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Abstract: The demand for non-laboratory and long-term EEG acquisition in scientific and clinical
applications has put forward new requirements for wearable EEG devices. In this paper, a new
wearable frontal EEG device called Mindeep was proposed. A signal quality study was then con-
ducted, which included simulated signal tests and signal quality comparison experiments. Simulated
signals with different frequencies and amplitudes were used to test the stability of Mindeep’s circuit,
and the high correlation coefficients (>0.9) proved that Mindeep has a stable and reliable hardware
circuit. The signal quality comparison experiment, between Mindeep and the gold standard device,
Neuroscan, included three tasks: (1) resting; (2) auditory oddball; and (3) attention. In the resting
state, the average normalized cross-correlation coefficients between EEG signals recorded by the
two devices was around 0.72 ± 0.02, Berger effect was observed (p < 0.01), and the comparison
results in the time and frequency domain illustrated the ability of Mindeep to record high-quality
EEG signals. The significant differences between high tone and low tone in auditory event-related
potential collected by Mindeep was observed in N2 and P2. The attention recognition accuracy of
Mindeep achieved 71.12% and 74.76% based on EEG features and the XGBoost model in the two
attention tasks, respectively, which were higher than that of Neuroscan (70.19% and 72.80%). The
results validated the performance of Mindeep as a prefrontal EEG recording device, which has a wide
range of potential applications in audiology, cognitive neuroscience, and daily requirements.

Keywords: wearable; EEG; signal quality; rest; ERP; attention

1. Introduction

Advances in wearable EEG monitoring technology introduce new opportunities for
EEG collection outside the laboratory and long-term monitoring in research and clinical
areas [1]. Any newly proposed wearable device requires rigorous verification, especially
for clinical applications.

According to the wearable EEG research in the past 10 years, the application of
wearable EEG mainly focuses on emotion, fatigue, sleep, rehabilitation training, and
disease detection (e.g., epilepsy, depression and stress, etc.) [1]. The accuracy of the
portable EEG device B-Alert x10 (Advanced Brain Monitoring, ABM) [2] and in-ear EEG
in emotional arousal have been shown to be 75.00% and 72.89%, and 71.21% and 71.07%
in valence, respectively [3,4]. Hwang [5] et al. used a wearable EEG to measure the
emotional state of workers during construction tasks, and the results proved that wearable
EEG features were correlated with cortisol and can be used to reflect the emotional state.
In 2011, Looney [6] et al. proposed an ear-EEG device. Then, in the five-level sleep
stage prediction experiment, the consistency between ear-EEG and the gold standard
polysomnography device reached 74.1%, proving that the wearable EEG device can be
used for sleep monitoring [7,8]. New wearable EEG devices, including Epitel Epilog [9],

Sensors 2022, 22, 1898. https://doi.org/10.3390/s22051898 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22051898
https://doi.org/10.3390/s22051898
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s22051898
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22051898?type=check_update&version=2


Sensors 2022, 22, 1898 2 of 21

e-Glass [10], behind-the-ear EEG [11], Emotiv [12], and HealthSOS [13], have been shown
to be useful for daily long-term monitoring of neurological diseases, such as epilepsy and
stroke. Wearable EEG devices have the advantages of low power consumption, are light
weight and portable, they are easy to operate, are low in price, and are more suitable
for daily use and long-term monitoring in non-laboratory environments than traditional
EEG devices.

There are diversified wearable EEG devices on the market, which can be divided
into two categories: (1) Multichannel portable devices that require long battery life, and
scalp-EEG of the whole brain result in larger and heavier equipment. As an example,
B-Alert is a kind of portable device that is not suitable for daily wear. (2) Wearable EEG
monitors that are more beautiful, light, and portable, and can be used in daily life, such
as Emotiv, Muse, and Mindwave [2,14]. With its complete and mature hardware design
and software support, Emotiv is currently the most widely used wearable EEG monitor
in scientific research and business [15]. These wearable devices have good performances
in areas including medical [16], sleep [17], emotions [18], depression [19], and fatigue [20].
Although several wearable EEG devices have appeared on the market, there were still
some limits among them, such as low sampling rate, the absence of raw EEG data and
no impedance detection (a detailed description and comparison will be shown in the
Discussion section). Therefore, a new wearable prefrontal EEG monitoring equipment is
proposed in this paper.

Before any wearable EEG device comes on the market and is widely used by the public,
a rigorous signal quality evaluation experiment must be carried out to prove that the EEG
data collected by the new device can be reliably used in research or daily life. The difference
of power spectral density (PSD) in resting state EEG between eyes closed (EC) and eyes
open (EO) is one of the most widely used evaluation methods for wearable EEG devices.
The signal quality of the device in the frequency domain was proven reliable when the
alpha (8–13 Hz) band power of EC was shown to be higher than EO [14,21–23]. The signal
quality assessment in the time domain was verified through the event-related potential
(ERP) experiments, including visual and auditory ERP [14,22–27]. Grummett [14] et al.
compared Emotiv EPOC, B-Alert, g.Sahara, and g.HIamp. They found that the 16 and
23 Hz visual steady-state responses from the g.Sahara were statistically smaller than from
the g.HIamp, B-Alert and Emotiv. The mismatch negativity (MMN) and P300 could not be
obtained from Emotiv in the auditory ERP task. Kappel [22] et al. developed and evaluated
a dry-contact ear-EEG. The signal-to-noise ratio (SNR) of the first harmonic responses of
the ear–scalp were similar to the scalp–scalp electrode in auditory steady-state responses
and steady-state visual evoked potentials task. The ear-EEG had the well-known P1-N1-P2
waveform in the auditory ERP task, and the MMN response was statistically significant
for continuous intervals at the time of the most prominent peaks for both ear-EEG and
scalp-EEG. In this study, a simulated signal test task and a comprehensive signal quality
assessment of the proposed wearable device were completed.

