cross-table, or nomogram chart (https:/
patrickheindel.shinyapps.io/predict-avf/, Supplementary Figs. 4-5).

Our work must be interpreted with caution in the context of the
study design and inherent limitations. No underlying causal
framework guided our analysis, which was purely concerned with
prediction. Readers should be careful to avoid making causal
interpretations or attributing excess meaning to the results of
individual components of any prediction model. Additionally,
certain simplifying assumptions were made to assist in the
construction and interpretation of the models which should be
kept in mind. Competing events like loss to follow-up, death, and
renal transplantation were treated as non-events in this analysis.
The implication is that our model predicts the probability of being
observed to have successful AVF use, rather than AVF use itself.
Unfortunately, the trials did not include the collection of AVF
depth information in the ultrasound protocol, and although this
parameter is part of the prior KDOQI “Rule of 65s,” we had to
approximate the traditional KDOQI criteria with only flow volume
and diameter. Because all accesses in this study are radiocephalic,
depth seems unlikely to play as significant role in access readiness
for use, and only 2.9% of patients in either study required a
superficialization procedure. In addition, the PATENCY trials were
conducted in North America—caution should be exercised when
applying this model to patients in other settings, as AV access
cannulation practices vary significantly around the world.

Finally, although the predicted probability of successful AVF
use is of interest to clinicians, the implications for how to use
this information to guide practice are still unclear and warrant
additional investigation. For example, a clinician who sees a
patient with a predicted probability of successful AVF use of
30% may choose to obtain additional imaging, intervene with a
surgical or endovascular procedure to assist with maturation,
abandon the AVF, or simply wait and allow more maturation
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Fig. 2 Ultrasound parameters stratified by arteriovenous fistula (AVF) use at 1-year. Points represent individual patients’ values. Data
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(2600 mL/min and =6 mm, dark gray) ultrasound criteria. Results of post hoc testing comparing flow and diameter between groups (Tukey’s

test) are represented by asterisks (*p < 0.05).

time—we can make no claims about which of these strategies is
optimal based on the current study. Any strategy choice needs
to be the result of shared decision-making with the individua-
lized ESKD life-plan in mind?.

The present study contributes to ongoing work using machine
learning techniques to improve ESKD care. Techniques applied in
our work can be readily expanded to other access configurations
and populations. Duplex ultrasound is an important non-invasive
measure of AVF maturation already in routine use. Ultrasound
measurements can be translated into interpretable estimates of
unassisted use success through point-of-care tools developed with
machine learning.

METHODS
Data source

We conducted a post hoc analysis of pooled patient-level data
from the 2014-2019 international multicenter PATENCY-1 and
PATENCY-2 phase Il randomized controlled trials (trial registration:
ClinicalTrials.gov; NCT02110901, July 2014; and NCT02414841,
August 2015). These trials prospectively tracked clinical outcomes
for up to 3 years following new radiocephalic AVF creation at 31
and 39 centers, respectively, in the United States and Canada. The
primary ftrials’ detailed methodology and results have been
published previously'*'6.

All advanced chronic kidney disease patients undergoing
radiocephalic AVF creation were eligible for enroliment in the
trials. Patients with a life expectancy of <6 months, active
malignancy, or prior treatment with the study drug (vonapanitase,
a recombinant human elastase) were excluded from the trials.
Ultimately, the trial drug vonapanitase was deemed to have
limited effect on the relevant clinical outcomes at one year, and
further investigation of the drug for this use-case was abandoned.
Participants were followed prospectively for up to three years in a
pre-specified registry of clinical outcomes. Enroliment began in
July 2014 and registry follow-up ended in April 2019. Key data
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points collected during the trial and subsequent registry follow-up
included baseline comorbidities at time of trial enroliment,
anatomic and case mix characteristics, subsequent surgical or
endovascular interventions, and postoperative ultrasound
measurements.

Routine duplex ultrasounds (US) were performed at 4 to
6 weeks and 12 weeks from AVF creation. Outflow-vein lumen
diameter was measured twice at three predetermined locations in
the forearm (3 cm proximal to the AVF anastomosis, mid-forearm,
and immediately below the antecubital fossa) and averaged. Flow
volume was estimated from three separate measurements in the
same location in the cephalic vein 5cm proximal to the AVF
anastomosis. Stenosis was dichotomized as presence or absence
of =50% luminal narrowing at any point along the entirety of the
access. Access depth was not assessed. All ultrasounds were
interpreted by a blinded core lab (VasCore; Boston, MA). The
methods were performed in accordance with relevant guidelines
and regulations, including waiver of informed consent, and
approved by the Mass General Brigham human research
committee Institutional Review Board for Use of previously
collected trial data from PATENCY-1 and PATENCY-2 for post
hoc analysis.

