
nutrients

Article

Associations between Maternal Diet, Body Composition
and Gut Microbial Ecology in Pregnancy

Meghan L. Ruebel 1, Stephanie P. Gilley 1, Clark R. Sims 2,3 , Ying Zhong 2, Donald Turner 2,
Sree V. Chintapalli 2,3 , Brian D. Piccolo 2,3 , Aline Andres 2,3 and Kartik Shankar 1,*

����������
�������

Citation: Ruebel, M.L.; Gilley, S.P.;

Sims, C.R.; Zhong, Y.; Turner, D.;

Chintapalli, S.V.; Piccolo, B.D.;

Andres, A.; Shankar, K. Associations

between Maternal Diet, Body

Composition and Gut Microbial

Ecology in Pregnancy. Nutrients 2021,

13, 3295. https://doi.org/10.3390/

nu13093295

Academic Editor: Jesus Vioque

Received: 27 August 2021

Accepted: 17 September 2021

Published: 21 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Pediatrics, Section of Nutrition, Anschutz Medical Campus, School of Medicine,
University of Colorado, Aurora, CO 80045, USA; meghan.ruebel@cuanschutz.edu (M.L.R.);
stephanie.gilley@cuanschutz.edu (S.P.G.)

2 Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA; crsims@uams.edu (C.R.S.);
zhongying@uams.edu (Y.Z.); dturner@uams.edu (D.T.); svchintapalli@uams.edu (S.V.C.);
BDPiccolo@uams.edu (B.D.P.); AndresAline@uams.edu (A.A.)

3 Department of Pediatrics, Section of Developmental Nutrition, University of Arkansas for
Medical Sciences, Little Rock, AR 72205, USA

* Correspondence: Kartik.Shankar@cuanschutz.edu

Abstract: Maternal body composition, gestational weight gain (GWG) and diet quality influence
offspring obesity risk. While the gut microbiome is thought to play a crucial role, it is understudied
in pregnancy. Using a longitudinal pregnancy cohort, maternal anthropometrics, body composi-
tion, fecal microbiome and dietary intake were assessed at 12, 24 and 36 weeks of gestation. Fecal
samples (n = 101, 98 and 107, at each trimester, respectively) were utilized for microbiome analysis
via 16S rRNA amplicon sequencing. Data analysis included alpha- and beta-diversity measures
and assessment of compositional changes using MaAsLin2. Correlation analyses of serum metabolic
and anthropometric markers were performed against bacterial abundance and predicted functional
pathways. α-diversity was unaltered by pregnancy stage or maternal obesity status. Actinobacte-
ria, Lachnospiraceae, Akkermansia, Bifidobacterium, Streptococcus and Anaerotuncus abundances were
associated with gestation stage. Maternal obesity status was associated with increased abundance of
Lachnospiraceae, Bilophila, Dialister and Roseburia. Maternal BMI, fat mass, triglyceride and insulin
levels were positively associated with Bilophila. Correlations of bacterial abundance with diet intake
showed that Ruminococcus and Paraprevotella were associated with total fat and unsaturated fatty acid
intake, while Collinsella and Anaerostipes were associated with protein intake. While causal relation-
ships remain unclear, collectively, these findings indicate pregnancy- and maternal obesity-dependent
interactions between dietary factors and the maternal gut microbiome.

Keywords: diet; microbiome; obesity; pregnancy; adiposity; metabolic syndrome

1. Introduction

Maternal obesity prior to pregnancy is a leading risk factor for greater life-time risk of
obesity in children [1]. Findings from animal models unequivocally show that maternal
obesity (OB) and/or obesogenic diets during pregnancy persistently augment offspring
obesity risk. Women entering pregnancy with obesity are at greater risk for negative
obstetric and perinatal outcomes, and there is greater likelihood of their offspring being
large-at-birth and developing obesity later in life [2,3]. Multiple mechanisms have been
hypothesized to contribute to the transmission of obesity to the child, including epigenetic
changes and alterations in stem cells, in utero programming of nutrient utilization path-
ways, vertical transmission of the gut microbiome at birth and differences in human milk
composition [4–6]. While robust associative evidence between maternal obesity, excessive
gestational weight gain (GWG) and offspring obesity risk exists [7], recent evidence has
suggested that the mother’s diet quality can also impact offspring adiposity [8]. However,
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clinical studies to support and understand the mechanisms via which maternal dietary
composition impacts offspring obesity risk remain sparse.

Recent studies have demonstrated the importance of the gut microbiome in nutrient
absorption, weight maintenance and the development of metabolic dysfunction [9,10].
More specifically, microbiota changes have been associated with obesity and excessive
weight gain in adults [11,12]. The gut microbiome is continually shaped by a variety
of factors, including genetics, xenobiotics, including medications, and host health [6,13].
Additionally, diet and dietary patterns have been shown to dominantly influence micro-
bial diversity and affect host physiology [14]. During pregnancy, studies examining the
gut microbiome have also shown changes in gut microbiome diversity and composition,
although the results are conflicting [4,15–17]. Hence, studies are needed to clarify whether
pregnancy alters the maternal gut microbiome and whether these changes are influenced
by maternal health and dietary composition.