Brain activity signals can be captured and studied by EEG signal processing methods
and machine learning algorithms. SVM, decision trees, random forest (RF), naive bayes,
K-nearest neighbors, and ensemble learning are commonly used machine learning models
for supervised learning [28–30]. Hussain [28] et al. distinguish stroke patients from
healthy people using delta, theta, and alpha activities and the C5.0 model, and achieved
78% accuracy for the resting state and 89% accuracy in the functional motor walking
condition. EEG-based feature analysis combined with machine learning is a commonly
used research method in emotion recognition [31–33]. Researchers in computer-aided
EEG diagnosis are studying the different combinations of feature extraction methods
and machine learning models as the diagnostic aid for disorders such as depression and
epilepsy [34,35]. Aci [36] et al. used EEG features and classification models to distinguish
three states of concentration, inattentiveness, and drowsiness. The SVM model performed
the best, with an average accuracy rate of 91.72%. In our previous study [37], attention
was divided into three levels: high, medium, and low, according to performance on
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the sustained attention task. Comparing the three classification results of SVM, RF, and
XGBoost model, the XGBoost model showed the best performance with an accuracy of
80.42%. In this paper, the EEG features of high attention and low attention state were
extracted, and the XGBoost model was used to distinguish high and low attention.

In this study, a new wearable frontal EEG device called Mindeep was proposed and
the signal quality of Mindeep was evaluated to prove that it can be used in scientific
and clinical research. The reliability of Mindeep’s hardware circuit was assessed by the
simulated signal test experiment. Then, Mindeep was compared with the gold standard
EEG monitoring equipment, Neuroscan, to verify that Mindeep can reproduce Neuroscan’s
results in resting, auditory, and attention tasks. Compared with previous wearable EEG
devices, the contributions of this study are as follows:

(1) Accurate transmission: Instead of traditional Bluetooth transmission, EEG signals
with a high sampling rate and resolution recorded by Mindeep were transmitted to a
computer at high transmission speed and accuracy via WIFI. WIFI can also be used to
realize the synchronization of multiple devices in the local area network.

(2) Impedance detection: Mindeep supports the impedance detection function to monitor
the skin-electrode impedance. This function improves the rigor of wearable EEG
device during acquisition.

(3) Support both wet and dry electrodes: Mindeep supports both wet and dry electrodes
to meet the needs of different application scenarios.

(4) Signal quality assessment solution: This study proposed a relatively complete signal
quality assessment solution for different kinds of wearable EEG devices.

(5) Application case of wearable EEG devices: This study provided an application case in
attention monitoring, which proved that wearable devices can be used in different
applications to collect EEG in non-laboratory scenarios or long-term monitoring.

2. Materials
2.1. Device

The proposed wearable frontal lobe EEG monitor system, Mindeep, used in this
study was developed by our laboratory. The hardware circuit of Mindeep is shown in
Figure 1. The low power consumption and low noise integrate an analog front end (AFE)
ADS1294 [38] used in Mindeep for 4-channel simultaneous sampling of EEG signals and
impedance measurement. The micro control unit (MCU) controls the integrated AFE to
collect EEG data. There are three data acquisition modes: (1) transmit data to the computer
in the local area network via the ESP32 WIFI module; (2) save data in the SD card; and
(3) transmit data to the computer via USB. The data can be saved on the computer in dat
format. Mindeep is powered by a lithium battery and the battery life is about 12 h. Data
are recorded using a 1000 Hz sampling rate in 24-bit resolution.

According to the EEG 10–10 system, seven Ag/AgCl dry electrodes with 9 mm in
diameter (Fp1, Fp2, F7, F8, Fpz, FT7, and FT8) are installed on the fixed position of the
headband as shown in Figure 1b. Among the seven electrodes, four electrodes (Fp1, Fp2, F7,
and F8) are connected to the analog input of AFE to record EEG signals. The short-circuited
FT7 and FT8 electrodes are used as the reference (Ref), and the Fpz electrode is used as the
ground (GND). Mindeep supports both dry electrodes and disposable patch Ag/AgCl gel
electrodes to collect signals. These dry electrodes can be directly contacted with the skin to
measure EEG, or a patch electrode of matching size can be installed on the dry electrodes
to measure EEG. Mindeep was worn on the forehead to collect frontal EEG signals.

2.2. Simulated Signal Test Task

In the simulated signal test task, the arbitrary function generator (AFG) (Tektronix,
AFG 3102, Beaverton, OR, USA) was applied to simulate sine, square, and triangular waves
with different frequencies (10 Hz, 20 Hz, and 30 Hz) and amplitudes (40 mV, 100 mV, and
200 mV). The frequency of the simulated signal was in the frequency range of commonly
recorded EEG. Since this AFG cannot generate signals with an amplitude below 1 mV,
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the amplitude of the simulated signal was higher than that of normal EEG. As shown in
Figure 2, the AFG was connected to the dry sensors of Mindeep, the simulated signal was
used as the input signal of Mindeep. Mindeep collected signals with 1000 Hz sampling rate.

