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Abstract: Detecting and removing ghosts is an important challenge for moving object detection because
ghosts will remain forever once formed, leading to the overall detection performance degradation.
To deal with this issue, we first classified the ghosts into two categories according to the way they were
formed. Then, the sample-based two-layer background model and histogram similarity of ghost areas
were proposed to detect and remove the two types of ghosts, respectively. Furthermore, three important
parameters in the two-layer model, i.e., the distance threshold, similarity threshold of local binary
similarity pattern (LBSP), and time sub-sampling factor, were automatically determined by the
spatial-temporal information of each pixel for adapting to the scene change rapidly. The experimental
results on the CDnet 2014 dataset demonstrated that our proposed algorithm not only effectively
eliminated ghost areas, but was also superior to the state-of-the-art approaches in terms of the
overall performance.

Keywords: motion detection; background subtraction; ghosts; histogram similarity; local binary
similarity pattern (LBSP); sample-based background model

1. Introduction

With the widespread application of surveillance cameras, a huge amount of video data is generated
every day. Methods to automatically and quickly analyze information of interest from a video sequence
has been extensively studied for decades [1–5]. Among these research works, change detection is
a fundamental first step for higher-level computer vision applications such as video surveillance,
pedestrian and vehicle tracking, and anomaly behavior recognition. Background subtraction (BS) is one
of the most widely used techniques in change detection, and its performance depends mainly on the
background modeling methods. To date, the popular background modeling methods can be classified
into the following four categories: GMM-based [6–9], sample-based [10–13], clustering-based [14–17],
and artificial neural network-based [18–22]. Each model has its own advantages and disadvantages.
For example, the GMM-based model can handle the multimodal distribution problem, but the
background pixel does not always follow Gaussian distribution and the difficulty of parameter
estimation. The sample-based model shows the superiority in speed, yet it cannot efficiently address
dynamic background and noise. The clustering-based model is robust to the noise, but only has good
results for scenarios without substantial background changes. The artificial neural network-based model
can obtain good performance, whereas this method requires previous training or a manual intervention.

In fact, robust change detection in real surveillance applications still faces great challenges
in complex outdoor scenes [23–25], such as illumination changes, camera motion, ghost removal,
camouflaged object detection, dynamic background suppression, and so on. Especially, ghost detection
and removal are rarely discussed in the existing methods. This can be attributed to the following two
difficulties. First of all, the initialization method of the background model is relatively simple. Due to
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the lack of prior knowledge of moving objects, the background model can only be initialized using the
feature of the first few video frames in order to satisfy real time. Therefore, objects exist in the first
frame will be treated as the background. Second, ghosts and long-term static foreground share many
similar features, and it is difficult to eliminate ghosts and reserve static foreground simultaneously.
For example, Cucchiara et al. [26] used the average optical flow of a moving object blob to discriminate
between moving object and ghosts. However, this method leads to a high false negative rate on
the static or uniform moving object because of a near-to-zero average optical flow. Wang et al. [7]
differentiated stopped objects from revealed background by removed objects (ghosts) using the edge
similarity between current image and foreground mask. This method relies on the accuracy of the
edge detection. Actually, it is difficult to obtain accurate edge in complex scenarios because of the
shadow, noise, and camouflage. The literatures [11–13,16,23] accelerated the elimination of ghosts
by the spatial diffusion mechanism because of high similarities between the ghost region and the
surrounding background. However, the camouflaged object is incorporated into the background.