In the present study, we examined gut microbiome changes across pregnancy by
examining fecal samples at 12, 24 and 36 weeks of gestation. We also investigated the
effects of pre-pregnancy BMI by comparing women entering pregnancy at a normal weight
(NW: BMI 18.5–24.9 kg/m2) compared to overweight/obese (OW/OB: BMI >25 kg/m2),
and excessive GWG in pregnancy, controlling for maternal obesity status. Lastly, we
assessed the influence of maternal diet on the microbiome during gestation. Our results
suggest that microbial composition is altered by pregnancy status, pre-pregnancy BMI and
intake of dietary fats.

2. Materials and Methods
2.1. Study Design, Participants and Data Collection

Participants were enrolled as part of the Growing Life, Optimizing Wellness study
(GLOWING, ClinicalTrials.gov ID: NCT01131117) at the Arkansas Children’s Nutrition
Center. All participants were healthy, 2nd-parity women enrolled either pre-conception
or at less than 10 weeks of gestation. Participants were recruited and grouped by pre-
pregnancy body mass index (BMI) into either normal weight (NW; BMI 18.5–24.9) or
overweight/obese (OW/OB; BMI 25–35). All procedures were approved by the Insti-
tutional Review Board at the University of Arkansas for Medical Sciences, and written
informed consent was obtained prior to enrollment from all participants. Self-reported race,
age, education, income, date of last menstrual period and estimated delivery date were
obtained at enrollment. Exclusion criteria included preexisting medical conditions, use of
fertility treatments, gestational diabetes, preeclampsia and other pregnancy complications.
Data were collected at 12, 24 and 36 weeks of gestation for weight, metabolic/endocrine
assessments, stool samples and dietary intake. Stool samples were collected for microbiome
analyses as described below. We collected self-reported antibiotic and probiotic use from
participants at each visit, documenting whether there was any use between their last visit
and the current one (6-week duration between visits; duration of use was not documented).
Approximately 12% of participants took antibiotics and 2% consumed probiotics over the
duration of pregnancy. The participant flow diagram is shown in Figure 1.

2.2. Anthropometric and Body Composition Measurements

Body weight was measured at enrollment, 12 weeks and every 6 weeks thereafter. The
difference between body weight at 12 and 36 weeks was used to compute gestational weight.
Adherence to the Institute of Medicine (IOM) GWG guidelines was adjusted to reflect the
last measure of weight at gestation week 36. All weights were measured to the nearest
0.1 kg on a tared scale (Perspective Enterprises, Portage, MI, USA) at the research facility.
Standing height was also obtained using a standard wall-mounted stadiometer to the
nearest 0.1 cm (Tanita Corp., Tokyo, Japan) at enrollment. Body composition measurements
of fat mass (FM, kg) and fat free mass (FFM, kg) were assessed at enrollment using whole-
body air displacement plethysmograph (BodPod, Cosmed, Concord, CA, USA) following
standardized procedures. %FM was calculated by the following equation: (FM [kg]/body
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mass [kg] × 100%). Assays for circulating glucose, insulin, triglycerides (TG), non-esterified
fatty acids (NEFA), HDL and LDL cholesterol at each trimester were performed in plasma
using a clinical analyzer (Randox Laboratories, WV, USA).
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Figure 1. Participant flow diagram depicting subjects included in the current analyses.

2.3. Dietary Analysis

Dietary intakes were assessed using 3-day food records analyzed with the Nutrient
Data System for Research software (NDSR; Nutrition Coordinating Center; University of
Minnesota, MN, USA) at 12, 24 and 36 weeks of pregnancy. Daily dietary nutrient intakes
were averaged over the 3 days, which included a weekend day for each time point. For
simplicity, overall dietary composition over pregnancy was derived by averaging dietary
data from all three data points (12, 24 and 36 week) for each participant.
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2.4. Microbiome Analysis via 16S rRNA Amplicon Sequencing

Stool samples were self-collected by participants either at the research visit or within
7 days prior to their 12-, 24- and 36-week visits in a sterile cup. Participants were instructed
to freeze samples immediately after collection and to transport the sample on ice to the
research center. Samples were later stored in the research laboratory at −70 ◦C until
processing. Bacterial DNA from ~100 mg of stool was isolated using the QIAamp Fast
DNA stool mini kit (Qiagen; Hilden, Germany), including a bead-beating step (Precellys
homogenizer). Fifty nanograms of genomic DNA was used for amplification of the V4
variable region of the 16S rRNA gene using 515F/806R primers. Dual-indexed forward and
reverse primers were used as described by Kozich et al. [18] to accommodate multiplexing
of up to 384 samples per run. Paired-end sequencing (2X 250 bp) of pooled amplicons was
performed on a MiSeq Instrument (Illumina; San Diego, CA, USA) using ~30% PhiX DNA.