Figure 1. Wearable frontal lobe EEG device, Mindeep. (a) Hardware circuit; (b) shape design and
electrode location of the wearable frontal EEG device Mindeep; and (c) circuit diagram of Mindeep.

2.3. Signal Quality Comparison Experiments

In this study, 19 healthy students (8 females and 11 males) were recruited from South-
east University (Nanjing, China) to participate in the signal quality comparison experiment.
The average age of the participants was 22.79 ± 2.57 years old. All participants were
informed about the experimental protocol and matters needing attention, then signed the in-
formed consent before the experiment. This study was approved by IEC for Clinical Research
of Zhongda Hospital, affiliated with Southeast University (IRB No. 2019ZDSYLL073-P01).



Sensors 2022, 22, 1898 5 of 21

Figure 2. The connection between the arbitrary function generator and Mindeep in the simulated
signal test experiment.

In this study, during the signal quality experiment, EEG signals of four channels (Fp1,
Fp2, F7, and F8) were recorded by the standard acquisition device Neuroscan (Synamps2
acquisition system) and the wearable Mindeep device at the same time. Mindeep collected
EEG signals through disposable patch Ag/AgCl wet gel electrodes (Ambu, BlueSensor N,
Ballerup, Denmark), while Neuroscan collected signals through the 10–10 system electrode
cap with conductive paste. To ensure that the EEG collected during the experiment had
good signal quality, alcohol and scrub gel were used to clean the forehead to reduce
the impedance between the electrodes and the skin before the experiment. Before EEG
acquisition, the skin-electrode impedance of both Mindeep and Neuroscan dropped below
10 kΩ. The wearing position of Neuroscan and Mindeep is shown in Figure 3a, after
wearing the Neuroscan’s electrode cap as normal, Mindeep was worn below the electrode
cap. The EEG collected by Neuroscan used the 10–10 system EEG cap, so the Neuroscan
electrode positions defaulted to the standard 10–10 system. By adjusting the wearing
position of Mindeep and the angle of the patch electrodes, the electrodes of Mindeep were
as close as possible to those of Neuroscan. The head circumference and shape of each
subject were not the same, but after adjustment, the distance between Mindeep’s patch
electrodes and Neuroscan’s electrodes was within 1 cm. For both devices, the sampling
rate of EEG signals was 1000 Hz, and the references were FT7 and FT8.

The signal quality experiment was carried out in a quiet and dimly lit room. All
participants were required to sit on the chair with their eyes about 0.5 m away from the
screen. The experiment included three parts (see Figure 3b–d): (1) resting task; (2) auditory
oddball task [39]; and (3) attention task: AX continuous performance test (AX-CPT) [37,40].

2.3.1. Resting Task

The resting task included 3-min rest with EC and 3-min rest with EO. During the EO
resting task, the participants were instructed to remain relaxed and look at a white fixation
cross on a black background (see Figure 3b).
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Figure 3. Signal quality comparison experiments. (a) Wearing position of Neuroscan and Mindeep;
(b) resting state task; (c) auditory oddball task; and (d) two kinds of AX-CPT tasks (AX-CPT-250 ms
and AX-CPT-125 ms).

2.3.2. Auditory Oddball Task

All participants listened to the 1000 Hz high tone (175 ms duration) and 500 Hz low
tone (175 ms duration) presented through a pair of insert earphones (Audio Technica
CK330iS) during the auditory oddball experiment (see Figure 3c). The interval between
any two adjacent tones was 425 ms. To maintain the participants’ auditory attention,
subjects were required to count the number of high tones (deviation tone) occurrences,
which randomly interspersed amid a series of low tones (standard tone). The auditory
oddball experiment contained 5 sessions; there were 25 high tones and 125 low tones in
each session.

2.3.3. AX-CPT Tasks

In this study, the AX-CPT tasks (attention task) were employed to assess the sustained
attention capability of the participants (see Figure 3d). During the AX-CPT task, a series
of white letters of the English alphabet were presented on the black screen randomly. The
participants were instructed to click the left mouse button as fast as possible when the
target sequence “X” was preceded by an “A” and to click the right mouse button for other
target sequences different from the sequence “AX”. In the AX-CPT-250 ms task, each letter
stimulus was presented for 250 ms with an inter-stimulus interval (ISI) of 250 ms and an
inter-trial interval (ITI) of 1500, 2000, or 2500 ms randomly set. Inter-stimulus was a white
fixation cross on a black background. There were 160 trials, with 120 “AX” sequences and
40 other sequences, each sequence contained two letters. In the AX-CPT-125 ms task, each
letter stimulus was presented for 125 ms with an ISI of 125 ms and an ITI of 1500, 2000, or
2500 ms randomly. For each subtask, there were 192 trials, with 144 “AX” sequences and
48 other sequences.

3. Methods
3.1. EEG Preprocessing

The EEG preprocessing was completed in Matlab R2019; the steps were as follows:
(1) The power frequency noise (50 Hz in China) was removed by 50 Hz notch filter;
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(2) Baseline was removed by 0.3 Hz high pass filter; (3) High-frequency noise (includ-
ing partial EMG) was removed by 45 Hz low pass filter; (4) Due to the limitation of
wearable device’s channel number, eye movement artifacts were removed by discrete
wavelet transform (DWT) [41].