Prediction Models

We sought to build upon and refine existing threshold-based
ultrasound criteria for predicting AVF maturation and suitability for
use. To be included in prediction modeling, patients needed to be
at risk for AVF use during the study follow-up (e.g., on
hemodialysis) and have complete 4- to 6-week ultrasound data.
Any patients with pre-dialysis chronic kidney disease that did not
progress to requiring hemodialysis during the study follow-up
were excluded (Fig. 1).
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Outcome

To improve interpretability and simplify model building, the
outcome for prediction modeling was dichotomized as successful
unassisted AVF use within 1-year, defined as 2-needle cannulation
for hemodialysis for =90 days without preceding intervention.
Patients who did not successfully use their AVF by one year or
prior to a terminal event (death, transplant, access abandonment,
or loss to follow-up) were categorized as not having successful
use. For patients with prevalent hemodialysis, the one-year time
window started on the day of their surgery. For patients not yet
receiving hemodialysis at the time of AVF creation and who did
not start hemodialysis within one-year, successful use was defined
as 2-needle cannulation for all prescribed hemodialysis for a
consecutive 90-day period starting within 6 weeks of hemodialysis
initiation. Similar approaches have been implemented in prior
analyses of AVF data®.

Covariate selection

Covariates were shared by all predictive modeling processes, and
included age, sex, race, ethnicity, body mass index, smoking

npj Digital Medicine (2022) 160

status, medical comorbidities, hemodialysis status at the time of
AVF creation, CVC history, CKD etiology, baseline vein and artery
diameter measured in the operating room after induction of
anesthesia, AVF location, anesthesia modality, anastomotic suture
technique, statin use, antithrombotic use, and enrolling site
volume. Ultrasound data from the 4-6 week visit was chosen for
predictive modeling because of parallels with prior work examin-
ing prediction of unassisted AVF use, clinical relevance, and the
complexity of including both 4-6 week and 12-week data
together in models. Ultrasound covariates included cephalic vein
diameter, AVF flow volume, and the presence or absence of >50%
luminal stenosis. Analysis was restricted to patients with complete
4-6 week ultrasound data as described above. Covariate missing-
ness was accounted for using K-nearest neighbors imputation'”.

Statistical analysis

In reporting descriptive statistics, categorical variables were
summarized using frequency with percentage. Continuous vari-
ables were reported as mean with standard deviation when
normally distributed, and median with interquartile range
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Table 3. Comparison of model performance in the hold-out testing dataset.
Model AUROC AUPRC Accuracy Sensitivity Specificity PPV NPV
Elastic Net 0.807 0.737 71.3% 56.4% 83.0% 72.1% 70.9%
Lasso 0.794 0.719 72.5% 66.7% 77.0% 69.3% 74.8%
Random Forest 0.791 0.699 69.1% 66.7% 71.0% 64.2% 73.2%
Logistic Regression 0.786 0.729 73.6% 66.7% 79.0% 71.2% 75.2%
Boosted Trees 0.779 0.697 70.2% 67.9% 72.0% 65.4% 74.2%
Pruned Tree 0.730 0.586 66.9% 62.8% 70.0% 62.0% 70.7%
UAB — — 65.2% 78.2% 55.0% 57.5% 76.4%
KDOQI — — 61.8% 23.1% 92.0% 69.2% 60.5%
Except AUROC (area under the receiver operating characteristic curve) and AUPRC (area under the precision-recall curve), all metrics were calculated using a
classification threshold of 0.5. PPV positive predictive value, PPV negative predictive value, UAB University of Alabama flow and diameter thresholds (=500 mL/
min and 24 mm). KDOQ! Kidney Disease Outcomes Quality Initiative flow and diameter thresholds (2600 mL/min and 26 mm).

otherwise. Unadjusted comparisons of ultrasound variables were
made using analysis of variance (ANOVA) followed by Tukey's test.
Paired data were compared using paired t-tests. Categorical data
were compared using Pearson’s Chi-squared tests. A two-tailed
alpha level of 0.05 was used. All analysis was performed using R
version 4.0.5 (https://cran.r-project.org/) and the packages tidy-
verse, tidymodels, glmnet, rpart, and ranger.

Modeling overview

To achieve our goal of building a predictive classification model,
we explored several modeling procedures each with its own
potential benefits and drawbacks. Modeling methods included
traditional logistic regression, penalized logistic regression using
Lasso, classification, and regression tree (CART) methods, and two
ensemble classification methods: random forest and XGBoost.
Each approach is distinct with differing potential benefits and
drawbacks; we sought to balance model complexity, flexibility,
and performance with interpretability and clinical usefulness.