2.5. Microbial Ecology Data Analysis

We utilized QIIME (v1.9.1) and in-house scripts to process and filter high-quality
reads following previously established methods [19]. PEAR was used to stitch paired reads
and Phred quality scores were used to further filter assembled reads [20]. USEARCH61
was used to remove chimeric reads [21]. Filtered reads (mean counts per sample = 37,971)
were demultiplexed within QIIME, and samples with less than 5000 reads were excluded
from further analysis. We clustered sequences into operational taxonomical units (OTUs,
based on >97% identity) with UCLUST. OTU picking was performed using the open-
reference method, which involved clustering reads against a reference sequence collection
and performing de novo OTU picking on the reads that failed to align to any known
reference sequence in the database [22]. Resulting OTU tables were checked for mislabeled
sequences to eliminate any erroneous mislabeling [23]. Representative sequences were
further aligned using PyNAST with the Greengenes core-set alignment template [24].
The default (FASTTREE) method in QIIME was performed for the construction of the
phylogenetic tree [25]. Ecological diversity measures and identification of group differences
in bacterial taxonomic abundance are described below.

All statistical analyses and visualizations were performed in R (version 4.05). The
microbiota counts, sample metadata and taxonomy information were imported using the
phyloseq package [26]. Preprocessing included retaining taxa with 5 counts in a minimum
of 5% of samples (using the core function in the microbiome package), agglomerating at each
taxonomic rank and generating taxonomic abundance. Stacked bar plots (for individual
samples and group means), iris plots and heatmaps of most abundant taxa were generated
using the vegan, microeco and micoviz packages [27–29]. Derivations of alpha-diversity
indices (Chao1, Shannon, Simpson and Fisher indices) at the genus level were done using
vegan and microeco packages. Group differences in α-diversity measures were assessed
by ANOVA or t-test using the compareGroups package, including pair-wise comparisons
in the case of more than two groups [30]. Repeated-measures ANOVA was used to assess
longitudinal changes across pregnancy for subjects with samples in all trimesters. Unsuper-
vised principal components analysis (PCA) of genus-level taxa and biplot representation
was done using the microviz package following centered-log ratio transformation [29].
Between-sample diversity (β-diversity) was assessed using Jaccard similarity or Aitchison
distance and visualized using non-metric multi-dimensional scaling (NMDS) ordination.
Group differences in β-diversity were assessed on the dissimilarity matrix using permuta-
tional multivariate analysis of the variance (PERMANOVA) with 999 permutations and via
comparing the distance between groups using the Wilcox test or ANOVA.

Associations of genus-level taxa abundance and circulating metabolic markers (glu-
cose, insulin, HDL, LDL cholesterol, triglycerides, NEFA) and maternal early pregnancy
BMI and fat mass (measured via BODPOD) were assessed using the microeco package [28].
Distance-based redundancy analysis (db-RDA) Bray–Cutis distances were used to sum-
marize relationships between microbial taxa abundance and metabolic traits. db-RDA is
a method for carrying out constrained ordinations on data using non-Euclidean distance
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measures. For correlation clustering of genera with metabolic variables, we first extracted a
set of differential features using random forest, which were used for correlation using Spear-
man correlation. Correlation-based networks were constructed using the trans_network
function in the microeco package [27]. Network attributes including nodes, modules and
eigenvalues were calculated using the cal_module and cal_eigen functions. Associations
of modules with metabolic variables were then performed using Spearman correlations
with the cal_cor function in microeco. Functional analysis of genus-level microbial taxa was
performed using the FAPROTAX database [31]. Correlations of functional pathways with
metabolic traits were performed using Spearman correlation and visualized as heatmaps.
Multivariable associations between groups and taxonomic abundance were assessed us-
ing the MaAsLin2 package [32], adjusting for covariates as necessary. The main group
effects (maternal obesity status, IOM weight gain category or trimester of pregnancy) were
considered fixed effects, whereas participant identifier, stage of pregnancy and obesity
status were included as random effects in the multivariable models, depending on the
main effects examined. Before analysis with MaAsLin2, taxa were agglomerated to either
family or genus levels and considered separately. The linear model (lm) function was
utilized on total sum scaled (TSS) normalized data with minimum prevalence (5%) and
standardization of covariates to z scores. For analysis of changes over pregnancy, samples
at 12 week (trimester 1, T1) were assigned as reference. All p-values were false discovery
rate-adjusted (Benjamini–Hochberg, q-values) and features with q < 0.25 were considered
significant. The OTU relative abundance is presented as the percent relative abundance
when described in the text. Associations between genus-level taxonomic abundance and
selected dietary variables were assessed using Spearman’s correlations using the corrplot
package. Correlations were considered significant at nominal p < 0.05 and not corrected for
multiple testing due to the exploratory nature of the analyses.