3.2. Signal-to-Noise Ratio

In this study, the power frequency noise, baseline (below 0.3 Hz), and high-frequency
noise (above 45 Hz) were defined as noise N. While SNR represented the power ratio of
the clean EEG signal and the noise. The clean EEG signal S was the signal after the raw
EEG signal R filtered by the 0.3 Hz high pass filter, 45 Hz low pass filter, and 50 Hz notch
filter. The noise N was calculated as:

N = R− S (1)

The SNR was calculated according to the following formula:

SNR = 10× log10

(
PS
PN

)
(2)

where PS is the power of clean EEG signal S and PN is the power of noise N.

3.3. Valid Signal Proportion

The position and duration of head movement, eye movement, and electromyography
(EMG) artifacts of the raw EEG were detected by the following steps:

Step 1: Butterworth bandpass filter was used to extract useful EEG signals.
Step 2: The envelope curve of the artifact was detected by the Hilbert method.
Step 3: Locate the location of artifacts on the absolute envelope curve through the

adaptive threshold.
The detailed parameters include the lower and upper cut-off frequency and threshold.

The amplitude of the head movement artifact is much higher than EEG, which is 10 times
(empirical value) to even dozens of times that of EEG signal, and the frequency range
is (0.3, 2) Hz. Therefore, the 0.3–2 Hz Butterworth bandpass filter was applied and the
threshold was set to 10×MED, where MED is the median of the absolute value of the
envelope. The part that exceeded the threshold was the head movement artifact. The main
frequency range of eye movement artifacts is (0.3, 10) Hz. The amplitude of eye movement
artifacts is 5 to 10 times (empirical value) that of EEG signals. The 0.3–10 Hz Butterworth
bandpass filter was applied and the threshold was set to 5×MED. The place where the
amplitude was greater than the threshold was the location of the eye movement artifacts.
To avoid repeated recognition of head movement artifacts and eye movement artifacts, the
motion artifacts were first identified and eliminated, and then the eye movement artifacts
were identified. Different from head movement artifacts and eye movement artifacts,
high-frequency EMG is extracted by the 30–200 Hz Butterworth bandpass filter. Since the
amplitude of the EMG signal is higher than that of the EEG signal, the threshold was set to
MED + 5×STD, where STD is the standard deviation of the absolute value of the envelope
and 5 times is the empirical value, and those greater than the threshold were considered
as EMG.

The valid signal proportion (VSP) was calculated as:

VSP = Lvalid/Lraw × 100 (3)

where Lraw was the data length of raw EEG signal, Lvalid was the data length of EEG signal
after clipping the artifact.
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3.4. Relative Power

The welch PSD [42] is a linear analysis method based on Fourier transform, which is
the most commonly used method in conventional EEG analysis. For the single channel
EEG oscillations X = {xi} = {x1, x2, . . . , xN} i = 1, 2, . . . , N, where N is the number of
points in the time series. The PSD curve p represented the spectral energy distribution.

The relative PSD curve p was calculated as:

p = p/ ∑45
0.3 p (4)

The relative power P of [f 1, f 2] frequency band is the ratio of the sum PSD in [f 1, f 2]
frequency range to the sum PSD in (0.3 Hz, 45 Hz) frequency range:

P = ∑ f2
f1

p/ ∑45
0.3 p (5)

3.5. Mismatch Negativity

MMN [43] is the ERP responses elicited by auditory events that break the expectations
created by the regularity of previous standard auditory stimuli. Raw EEG data recorded
in the auditory oddball task was bandpass filtered from 1 to 25 Hz. The EEG signal was
segmented with limits of −100 ms to 400 ms relative to the stimulus. Baseline correction
was then performed on the mean amplitude from −100 ms to 0 ms of each epoch. Data
epochs with amplitudes exceeding ±50 µV were discarded. The average standard (ERP)
of all data epochs for standard stimulus and the average deviation ERP of all data epochs
for deviation stimulus were calculated. MMN responses were obtained by subtracting the
standard ERP from the deviation ERP.

3.6. Morlet Continuous Wavelet Transform

The Morlet continuous wavelet transform (MCWT) [44] was one of the most commonly
used types of wavelet transform methods in the field of physiological signal processing.
In this paper, the MCWT with 6 Hz central frequency was applied to describe the time-
frequency information of EEG signal. The time resolution is 2 ms, and the frequency
resolution is 0.5 Hz.

3.7. Sample Entropy

In this study, sample entropy (SE) of five EEG frequency bands (delta: 0.5–4 Hz;
theta: 4–8 Hz; alpha: 8–13 Hz; beta: 13–30 Hz; gamma: 30–45 Hz) were extracted
as features. The EEG frequency bands were decomposed by DWT with a 7-level and
Sym7′ wavelet basis. SE is a modification of approximate entropy [45]. We have an
im fN = xi = (x1, x2, x3, . . . , xN) i = 1, 2, 3, . . . , N and use a time interval to reconstruct
series Xm(i) = (xi, xi+1, xi+2, . . . , xi+m−1) i = 1, 2, 3, . . . , N − m + 1. The length of the
sequence is m. The distance function of two sequences is d[Xm(i), Xm(j)]. For a given
embedding dimension m, tolerance r and number of data points N, SE is expressed as:

SE(r, m, N) = −log
Am+1(r)

Bm(r)
(6)

where, Bm(r) is the number of template vector pairs having d[Xm(i), Xm(j)] < r and
represents the similarity between two sequences of length m, Am+1(r) is the number of
template vector pairs having d[Xm+1(i), Xm+1(j)] < r and represents the similarity between
two sequences of length m + 1.