Multivariable logistic regression is used as a “gold standard” in
classification problems. With several covariates used for modeling,
simple logistic regression can result in overfitting with bias in
coefficient estimation that leads to a drop in performance when
the model is used on external data. To address this issue,
penalized regression techniques use coefficient shrinkage to
reduce out-of-sample bias; Lasso is a popular technique due to
its ability to shrink coefficients to zero, acting as an empiric
variable selection method and leading to simpler final models'®,
Notably, the bias-variance tradeoff will always be a compromise
and overfitting cannot be eliminated, but penalization and cross-
validation techniques described here can mitigate overfitting
(particularly in smaller datasets).

The CART procedure is another traditional procedure for
classification, with the key benefit of flexibly producing a clinically
interpretable decision rule, but with a drawback of having
potentially unstable performance in external datasets even with
pruning methods'®. To overcome this issue, tree ensemble
methods like the random forest and XGBoost have been
developed with widespread adoption?®?'. Random forest and
XGboost are highly flexible and consider interactions between
variables with relatively low bias. Random forest grows thousands
of trees in a similar way to CART, but using random samples of
both variables and records which are then averaged over to
achieve a final model (a technique referred to as bootstrap
aggregating, or “bagging”). Similarly, XGBoost can build thousands
of trees, but additionally uses the error from each tree to reweight
samples selected for each subsequent tree (referred to as gradient
boosting), theoretically preferencing variables with the most
predictive performance and de-emphasizing meaningless vari-
ables. Variable importance can be examined through a variety of
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methods, but a deeper understanding of the relationships
between variables in ensemble techniques is challenging and
can lead to skepticism from clinicians due to lower interpretability.

Modeling details

All predictive modeling methods were built with a training,
hyperparameter tuning, and testing paradigm using a combina-
tion of baseline clinical characteristics and 4-6 week US
parameters described above. We performed a random 70/30
initial split into training and testing datasets prior to model
building, diagnostics, or data cleaning. Continuous variables were
preprocessed by centering (subtracting the average) and scaling
(dividing by the standard deviation) their distributions prior to
model fitting. A total of 5 missing values were imputed using K-
nearest-neighbors methodology (BMI, n=1; intraoperative vein
diameter, n = 2; intraoperative artery diameter, n=2)"". Models
were built using the training dataset, and hyperparameters were
tuned using grid search methods with nested 10-fold cross-
validation within the training dataset.

Our modeling approach started with simple logistic regression
including all covariates in a main-effects model. Next, a lasso
penalized logistic regression model was fit to empirically select
covariates most useful for prediction’. The regularization penalty
was chosen to select the most parsimonious model within one
standard error of the regularization penalty with the minimum 10-
fold cross-validated mean log-loss. Lasso was used for variable
selection for the refitting of a logistic regression model. Finally, an
elastic net model was fit using a regular grid search with 10 levels
and nested 10-fold cross-validation to tune both the regularization
penalty value and the elastic net mixing parameter®?, Variable
importance was calculated as the absolute value of the scaled
coefficients at the optimal regularization penalty.

A simple classification tree approach was also pursued with the
hopes of improving interpretability in the case that a simple and
useful decision tree could be identified’®. The tree model was
pruned by optimizing the complexity parameter and tree depth
using a regular grid search with 10 levels and nested 10-fold cross-
validation. Variable importance was calculated via the total Gini
impurity reduction method.

A random forest classification model was built with the goal of
increasing predictive performance at the cost of some interpret-
ability. Hyperparameters tuned included the number of covariates
for each attempted node split and the minimum node size.
Hyperparameters were tuned with a regular grid search with 10
levels and nested 10-fold cross-validation. All random forest
models were built with 1,000 trees. Variable importance was
calculated via the Gini impurity reduction method?%23,

A boosted tree model was built using the XGBoost method with
a logistic loss function?'. Tree depth, minimum node size, the
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learning rate, and the minimum loss reduction required to make a
further partition on a leaf node were tuned using nested 10-fold
cross-validation and a maximum entropy grid search containing
100 hyperparameter configurations. Variable importance was
calculated via the information gain method.

After hyperparameter tuning, the final models were re-fit on
the entire training dataset. The final model performance was
assessed on the prediction of the hold-out testing dataset. A
classification threshold of 0.5 was used for all models. Receiver
operating characteristic (ROC) curve plots, calibration plots, and
decision curve plots were constructed for each modeling
approach. Performance metrics of each modeling approach
were calculated, including the area under the ROC curve
(AUROC), area under the precision-recall curve (AUPRC), sensi-
tivity, specificity, accuracy, and logistic calibration slope and
intercept. The discriminative performance of each model was
compared to the performance of static threshold criteria
approximating the UAB (flow volume >500 mL/min and vein
diameter >4 mm) and KDOQI (flow volume >600 mL/min and
vein diameter >6 mm) ultrasound criteria. Decision curves were
plotted for each possible strategy for AVF use prediction across a
range of threshold probabilities?*.

Reporting summary

Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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