3. Results
3.1. Participant Characteristics

Overall, the analyses included 140 pregnant women grouped by early pregnancy
BMI into either NW (n = 60) or OW/OB (n = 80) groups (Table 1). The average age of
participants was 29 years and 87% identified as Caucasian. As anticipated by the study
design, there were significant differences in BMI and fat mass between OW/OB and NW
women. In this cohort, most women in the OW/OB category were overweight (74%;
average BMI = 27.41 kg/m2) and only 26% were women with obesity (average BMI =
32.5 kg/m2). More women in the OW/OB group had GWG above IOM guidelines (58%)
compared to in the NW group (22%) (Table 1).

3.2. Alpha-Diversity across Pregnancy

To examine changes in the maternal gut microbiome across pregnancy, we assessed
data at 12 weeks (T1), 24 weeks (T2) and 36 weeks (T3) of gestation. We calculated Chao1,
Shannon, Simpson and Fisher indices of alpha-diversity. There were no significant effects
across trimester for any measures of α-diversity (p > 0.05, Table 2). When restricted
to subjects with longitudinal data available at all three trimesters (n = 56), there was a
significant effect of pregnancy on evenness (Simpson index; p = 0.019), with a decrease
between T1 and T2 using repeated-measures ANOVA. Other measures of α-diversity were
not found to be different.
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Table 1. Cohort characteristics.

All Normal Weight
(BMI <25 kg/m2)

Overweight/Obese
(BMI ≥ 25 kg/m2)

p-value
(NW vs. OW/OB)

N (%) 140 60 (42.9) 80 (57.1)
Age at enrollment (years) 29.46 ± 0.32 29.45 ± 0.51 29.47 ± 0.41 0.970
Race
Caucasian 122 (87.1) 52 (86.7) 70 (87.5)
Non-Caucasian 18 (12.9) 8 (13.3) 10 (12.5)
Body Mass Index (kg/m2) 25.91 ± 0.34 22.14 ± 0.22 28.73 ± 0.31 <0.0001
Fat Mass (%) 25.47 ± 0.79 17.32 ± 0.57 31.58 ± 0.80 <0.0001
Gestational Weight Gain (kg) 12.01 ± 0.38 12.81 ± 0.38 11.41 ± 0.58 0.047
IOM Weight Gain Category <0.0001
Inadequate 19 (13.7) 10 (16.9) 9 (11.3)
Adequate 61 (43.9) 36 (61.0) 25 (31.3)
Excessive 59 (42.4) 13 (22.0) 46 (57.5)

Data presented as counts (%) or mean ± SEM. Group differences were determined by t-test for continuous variables with a significance
level of p < 0.05.

Table 2. Alpha-diversity indices assessed over pregnancy trimesters.

Pregnancy Stage T1 T2 T3 p-Value Overall p.T1 vs. T2 p.T1 vs. T3 p.T2 vs. T3

n n = 101 n = 98 n = 107
Chao1 40.1 (5.46) 40.9 (5.92) 40.4 (5.55) 0.641 0.615 0.915 0.844
Shannon 2.02 (0.35) 2.00 (0.37) 1.96 (0.39) 0.61 0.938 0.59 0.805
Inverse Simpson 4.64 (1.96) 4.55 (1.87) 4.34 (1.78) 0.498 0.929 0.481 0.718
Fisher 4.38 (0.66) 4.43 (0.71) 4.37 (0.64) 0.767 0.829 0.996 0.777

Values are means (SD) for each measure of alpha-diversity calculated at the genus level. Overall p-values calculated by one-way ANOVA.

3.3. Microbiota Composition and Abundance across Pregnancy

The distribution of bacterial taxa at the phylum level at each trimester (Figure 2A)
showed that the maternal gut microbiome is dominated by Bacteroidetes and Firmicutes.
At the family level, Bacteroidaceae, Ruminococcaceae and Lachnospiraceae showed the highest
abundance, with broadly conserved patterns across pregnancy (Figure 2B). Unsupervised
PCA analysis and NMDS ordination of Jaccard similarity showed no significant differences
in global genus-level composition over pregnancy. These were assessed via comparisons
of the main principal components across groups (for PCA) and PERMAOVA for Jaccard
similarities (Figure 2C,D). However, pairwise comparisons of each trimester showed
significant differences between trimester 1 and others (2 and 3), but not between trimesters
2 and 3 (Figure 2E,F). We also analyzed β-diversity comparing antibiotic and probiotic use
versus no use during pregnancy and found no significant differences (data not shown).
Exclusion of participants who used antibiotics or probiotics did not substantially alter the
results; therefore, we included these participants in all analyses.