According to our previous studies [31,37], m = 2 and r = 0.2 were used in this study.
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3.8. Statistical Analytics

In this paper, the statistical analysis was performed on Matlab R2019. The parametric
test one-way analysis of variance (ANOVA) [46] was chosen when the data satisfied the
assumptions. The significant difference was defined as the p-value < 0.05.

To explore the correlation between EEG indicators and behavioral scale results, the
nonparametric Spearman’s rank correlation [47] was used in this study, since the scale
scores do not conform to the normal distribution. If the p-value of correlation coefficients
calculated by t approximation is less than 0.05, then the correlation coefficient is significantly
different from zero.

Cross-correlation [48], which measured the similarity of two series relative to time,
was used in this paper.

3.9. EXtreme Gradient Boosting

EXtreme gradient boosting (XGBoost) [49] is one of the Boosting algorithms whose
ideal is to integrate many weak classifiers to construct a strong classifier. Compared to the
parallel structure of bagging, boosting works in the serial structure, which means that the
structure of each tree depends on the previous trees. XGBoost adds a regularization term
to the cost function to control the complexity of the model.

The 10-fold cross-validation was used before XGBoost to divide all samples into
10 parts. One of the 10 parts was used as a testing set and the remaining nine parts
were used as a training set. Before training, the features of training and testing sets were
normalized by mapping row minimum and maximum values to [−1, 1].

In this study, the parameters of XGBoost are set as follows: learning rate: 0.1; base
classifier number: 50; maximum tree depth: 5; subsample ratio of the training set: 0.9; and
the L2 regularization term on weights lambda: 2.

4. Results

This section included the results of the simulated signal test task and signal quality
comparison experiments.

4.1. Simulated Signal Test

The wearable device, Mindeep, recorded the signals simulated by AFG. The recorded
signals are shown in Figure 4, including sine wave, square wave, and triangular waves with
different frequencies (10 Hz, 20 Hz, and 30 Hz) and different amplitudes (20 mV, 50 mV,
and 100 mV). As can be seen, the collected signals had a good degree of restoration and no
obvious distortion. The normalized cross-correlation coefficients between the simulated
signals and recorded signals are shown in Table 1. The correlation coefficients in different
frequencies and amplitudes were all greater than 0.9. The correlation coefficients of sine
waves and triangular waves were higher than those of square waves. As the frequency
increased, the correlation coefficient decreased slightly, and as the amplitude decreased,
the correlation coefficient also decreased slightly.

Table 1. Normalized cross-correlation coefficients for simulated input signals and recorded output signals.

Simulated Wave
Amplitude (mV)

Frequency (Hz)
10 20 30

Sine
20 0.999 0.994 0.988
50 0.999 0.994 0.993

100 0.999 0.997 0.993

Square
20 0.988 0.969 0.944
50 0.991 0.973 0.958

100 0.988 0.975 0.957

Triangular
20 0.999 0.995 0.985
50 0.999 0.995 0.987

100 0.999 0.995 0.990
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Figure 4. Simulated signals recorded by Mindeep. (a) Sine wave; (b) square wave; and (c) triangular
wave with different frequencies (10 Hz, 20 Hz, and 30 Hz) and amplitudes (20 mV, 50 mV, and 100 mV).
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4.2. Resting State Task
4.2.1. Real time EEG signals

The preprocessed EEG signals, filtered by the 0.3 Hz high pass filter, 45 Hz low pass
filter, and 50 Hz notch filter, simultaneously recorded by Neuroscan and Mindeep during
EC and EO are shown in Figure 5a,b. Compared to Neuroscan, EEG recorded by Mindeep
had much more low-frequency components, and the amplitude of eye-movement artifact
recorded by Mindeep was higher (which may be caused by the wearing position of Mindeep
being closer to the eyes).

Figure 5. Resting state results. (a) EEG signals in EC; and (b) EEG signals in EO. The black line is the
EEG collected by Neuroscan and the red line is the EEG collected by Mindeep.

4.2.2. SNR, VSR, and Similarity

The SNR and VSR of EEG recorded by the two devices in EC and EO were calculated.
As shown in Table 2, the SNRs of Mindeep were slightly lower than Neuroscan. The VSRs
of Mindeep were also slightly lower than Neuroscan, but still within an acceptable range.
The similarities of the preprocessed EEG signals from the two devices were computed
using cross-correlation; the average normalized cross-correlation coefficients (Coef) and
the average lags of all participants are shown in Table 2. The EEG similarities in EC were
higher than in EO for all channels.

4.2.3. Relative PSD and Berger Effect

The relative PSD curves of the preprocessed EEG in EC and EO are shown in Figure 6a.
The four-channel average relative PSD of Mindeep in the whole frequency band (0.3–45 Hz)
was similar to Neuroscan in EC and EO. It can be observed that the EO state had higher
delta (0.3–4 Hz) and alpha (8–13 Hz) relative PSD, and lower beta (13–30 Hz) and gamma
(30–45 Hz) relative PSD. The relative power of delta, theta, alpha, beta, and gamma bands
were shown in Figure 6b–d. As we can see in Figure 6b, the relative power of alpha band in
EC was higher than EO, confirming that the Berger effect was observed, for both Neuroscan
(ANOVA test, p < 0.001) and Mindeep (ANOVA test, p < 0.01). There was no significant
difference in relative power of the five frequency bands (delta, theta, alpha, beta, and
gamma) between Neuroscan and Mindeep in the EO state shown in Figure 6d. The alpha
relative power of Neuroscan was significantly higher than Mindeep (ANOVA test, p < 0.01),
but there was no significant difference in other frequency bands (Figure 6c).
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Table 2. SNR, VSP, and normalized cross-correlation coefficients for Neuroscan and Mindeep on all
channels in EC and EO.