Generally, ghosts can occur in the following two cases: (1) The foreground object that remains
motionless for a long time is incorporated into the background. Later on, the foreground object is
removed, and the initial position of the object is incorrectly detected as foreground; and (2) when an
object that exists in the first frame begins to move after a few frames, the newly revealed background
called “ghosts” is detected. Ghosts do not correspond to any real object in practice and have to be
discarded. In this paper, we proposed an effective method of ghost detection and removal based
on the SuBSENSE framework [11]. First of all, an adaptive sample-based two-layer background
model, main background model, and candidate background model were proposed to remove the
first kind of ghosts. The main model aimed to store the adaptive background samples. In the model
update, the background samples replaced in the main model were stored in the candidate model,
that is, the background samples were not actually deleted. Doing can extend the lifespan of the
background samples, removing the periodic motion background and the ghosts of intermittent moving
objects. Then, we utilized the histogram similarity of moving areas between the first frame and
the ghost formation frame to deal with the second kind of ghosts. Furthermore, in order to make
the segmentation thresholds adapt to the analyzed scenarios, the distance threshold was initialized
according to background dynamics, dynamic range, and texture complexity of a scenario, and then it
was updated automatically in the subsequent frames by combining spatiotemporal local information.
The similarity threshold of local binary similarity pattern (LBSP) feature was computed based on the
mean squared error of the background samples sets. The improved thresholds not only effectively
detected camouflaged objects in low-contrast regions, but also suppressed dynamic background in
high-contrast regions. In addition, since there was often a clear boundary between background and
foreground area, the time subsampling factor increased in the edge to slow down the neighborhood
diffusion of the background samples, retaining the static foreground for a long time. For the sake of
convenience in writing, we use the abbreviation “GhostDeReBS” to represent our proposed method in
the paper. An overview of GhostDeReBS’ framework is shown in Figure 1.

The rest of the paper is organized as follows. Section 2 describes our proposed algorithm in detail.
The experimental evaluation is presented in Section 3. Finally, Section 4 gives the conclusions.
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Figure 1. Block diagram of GhostDeReBS. The solid arrows indicate the processing flow of our 
systems for each frame; the dashed arrows indicate the update and feedback steps of our model. 
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Figure 1. Block diagram of GhostDeReBS. The solid arrows indicate the processing flow of our systems
for each frame; the dashed arrows indicate the update and feedback steps of our model.

2. Methodology

We describe our proposed approach from four aspects. First, we present the sample-based
two-layer background model to classify background and foreground in Section 2.1. This model not
only suppressed ghosts caused by intermittent motion objects, but also reduced false positives caused
by periodic motion background. Second, we show the detection and removal process of ghosts caused
by incorrect model initialization based on the histogram similarity and feedback scheme in Section 2.2.
Third, we describe how to update the two-layer background model in Section 2.3. Finally, we adaptively
determine three important parameters according to spatial-temporal characteristics of the scene itself
in Section 2.4.

2.1. Sample-Based Two-Layer Background Model and Background/Foreground Classification

Due to the use of the neighborhood diffusion mechanism in sample-based background subtraction,
foreground objects that remain motionless for a long time are incorporated into the background.
Later on, the foreground object is removed, and the initial position of the object is detected. This is
because the true background samples are deleted after maintaining for a short time in the model update
process. In order to retain the background samples for a long time, the methods [10,11] increased
the number of background samples. However, performance degrades when the number of samples
exceeds 50. The method [12] used the feature of the current observation to replace the sample with the
minimum weight. However, it cannot quickly adapt environmental change.

Unlike the above methods, we presented a sample-based two-layer background model in the
paper: The main model BGa(x) and the candidate model BGc(x). BGa(x) could adapt to scene
changes. BGc(x) was composed of the background samples replaced in BGa(x). It can be seen that
the lifespan of background samples was extended to BGc(x). Specifically, each pixel x was modeled
by a set of Na sample values bga,k(x) (k = 1, 2, · · · , Na) and a set of Nc candidate sample values
bgc,k(x) (k = 1, 2, Na · · · , Nc):

BGa(x) =
{
bga,1(x), bga,2(x), · · · , bga,Na(x)

}
(1)

BGc(x) =
{
bgc,1(x), bgc,2(x), · · · , bgc,Nc(x)

}
(2)
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Similar to SuBSENSE, we also utilized color information and local binary similarity pattern (LBSP)
feature to construct background model. That is, bga,k(x) and bgc,k(x) are defined by a sixtuple:

bgu,k(x) =
(
iu,R,k(x), iu,G,k(x), iu,B,k(x), intra−LBSPu,R,k(x), intra−LBSPu,G,k(x), intra−LBSPu,B,k(x)