We further employed MaAsLin2 to examine changes in specific taxa over pregnancy.
At the phylum, family and genus levels, evaluating the effects of pregnancy stage showed
significant changes in phylum Verrucomicrobia, with a marked decrease in trimester 3
(Figure 3A). Levels of Desulfovibronaceae, Bifidobacteraceae and Streptococcaceae increased over
pregnancy, while Lachnospiraceae family abundance decreased over pregnancy. Consistent
with these findings, levels of genus Akkermansia decreased between trimesters 2 and 3,
while levels of Bilophila, Bifidobacterium and Streptococcus increased over the course of
pregnancy (Figure 3B–J). Analysis of only subjects with longitudinal data further revealed
a change across trimesters in the abundance of phyla Actinobacteria and Verrucomicrobia
and genus Lachnospira (p < 0.05, data not shown).
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Figure 3. Violin plots showing levels of differentially expressed taxa over pregnancy. (A) Phylum Verrucomicrobia,
(B) family Desulfovibrionaceae, (C) family Bifidobateriaceae, (D) family Streptococcaceae, (E) family Lachnospiraceae and (F–J)
genera Akkermansia, Bilophila, Bifidobacterium, Streptococcus and Anaerotruncus. Differential abundance was assessed using
MaAsLin2. Sample sizes across trimesters: T1 (n = 101), T2 (n = 98) and T3 (n = 107). All main effects of pregnancy were p <
0.05 (q < 0.2). Pairwise p-values were derived using Wilcoxon test.
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3.4. Effects of Maternal Obesity on Microbiota Composition and Abundance

To evaluate the effects of maternal OW/OB status on α-diversity, we examined mea-
sures of richness and evenness in all pregnancy stages combined and at each trimester.
Maternal obesity status was not associated with changes in α-diversity measures between
groups (Table 3).

Table 3. Alpha-diversity indices associated with maternal obesity status.

NW Overweight/Obese p-Value

Chao1 40.7 (5.23) 40.5 (5.77) 0.81
Shannon 2.00 (0.34) 1.99 (0.38) 0.766
Inverse Simpson 4.46 (1.82) 4.58 (1.95) 0.576
Fisher 4.38 (0.58) 4.38 (0.71) 0.949

Values are means (SD) for each measure of alpha-diversity calculated at the genus level. Overall p-values
calculated by Wilcoxon test.

Taxonomic abundance analyses showed that the top five families, Bacteroidaceae, Ru-
minococcaceae, Lachnospiraceae, Rikenellaceae and Veillonellaceae, accounted for 75% of all
bacteria in both groups (Figure 4A,B). Unsupervised PCA and NMDS ordination of Jac-
card similarity values (β-diversity) showed significant differences in global genus-level
composition between NW and OW/OB groups (PERMANOVA p < 0.05) (Figure 4C,D).
Boxplots of Jaccard distances between NW and OW/OB groups also showed significant
differences (Figure 4E).
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the OW/OB group, while levels of Lachnospiraceae were increased in subjects that were 
OW/OB compared to NW (p < 0.005) (Figure 5A,B). Genus-level analysis showed that ma-
ternal overweight was associated with increased levels of Biolphila, Roseburia and Dialister 
and decreased levels of Phascolarctobacterium (Figure 5C–F). 

Figure 4. Maternal obesity status and gut microbiome composition. (A,B) Family-level composition of gut microbiome
in women with either normal weight (NW) or overweight/obese (OW/OB) BMI. Group differences were assessed via
Student’s t-test. (C) Bi-plot representation of principal components analysis of genus-level taxa. (D) Non-metric dimensional
scaling (NMDS) ordination of Jaccard similarities of samples from both NW and OW/OB groups. (E) Boxplots of Jaccard
distances by group. Group differences were determined by Wilcoxon tests or via PERMANOVA (999 permutations) for
beta-diversity. **** indicates p < 0.01.
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We next assessed the effects of maternal OW/OB status on family- and genus-level
bacterial abundance. At the family level, the abundance of Rikenellaceae was decreased in the
OW/OB group, while levels of Lachnospiraceae were increased in subjects that were OW/OB
compared to NW (p < 0.005) (Figure 5A,B). Genus-level analysis showed that maternal
overweight was associated with increased levels of Biolphila, Roseburia and Dialister and
decreased levels of Phascolarctobacterium (Figure 5C–F).
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Figure 5. Maternal microbiome changes associated with obesity status. (A) Violin plots showing
levels of differentially expressed bacteria associated with maternal OW/OB status. (A) Family
Rickenellaceae, (B) family Lachnospiraceae and (C–F) genera Bilophila, Roseburia, Phascolarctobacterium
and Dialester. Statistical differences between the groups were determined by MaAsLin2, adjusting
for pregnancy trimester. All of the tests were corrected for multiple comparisons using the false
discovery rate (FDR) (q < 0.2). (n = 132 and 174 in NW and OW/OB groups).