State Channel Device SNR (dB) VSP (%) Coef Lag (ms)

EC

Fp1 Neuroscan −49.80 ± 2.08 91.78 ± 1.43
0.73 ± 0.02 1.18 ± 0.15

Mindeep −54.27 ± 2.24 87.30 ± 2.01

Fp2 Neuroscan −46.68 ± 2.84 91.53 ± 1.45
0.73 ± 0.02 1.14 ± 0.14

Mindeep −54.51 ± 2.21 87.10 ± 1.70

F7
Neuroscan −48.16 ± 2.16 90.96 ± 1.59

0.75 ± 0.02 1.12 ± 0.14
Mindeep −54.82 ± 1.54 86.62 ± 1.99

F8
Neuroscan −45.75 ± 2.40 91.93 ± 1.35

0.75 ± 0.02 1.02 ± 0.12
Mindeep −53.16 ± 2.05 85.28 ± 2.08

EO

Fp1 Neuroscan −44.54 ± 1.95 75.34 ± 2.69
0.71 ± 0.02 0.88 ± 0.13

Mindeep −49.27 ± 2.01 66.74 ± 2.93

Fp2 Neuroscan −41.54 ± 2.73 74.68 ± 2.33
0.71 ± 0.02 0.79 ± 0.11

Mindeep −49.77 ± 1.84 67.95 ± 2.81

F7
Neuroscan −44.14 ± 2.21 84.39 ± 1.52

0.71 ± 0.02 0.97 ± 0.12
Mindeep −50.16 ± 1.63 68.82 ± 3.31

F8
Neuroscan −42.23 ± 2.33 83.90 ± 1.66

0.71 ± 0.02 1.18 ± 0.10
Mindeep −47.87 ± 2.01 67.65 ± 2.71

4.3. Auditory Oddball Paradigm

The averaged ERP curves with low tone (standard) and high tone (deviation) stimulations
in the auditory oddball task, which was computed on EEG, are shown in Figures 7 and 8.
The black dotted lines were low tone ERP, the red dotted lines were high tone ERP, the
blue solid lines were MMN response, and the green lines indicated intervals where the
MMN response was statistically significant (ANOVA test, p < 0.05). The absolute amplitude
of ERP curves recorded by Mindeep was lower than Neuroscan for low tone and high
tone. The absolute amplitude of high tone ERP curves was higher than low tone for both
Neuroscan and Mindeep. The P1, N1, P2, and N2 can be observed in four channels for
both Neuroscan and Mindeep. As shown in Figure 7, for wearable device Mindeep, the
statistical differences of MMN response mainly appeared at P2 and N2, and the MMN of
Fp2 and F8 also had statistical differences at P1. As shown in Figure 8, for gold-standard
Neuroscan, the statistical differences of MMN response in Fp1 were at N1, P2, N2, and P3;
in Fp2, at P2, N2, and P3; in F7, at P2; in F8, at P2 and N2.

4.4. AX-CPT Attention Task

The time-frequency results of the preprocessed EEG during the stimulation period of
AX-CPT-250 ms (1000 ms) task and AX-CPT-125 ms (500 ms) task were shown in Figure 9a.
For both Mindeep and Neuroscan, during AX-CPT-250 ms task, the power of theta (4–8 Hz)
and gamma (30–45 Hz) started to increase, and the power of beta (13–30 Hz) started to
gradually decrease at 250 ms; consistently, during AX-CPT-125 ms task, the start point was
observed at 125 ms.

The distributions of reaction time of all participants during AX-CPT-250 ms and AX-
CPT-125 ms tasks fitted the normal distribution. When people remain highly focused, they
usually respond immediately and rapidly to visual stimuli. Conversely, people with low
attention levels usually have slower responses. Therefore, the high-attention group consists
of the EEG epochs with reaction time (RT) in the top 20% in all experiment epochs, and the
low-attention group consists of the EEG epochs with RT in the bottom 20%. As shown in
Figure 9b,c, the area within the solid black line indicated statistical differences between the
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low-attention group and the high-attention group (ANOVA test, p < 0.05). For those two
attention AX-CPT tasks, the differences of time-frequency graphs between high-attention
group and low-attention group mainly appeared in the stimulation period. The differences
between the low-attention group and the high-attention group in Mindeep’s time-frequency
results were larger than that of Neuroscan. Compared with the inter-trial interval (without
stimulus), the high-attention group evoked higher theta, alpha, and gamma power, and
lower beta power during stimulation.

Figure 6. Power spectral density results. (a) The relative power spectral density curve for Neuroscan
and Mindeep in EC and EO. The black solid line is the PSD curve for Neuroscan in EC. The black
dotted line is the PSD curve for Neuroscan in EO. The red solid line is the PSD curve for Mindeep
in EC. The red dotted line is the PSD curve for Mindeep in EO. (b) The alpha band relative power
of Neuroscan and Mindeep in EC (black bar) and EO (grey bar). The relative power of delta, theta,
alpha, beta, and gamma band for Neuroscan (black bar) and Mindeep (grey bar) in (c) EC state and
(d) EO state. The significant difference (*** represented p < 0.001, ** represented p < 0.01) was shown
in (b–d).