)
(3)

where u ∈ {a, c}, iu,R,k(x), iu,G,k(x), and iu,B,k(x) are the color intensity of RGB three channels at location x,
respectively. intra−LBSPu,R,k(x), intra−LBSPu,G,k(x), and intra−LBSPu,B,k(x) are the intra-LBSP texture
feature [11], which can be defined as

intra−LBSPu,C,k(x) =
P−1∑
p=0

d
(
iu,C,k(p), iu,C,k(x)

)
.2p (4)

where

d
(
iu,C,k(p), iu,C,k(x)

)
=

 1, if
∣∣∣∣iu,C,k

(
p)−iu,C,k(x)

∣∣∣∣ > gu,C,k(x)

0, otherwise
(5)

Here, C ∈ {R, G, B}, p is the neighboring pixel of x. iu,C,k(x) is the reference values of intra-LBSP
descriptor. iu,C,k(x) and iu,C,k(p) come from the current frame. gu,C,k(x) is the internal similarity
threshold of LBSP, which is discussed in detailed in Section 2.4.1.

It is worth mentioning, at the initial time, that bga,k(x) (k = 1, 2, . . . , Na) were randomly and
independently selected from the color, and the intra-LBSP feature of 5*5 neighborhood pixels of x.
bgc,k(x) (k = 1, 2, . . . , Nc) was set to 0. Meanwhile, similar to SuBSENSE, we also added an inter-LBSP
descriptor to suppress shadow when the color values of the current frame did not match with those of
background samples. The inter-LBSP feature is defined as

inter−LBSPu,C,k(x) =
P−1∑
p=0

d
(
iu,C,k(p), i′u,C,k(x)

)
.2p (6)

Here, i′u,C,k(x) are the reference values of the inter-LBSP descriptor, which comes from the color
intensity of the background sample.

When a new input frame It(t ≥ 2) comes at time t, each pixel x was first classified as foreground
( ft(x) = 1) or background ( ft(x) = 0) by matching It(x) with its respective background sample set
BGa(x), i.e.,

ft(x) =

 1, if #{bga,k(x)
∣∣∣∣dist

(
It(x), bga,k(x)

)
< R(x), k = 1, 2, . . . , Na} < #min

0, otherwise
(7)

where

It(x) = (iR,t(x), iG,t(x), iB,t(x), intra−LBSPR,t(x), intra−LBSPG,t(x), intra−LBSPB,t(x)) (8)

dist
(
It(x), bga,k(x)

)
=

{
max

C∈{R,G,B}

{∣∣∣iC,t(x) − ia,C,k(x)
∣∣∣}, max

C∈{R,G,B}

{
Ham

(
intra−LBSPC,t(x), intra−LBSPa,C,k(x)

)}}
(9)

R(x) =
{
Rcolor(x), Rlbsp(x)

}
(10)

Here, # represents the number of elements in the collection, #min is the minimal number of matches
required for a background classification. iR,t(x), iG,t(x), and iB,t(x) are the color intensity at location
x at time t, respectively. intra−LBSPR,t(x), intra−LBSPG,t(x), and intra−LBSPB,t(x) are the intra-LBSP
texture feature. dist(·, ·) is a distance function between the current observation and a given background
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sample, which includes two elements: Color and texture distance. Ham(·, ·) represents Hamming
distance. R(x) is the distance threshold, which includes two elements: Color threshold Rcolor(x) and
LBSP texture distance threshold Rlbsp(x). The discussion about R(x) is postponed to Section 2.4.2.