Distance-based redundancy analysis of genus-level taxonomic abundance and metabolic
and adiposity variables (maternal BMI, fat mass, serum glucose, insulin, TG, HDL and LDL
cholesterol) showed the alignment of maternal BMI and fat mass with the Dialister genus,
and Akkermansia and Blautia abundance with serum glucose levels (Figure 6A). Correlation
analysis with metabolic variables further indicated a positive correlation between maternal
fat mass, BMI, insulin and TG levels with genus Bilophila and a positive association of
genus Ruminococcus with serum LDL levels. Phascolarctobacterium levels were negatively
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associated with maternal BMI and fat mass (Figure 6B). Network analysis of bacterial
taxa showed six associated modules (Figure 6D). Correlation of modules with metabolic
variables showed a strong positive association between module 5 (enriched for Prevotella,
Aggregatibacter and Hemophilus) and serum insulin values (Figure 6C). Associations between
Bilophila abundance and early pregnancy maternal BMI, fat mass and serum triglycerides
are presented in Figure 6E,F. Predicted microbial functions were also correlated with
maternal metabolic variables (Figure 6H). These analyses showed a positive association
between nitrogen/nitrate respiration and maternal BMI and fat mass. Serum triglyceride
levels were negatively associated with fumarate respiration and positively associated with
anaerobic chemoheterotrophy. A high-resolution version of this figure is also included in
the Supplementary Materials (Figure S1).Nutrients 2021, 13, x FOR PEER REVIEW 11 of 18 
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Figure 6. Associations between maternal microbiome and metabolic and anthropometric markers. (A) Distance-based
redundancy analysis (db-RDA) of bacterial abundance and associations with metabolic and anthropometric markers.
Bray–Curtis distances were measured using genus-level abundance. Maternal BMI and fat mass were measured in early
pregnancy (< 12 weeks). Serum parameters were assessed at each trimester. (B) Hierarchical clustering of correlations
between top 10 differential genera and metabolic markers. For correlation heatmaps, red to blue spectrum denotes positive
to negative associations, respectively. (C,D) Correlation-based network and associations between network modules and
metabolic markers. Scatterplots showing abundance of genus Bilophila and (E) maternal BMI, (F) maternal fat mass and
(G) triglyceride levels. (H) Correlation between inferred bacterial function abundance and metabolic markers. ** indicates
p < 0.001; * indicates p < 0.05.

3.5. Impact of Diet on Maternal Gut Microbiome in Pregnancy

To better understand the relationship between diet and the gut microbiome in preg-
nancy, we examined associations with α-diversity and genus-level abundance. Diet records
were analyzed using NDSR software and averaged over pregnancy for participants with
complete data. Genus-level abundances were also averaged over pregnancy in participants
who provided stool samples during all three trimesters. Examination of dietary intake
variables between NW and OW/OB groups showed no major differences. Spearman
correlation of α-diversity measures and dietary intake of specific nutrients revealed that
saturated fatty acid (SFA) intake was positively correlated with the Simpson index in
OW/OB subjects (r = 0.50, p = 0.004, Figure 7A). Likewise, within OW/OB participants,
animal protein intake was positively correlated with the Shannon index (r = 0.41, p = 0.02,
Figure 7A). Finally, we observed several significant associations between genus-level
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abundance and dietary intake in both NW and OW/OB women (Figure 7B). Notably, in
NW subjects, Ruminococcus showed significant positive associations with energy, fat, SFA,
monounsaturated fatty acid (MUFA) and polyunsaturated fatty acid (PUFA) intake. In
addition, the abundance of Paraprevotella was negatively associated with total energy, total
fat and MUFA intake. Collinsella was positively associated with both total protein and
animal protein intake, and Anaerostipes was positively associated with total protein intake.
In the OW/OB group, Sutterella was negatively associated with total fat, SFA and PUFA
intake, and the abundance of Veillonella was positively associated with dietary fiber, total
protein and vegetable protein intake.
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Figure 7. Associations between maternal diet and microbiome in pregnancy. (A) Associations
between α-diversity indices and saturated fat intake and animal protein intake in pregnant women.
Dietary intake and genus-level abundance were averaged across all trimesters from women who had
both datasets in all three trimesters (NW: n = 25, OW/OB: n = 31). Nominal p-values without multiple
testing correction are shown. (B) Correlation matrix showing significant associations (p < 0.05)
between dietary intake variables and genus-level abundance. Yellow and blue denote positive and
negative associations, respectively.

3.6. Effects of Gestational Weight Gain on Microbiota Composition and Abundance

Since excessive gestational weight gain (exGWG) is closely associated with detrimen-
tal outcomes for mother and child, we examined how exGWG altered gut microbiota
composition and/or abundance when controlling for BMI. We classified GWG in women
based on the IOM guidelines [33]. For this analysis, we investigated whether exGWG
compared to adequate weight gain, independent of BMI, altered the gut microbiome. We
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found no differences in α- or β-diversity when comparing adequate versus excessive GWG
(data not shown). However, at the family and genus level, exGWG was associated with
decreased abundance of Prevotella (genus), Dialister (genus), Prevotellaceae (family) and
Coriobacteriaceae (family) at trimester 3 (T3, nominal p < 0.05, Figure 8).
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Figure 8. Gestational weight gain effects on bacterial abundance. (A–D) Genus- and family-level abundance of bacteria at
trimester 3 (T3) of women with either adequate or excessive weight gain. Statistical differences between the groups were
assessed using linear modeling, adjusting for early pregnancy BMI. Significance was set at p < 0.05, using nominal p-values.
No bacterial taxa showed significance following multiple testing correction. Sample sizes included for analyses (adequate
weight gain: n = 50, excessive GWG: n = 42). ** indicates p < 0.01.