The stimulus duration of each trial was 1000 ms in the AX-CPT-250 ms task and 500
ms in the AX-CPT-125 ms task. According to the results of the time-frequency analysis
shown in Figure 9, the relative power and SE features of the five frequency bands during
the stimulation period of each trial were extracted. The classification results and ROC
curve of the XGBoost model are shown in Table 3 and Figure 10. The classification accuracy
in distinguishing between high attention and low attention of Mindeep (AX-CPT-250 ms:
accuracy of 71.12%; X-CPT-125 ms: accuracy of 74.76%) was slightly higher than that of
Neuroscan (AX-CPT-250 ms: accuracy of 70.19%; AX-CPT-125 ms: accuracy of 72.80%),
and the classification accuracy of the AX-CPT-125 ms task was higher than that of the
AX-CPT-250 ms task.
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Figure 7. The averaged event related potential (ERP) curves of Mindeep with low tone and high tone
stimulation. (a) Fp1; (b) Fp2; (c) F7; and (d) F8.

Figure 8. The averaged event related potential (ERP) curves of Neuroscan with low tone and high
tone stimulation. (a) Fp1; (b) Fp2; (c) F7; and (d) F8.
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Figure 9. Time-frequency results of AX-CPT tasks. (a) Time-frequency analysis graphs of EEG
simultaneously recorded by Neuroscan and Mindeep during attention task 1 and task 2. Time-
frequency graphs for high attention and low attention, and the time-frequency differences between
high attention and low attention for Neuroscan and Mindeep, respectively, during attention tasks
(b) AX-CPT-250 ms and (c) AX-CPT-125 ms.

Table 3. Comparison of attention classification models for Neuroscan and Mindeep in AX-CPT-250
ms and AX-CPT-125 ms task.

Precision (%) Recall (%) F1 (%) Accuracy (%)

AX-CPT-250 ms
Neuroscan 69.95 69.65 69.80 70.19
Mindeep 72.26 67.56 69.83 71.12

AX-CPT-125 ms
Neuroscan 73.99 68.26 71.01 72.80
Mindeep 77.23 68.48 72.59 74.76
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Figure 10. Accuracies and ROC curves of XGBoost model. (a) AX-CPT-250 ms; and (b) AX-CPT-125 ms.

5. Discussion

In the past few decades, the emergence of novel signal acquisition technologies has
contributed to advancing study on human brain research and application. A new gener-
ation of portable EEG devices allows research in new experimental settings. This study
mainly proposed a new wearable EEG device, Mindeep, and conducted device verification
experiments and practice-oriented research on it. In more detail, we aimed to assess (1) if
the Mindeep circuit can perfectly collect various simulated signals, (2) the performance
of the time and frequency domain indicators of the signals collected by Mindeep, (3) if
Mindeep can record reliable auditory evoked potential responses, and (4) if Mindeep can
be applied to monitor and distinguish the attention status of healthy subjects. Results
demonstrated that Mindeep can record high-quality EEG signals comparable to those
obtained using the gold standard Neuroscan.

In this study, Mindeep was worn under the Neuroscan (see Figure 3a), which means
Mindeep’s electrodes were closer to the eyes and farther from the occipital lobe than
Neuroscan. Therefore, Mindeep had a larger low-frequency proportion, lower SNR, lower
VSP, and lower alpha band relative power. The MMN response of Mindeep in F7 and
F8 showed the greater differences between high tone and low tone than Neuroscan. The
results of AX-CPT task showed that Mindeep can be used to recognize high attention and
low attention. The attention recognition results of Mindeep were better than Neuroscan
(see Figure 9). It can be concluded that the newly proposed wearable device Mindeep can
collect EEG signals with good signal quality and can be used to distinguish different levels
of attention. The attention recognition accuracy of Neuroscan was slightly lower than that
of Mindeep, which may be caused by the fact that the high-frequency part of Mindeep
contained more EMG signals (wearing position is close to the eye).

As shown in Table 4, compared with other portable EEG devices (Emotiv, Muse,
Neurosky [50], and B-Alert), Mindeep opens up raw data to the public. The data collected
by Mindeep is transmitted wirelessly via Wi-Fi to realize the real-time transmission of high
sampling rate EEG data (adjustable, 250/500/1000 Hz). Mindeep’s battery life is up to 12 h,
which can fully satisfy the sleep EEG monitoring for research. To better meet the needs of
scientific research and clinical practice, Mindeep provides event-mark and multi-device
synchronization functions. The impedance response function was added to help users
accurately know whether the current impedance falls within the required range.

EEG electrodes can be divided into three types: wet electrodes, dry electrodes, and
semi-dry electrodes [51]. The skin-electrode impedance of the wet electrodes is usually the
lowest compared with other electrodes, but problems such as increased impedance and
signal attenuation may occur with prolonged use due to the volatilization of the gel liquid.
Traditional EEG caps require manual injection of conductive paste, which is complicated
to operate and is not suitable for non-laboratory environments. However, the disposable
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patch-type wet gel electrodes, which preplace a small amount of gel in the electrodes, are
easy to use and suitable for daily wearing [52]. Dry electrodes are easy to use and reusable,
suitable for wearable EEG devices in non-clinical applications and long-term monitoring,
but the EEG signals recorded by dry electrodes can be more likely interfered by movement
artifacts. The skin-electrode impedance of traditional dry electrodes is usually high. In
recent years, dry electrodes made of new materials have been proven to effectively reduce
the impedance of skin electrodes [53,54]. Semi-dry electrodes are a combination of wet and
dry electrodes, retaining the advantages of wet and dry electrodes, but they are still in the
early research stage [55,56]. Considering the advantages and disadvantages of the three
electrodes, the wearable EEG device Mindeep proposed in this study supports two sensing
methods: traditional AgCl dry electrodes and patch-type Ag/AgCl wet gel electrodes.
In general, it is recommended to use patch electrodes, but if the acquisition time is long
or the cost of patch electrodes is considered too high, AgCl dry electrodes can be used
instead. Mindeep only needs 2–5 min to complete wearing the device with dry electrodes or
path-type electrodes, while Neuroscan requires at least 30 min preparation time, including
scalp cleaning before and after use, wearing an EEG electrode cap, and injecting conductive
paste. These advantages of Mindeep promote the improvement of user acceptance and the
long-term collection of EEG signals in daily life.