Then, if the pixel x is classified as foreground, It(x) continues to compare with background
model BGc(x). When It(x) matches with BGc(x), it indicates that the pixel x was previously judged as
background. Thus, the pixel x is considered as ghosts caused by removed foreground objects. The final
output segmentation map f gt can be obtained by

f gt(x) =


0, if ft(x) = 1&#{bgc,k(x)

∣∣∣∣dist
(
It(x), bgc,k(x)

)
< R(x), k = 1, 2, . . . , Nc

}
≥ #min

0, if ft(x) = 0

1, if ft(x) = 1&#{bgc,k(x)
∣∣∣∣dist

(
It(x), bgc,k(x)

)
≥ R(x), k = 1, 2, . . . , Nc} < #min

(11)

Figure 2 shows the detection results of five methods, respectively, on the “sofa” #1742 and “traffic”
#1376 frame from the CDnet 2014 dataset [27]. The description of this dataset is postponed to Section 3.
The #1742 frame in the sofa sequence included three objects: A light-yellow box, white plastic bag,
and briefcase. The light-yellow box was a static object on the floor which was then moved onto the
sofa. A ghost was left on the floor (marked using red 3) in the detection results of SuBSENSE [11]
and SWCD [13]. However, our two-layer not only suppressed ghosts, but also detected camouflaged
static foreground object (marked using green # in Figure 2) because of the adaptive distance and LBSP
threshold in Section 2.4. Moreover, the periodic motion background often happened because of the
camera jitter, as shown in the traffic sequence in Figure 2, and a lot of false positives (i.e., marked using
purple # in Figure 2) occurred. Compared with SuBSENSE, PAWCS [16], WeSamBE [12], and SWCD,
our model effectively removed these false positive detection. The reason is that the periodic background
motion made the background samples appear intermittently. The earlier background samples were
stored in the candidate background model in our proposed method. When Equation (11) was executed,
the dynamic background could be suppressed. However, these earlier samples could have been deleted
in the other methods, making the current observation unmatched with background model.
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2.2. Detection and Removal of the Second Type of Ghost

The two-layer background model could only remove ghosts caused by the first situation and
could not do anything about the second kind of ghosts mentioned in Section 1, since the newly
revealed background did not match with BGa(x) and BGc(x). In order to eliminate these ghosts quickly,
some literatures [10,11] have increased the neighborhood diffusion rate. However, long-term static
foreground objects were also incorporated into the background. In this paper, we eliminated the
second kind of ghosts based on feedback mechanism and the histogram similarity. The method was
as follows.

Taking the “tunnelExit_0_35fps” video sequence as an example as shown in Figure 3, we analyzed
the formation process of ghosts caused by an object that existed in the first frame. There was a static
blue minibus from #000001 to #001683 (marked using red �) in this video sequence. It started moving
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from #001684, and a few foreground pixels were detected in the region where the blue minibus was
located. Then, foreground pixels continued to increase until the moving object and its ghosts separated,
as shown in #001685, #001686, and #001687. Finally, a stable ghost region was formed in #001688 and
#001689 frame (marked using red �). Of course, this process is only a necessary condition for the
formation of ghosts because this situation can also occur when a normally moving object becomes
motionless. However, as shown in Figure 4d–f., the histograms of the ghost region (marked using red
� in Figure 4c had high similarity on the #000001 and #001684 frames. On the contrary, the similarity
of the static foreground region was often very low on the first frame and the frame appearing objects
because of the difference of background and objects. Thus, we could utilize this characteristic to
distinguish the two case. Here, we needed to solve the following four issues.
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Figure 4. Histogram comparison of ghost region between #000001 and #001684. The region marked
using red � is the approximate location of the ghosts: (a) #000001; (b) #001684; (c) detection result of
#001689; (d) histogram of B channel; (e) histogram of G channel; (f) histogram of R channel.
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First, it was necessary to determine how to obtain the stable region. The connected foreground
region Wt(x), where pixel x was located at time t, was extracted by 8 neighborhood diffusion.
The stable foreground region Yt(x) was obtained until the difference of the number of pixels located at
the connected region among three adjacent frames was less than the specified threshold.

Yt(x) =

y

∣∣∣∣∣∣∣y ∈Wt(x)&

∣∣∣Regt−1(x) −Regt−2(x)
∣∣∣∣∣∣Regt(x) −Regt−2(x)

∣∣∣ < thre

 (12)

where Regt(x) is defined as the number of pixels of the connected region. We experimentally set the
threshold thre to 10%.