3.7. Discussion

A multitude of factors influence the development of obesity and related co-morbidities.
Of these, maternal diet and body composition are important determinants of the risk of
obesity in childhood and later in life. Among the hypothesized mechanisms involved in
the intergenerational transmission of obesity risk is a persistent change in the offspring
microbiome. Nonetheless, the impact of obesity on the maternal gut microbiome in human
studies is not exhaustively known. Several novel findings are evident from the present
study: (1) pregnancy stage was associated with clear alterations in specific gut microbial
taxa and changes in diversity, especially between the first and third trimester; (2) pre-
pregnancy obesity has a robust effect on microbial diversity and the levels of important
taxa; and (3) maternal diet composition and metabolic biomarkers are associated with
altered α-diversity and bacterial abundances. These findings represent a comprehensive
analysis of the associations between maternal diet and microbial patterns in pregnancy.



Nutrients 2021, 13, 3295 13 of 17

An important aspect of the present experimental design is the collection of samples
during all three trimesters, permitting temporal analysis. Previous work focused on either
early/late pregnancy, delivery or post-partum [15,16,34]. Due to variations in sample
collection, timing and methods of microbial analyses, prior data are conflicting on whether
pregnancy alters the diversity measures of the microbiome. Our findings indicate that while
pregnancy stage did not substantially influence α-diversity, β-diversity measures were
altered in the latter part of pregnancy. Our study only included mothers of second parity.
The rationale for including only second-parity mothers was based on limiting variation in
neonatal parameters associated with parity and to provide greater homogeneity among
participants. Additionally, specific microbial abundances were altered across trimesters.
Specifically, we identified decreases in Akkermansia and Lachinospiraceae, and increased
Actinobacteria and Streptococcus abundance across pregnancy. These findings are consistent
with previous reports of microbiome changes during pregnancy [15,35]. A recent study
of pregnant women in Southern China analyzed the gut microbiome profiles of 1479
women along with 132 host-related meta-variables [17]. Consistent with our findings,
this study found a greater effect size of maternal pre-pregnancy weight/BMI relative
to gestational stage on the microbiome. Moreover, the findings from this cohort also
indicated no changes with α-diversity measures over pregnancy, but significant alterations
in specific taxa. Consistent with our observations, the abundances of Lachnospiraceae,
Akkermansia and Streptococcus were decreased over gestation. Given the differences in
sample size, the previous study was significantly more powered to detect smaller changes.
The functional relevance of these specific alterations during pregnancy remains unclear.
However, a number of studies have indicated links between lipid metabolism, insulin
sensitivity and gut health markers and the abundance of Akkermansia and Lachnospiraceae
family members. Since pregnancy is associated with robust changes in insulin sensitivity
and lipid metabolism, including serum triglyceride levels, interactions between these
processes are a possibility. Along these lines, the transfer of microbiota from late pregnancy
into germ-free mice does diminish insulin sensitivity [15].

Obesity status was associated with robust changes in the microbiome during preg-
nancy. Similar to our findings, prior studies showed decreases in Lachinospiraceae in the
context of obesity, diabetes or excess gestational weight gain [4,36]. Clinical studies exam-
ining the effects of pregnancy on Verrucomicrobia are limited, although it was previously
shown to be decreased in obese individuals [37]. The gut microbiome plays a key role in
body weight and metabolic regulation by impacting nutrient absorption, energy balance
and appetite [34]. Mouse models of obesity (using both genetic and diet-induced obesity)
show robust and reproducible changes in the gut microbiome. However, data from human
studies are far more equivocal. Indeed, previous studies have shown that the large interindi-
vidual variation present in the human microbiome contributes to the much more modest
differences observed in human obesity [38,39]. Recent studies suggest that maternal body
weight prior to pregnancy has a measurable impact on the microbiome [17]. In our study,
maternal weight status was associated with changes in β-diversity in pregnancy. In line
with previous studies, maternal OW/OB status was associated with greater Lachnospiraceae,
including genus Roseburia [17]. Likewise, in a study of 1914 Chinese adults, Roseburia
among other genera was discriminative of obesity status [40]. In another study of weight
loss in predominantly female subjects, greater Dialister and lower Phascolarctobacterium
levels were associated with a lack of weight loss in individuals with obesity [41]. Abun-
dance of Phascolarctobacterium and Dialister has been associated with insulin sensitivity
(positively and negatively, respectively) in individuals with obesity, as measured by the
hyperinsulinemic–euglycemic clamp technique [42]. Another notable alteration associated
with maternal obesity status was increased levels of the genus Bilophila. Bilophila levels
which were also strongly associated with maternal BMI, fat mass, insulin and triglyceride
levels. The genus Bilophila contains one known species, B. wadsworthia, which is an anaer-
obic, asacchrolytic, sulfite-reducing, bile resistant bacillus [43]. Bilophila is considered to
be a pathobiont that expands in the presence of dietary lipids and aggravates metabolic
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syndrome and intestinal inflammation in mice [44,45]. Diets high in fats reproducibly
increase the abundance of Bilophila and are associated with increased bile acids, as does
intake of taurocholic acid [46,47]. Short-term feeding studies in humans also indicate that
animal-based diets increase the abundance of Bilophila and other bile-resistant bacteria [48].
In mice, taurine conjugation of hepatic bile acids increases the availability of organic sulfur,
which promotes the abundance of B. wadsworthia. A recent report also showed that in
women who developed intrahepatic cholestasis during pregnancy (ICP), greater total bile
acids was associated with greater Bilophila in the gut microbiome [49]. Overall, maternal
obesity may be associated with a combination of dietary fat intake and dysregulation of
bile acid metabolism, which may contribute to the enrichment of Bilophila.