Table 4. Comparison of portable EEG devices.

Emotiv Muse Neurosky B-Alert Mindeep

Model MN8 Insight Epoc +
/Epoc x Epoc Flex Kit Muse 2 Muse S Mindwave B-Alert

X10
B-Alert

X24
MDP4CH-

WTT

Price (dollar) – 299 849

1699
(Saline)/2099
(Conductive

paste)

249.99 349.99 109.99 – 799

Cost (dollar) × 29/99/199/month × × × × ×

Sensor Count 2 5 14 32 4 1 9 20 4

Sensor
Location

Left and
Right Ear

AF3,
AF4, T7,
T8, Pz

AF3, AF4,
F3, F4,

FC5, FC6,
F7, F8, T7,
T8, P7, P8,

O1, O2

10–20 location Fp1, Fp2, TP9, TP10 Fpz

POz, Fz,
Cz, F3,
F4, C3,
C4, P3,

P4

10–20
location

Fp1, Fp2,
F7, F8

Reference A1/A2 PZ P3/P4 FCz Fpz A1 A1/A2 Fpz

Sample rate
(Hz) 128 128 128/256 128 220/500 512 256 250/500/1000

Frequency
Response

(Hz)
0.16–45 0.5–43 0.16–43 0.1–30 3–100 0.1–67 raw

Resolution
(bits) 14 10 12 16 24

Electrode Dry Saline Saline/Conductive
paste

Dry
(silver)

Dry
(gold) Dry Conductive paste Dry/patch

electrodes

Wireless Bluetooth Bluetooth Bluetooth Bluetooth Wi-Fi

Battery life
(hours) 6 4

6 (Epoc
+)/6

(Epoc x)
9 5 10 8 8 12

Acceleration 6-axis 9-axis 9-axis 9-axis 9-axis × 3-axis 9-axis

Multidevice
synchroniza-

tion
× × × × × × ×

√

Event marker × × × × × ×
√ √
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There were still some limitations to this study. EEG signals are physiological signals
lower than 20 µV, but AFG used in this study can only simulate signals higher than
20 mV. The results in Section 4.1 showed that as the amplitude decreased, the correlation
coefficient between the simulated signals and the recorded signals gradually decreased. If
the amplitude of the simulated signal is lower than 20 µV, the correlation coefficient may
be lower than 0.9. In future research, we will use the µV-level AFG to simulate the signal
below 1 mV to test the quality of the collected signals of Mindeep.

Although attention recognition is not the main purpose of this study, the accuracies
of distinguishing between high and low attention in this study are 71.12% and 74.76%,
which is lower than previous studies [37]. The reasons may be: (1) the duration of AX-CPT
was only about 6 min, and the subjects were healthy college students, and their attention
may always be kept at a high level during the AX-CPT task; (2) only the four prefrontal
lobe channels were collected in this study, and the number of channels was small; and
(3) the distance between the reference electrode and the EEG electrodes were too close. In
follow-up studies, we will further improve the hardware design and electrode placement
of Mindeep and validate the value of Mindeep in other research.

6. Conclusions

In this study, a novel wearable frontal lobe EEG monitoring device Mindeep was
proposed, and a rigorous signal quality evaluation analysis was performed on Mindeep.
Additionally, we further verify the feasibility of Mindeep in practical applications on
tracking the attention state. The results of the simulated signal test task proved that
Mindeep’s hardware circuit works normally, and the collected sine, square, and triangular
signals with different frequencies and amplitudes were not distorted. Another experiment
comparing the signal quality of Mindeep with the gold standard EEG acquisition device
Neuroscan, confirmed that Mindeep can reproduce the results of Neuroscan. Based on
resting state EEG data, the reliable signal quality of Mindeep was proven through the SNR,
VSP, and similarity indexes. In the auditory oddball experiment (see Figures 7 and 8), the
well-known events N1, P1, N2, and P2 for high tone and low tone were observed for both
Mindeep and Neuroscan. The MMN response, which was used to distinguish high tone
(deviation) and low tone (standard) of Mindeep, had significant differences at N2 and P2.
Through the time-frequency diagram (see Figure 9) and classification results (see Figure 10)
of Mindeep and Neuroscan in the AX-CPT tasks, the low attention epochs can be recognized
from high attention epochs by Mindeep. These results indicate that this wearable frontal
lobe EEG monitoring device can reliably record event-evoked potentials and differences
between target and non-target stimuli, which can be used for data acquisition and practical
applications of various brain computer interfaces. The above results also fully prove that
Mindeep can be used in scientific research, medical treatment, and daily life.
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