A salient feature of the present findings is the careful consideration of maternal diet
during pregnancy. Despite the wide recognition of the predominant influence of diet
on the gut microbiome, no studies to date have longitudinally assessed maternal dietary
patterns along with the gut microbiome during pregnancy. Identifying dietary components
that associate with the gut microbiome in pregnancy is critical, as a number of dietary
intervention strategies to mitigate weight gain and improve metabolic health in pregnant
women have been proposed. Two noteworthy observations are evident from the present
work. First, maternal obesity modifies the associations between dietary components and
the microbiome. Second, maternal obesity and diet influence distinct subsets of microbial
taxa. One notable change in women with NW was with the abundance of Ruminococci,
which were positively associated with fat intake, with PUFA intake showing the strongest
correlation. Similarly, previous studies have shown increased abundance of Ruminococcus
with omega-3 (PUFA) supplementation as well as with animal protein intake [48,50].
Pregnant women who had diets high in plant-rich foods and fatty acids, specifically PUFA,
had a higher abundance of Ruminococcus [51]. The results from our study suggest that
PUFA intake may contribute to greater Ruminococcus abundance in women with normal
weight. We also identified Collinsella to be positively associated with total protein and
animal protein intake in women with NW. Collinsella has previously been shown to have a
negative correlation with dietary fiber [14] and a positive correlation with dietary fat [52].
Although there are limited data suggesting a relationship between dietary protein intake
and Collinsella, diets high in animal protein typically have higher fat intake. Finally, in NW
subjects, we observed negative associations between Paraprevotella and total fat, MUFA
and cholesterol intake, which has been previously shown to be negatively associated with
serum triglycerides and LDL cholesterol [53]. We also noted associations between microbial
abundance and dietary intake in women with OW/OB BMI that were not present in NW
women. Sutterella, which has been found to be negatively associated with obesity in adults
and pregnant women [54,55], was negatively associated with total fat, saturated fat and
PUFA intake in women with OW/OB. Veillonella was positively associated with dietary
fiber, total protein and vegetable/plant-based protein. The underlying drivers of these
associations specifically in overweight individuals is not clear. However, differences in
dietary host metabolism, dietary patterns and the levels of processed foods may contribute
to these differences.

The present study is not without limitations. Women in this study were generally
healthy, with the majority of women having a BMI in the overweight rather than obese
category. Therefore, greater differences within the gut microbiome may be more likely to be
observed in women who have more severe obesity and metabolic dysregulation. Women in
the current report were also devoid of gestational diabetes, which may be associated with
more robust changes in gut microbiota. Our diet analysis averaged individual diets over
all three trimesters of pregnancy due to the small sample sizes. This may have diminished
changes in the dietary intake of specific nutrients over pregnancy. Our data still provide
evidence that dietary intake during pregnancy is associated with gut microbiome profiles
and should be studied more extensively. Many differences in the present report were only
nominally significant and did not pass multiple testing corrections, and hence should be
interpreted with caution. Lastly, since 16S rRNA amplicon sequencing does not allow for
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species-level resolution, the present analyses reflect a broad view of the microbiome and
leave further room for more granular analyses.

In conclusion, our findings indicate pregnancy- and maternal obesity-dependent
interactions and dietary factors in the maternal microbiome during gestation. Dietary
intake during pregnancy is associated with α-diversity indices and genus abundance
levels. More specifically, our findings point to a robust influence of maternal weight status,
dietary fats, fatty acids and protein type on the abundance of bacteria associated with
gut inflammation, obesity and metabolic function. These findings are consistent with the
growing consensus that dietary interventions during pregnancy could in part mediate
their beneficial effects by modulating the maternal gut microbiome and potentially impact
offspring health.
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