Second, it was necessary to determine how to get the frame number where the static foreground
started moving. We constructed a counter FCMT to count the times that each pixel was continuously
identified as a foreground pixel. Then, FN was used to record the frame number t in which each pixel
x starts to move. That is, FCMT was equal to 1:

FCMTt(x) =
{

FCMTt(x) + 1, if f gt(x) = 1
0, otherwise

(13)

FNt(x) =
{

t, if FCMTt(x) = 1
FNt(x), otherwise

(14)

Third, it was necessary to determine how to compute the histogram similarity of the stable region
between the first frame and the frame forming ghost. We used the MDPA histogram distance [28] to
compute the histogram similarity of the connected regions at location x.

MDPAC
(
HC

1 (x), HC
FNt(x)

(x)
)
=

M−1∑
i=0

∣∣∣∣∣∣ i∑
j=0

(
HC

1 (x)[ j] −HC
FNt(x)

(x)[ j]
)∣∣∣∣∣∣

M−1∑
i=0

HC
1 (x)[i]

(15)

Here, C ∈ {R, G, B}, HC
1 (x), and HC

FNt(x)
(x) denote the histograms of the connected region

corresponding to the first frame and the frame starts to appear ghosts at location x, respectively,
and the color histogram of R, G, B channels was quantified as the M (M = 64) bin.

If two histograms were similar, the connected region at location x was considered as ghosts.

Gt(x) =

 1, if max
C∈{R,G,B}

{
MDPAC

(
HC

1 (x), HC
FN(x)

)}
< Thist

0, otherwise
(16)

Here, Thist was the histogram similarity threshold and was set to 3 experimentally in the paper.
Finally, the ghosts were removed. When a pixel was considered a ghost (Gt(x) = 1), it was classified

as background, and the background model was reinitialized using the color and intra-LBSP feature
of 5*5 neighborhood pixels of the current frame. As shown in Figure 5, our proposed method could
effectively remove ghosts caused by incorrect model initialization, but a ghost was left (marked using
red �) in the detection results of SuBSENSE.
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2.3. Background Model Update

In complicate practical scenarios, background changes (i.e., gradual or sudden illumination
change, camera jitter, PTZ) often occur. Therefore, it was necessary to update background model to
adapt the scene changes after background/foreground classification. The conservative strategy was
used to select the pixels which needed to be updated, and a random observation replacement policy
was used to select the samples which was updated in the paper. So, the update process of our two-layer
background model (BGa(x) and BGc(x)) was as follows.

First, BGa(x) was updated using the current observation. When a new pixel x in current frame was
classified as background, a randomly selected background sample bga,k(x) from BGa(x) had 1/φ(x)
probability to be replaced by the features It(x) of the current observation x. Meanwhile, at y, a neighbor
of x, a randomly picked sample bga,i(y) from BGa(y) was also replaced by It(x) with 1/φ(x) probability.
That is,

bga,k(x) =
{

It(x), if rand(0, φ(x)) = 0
bga,k(x), otherwise

(17)

bga,i(y) =
{

It(x), if rand(0, φ(x)) = 0
bga,i(y), otherwise

(18)

Here, φ(x) is the time subsampling factor, and rand(0, φ(x)) is a function, which obtains a random
number between 0 and φ(x).

Then, the candidate background model BGc(x) was updated by the sample replaced in BGc(a)
Specifically, if the difference between the background sample bga,k(x) replaced and It(x) was larger
than the distance threshold R(x), bga,k(x) was stored in BGc(x) before it was replaced.

bgc, j(x) =
{

bga,k(x), if
∣∣∣bga,k(x) − It(x)

∣∣∣ > R(x)
bgc, j(x), otherwise

(19)

where
j = rand(0, φ(x)) (20)

It is worth mentioning that the conservative update strategy caused the deadlocks, and the false
positive (i.e., ghosts) was difficult to eliminate, since only the pixels marked as background were
updated. However, our candidate background model could solve the deadlock problem effectively
because bga,k(x) was not actually deleted but stored in BGc(x), as shown in Equation (19). The current
observation may not match with the samples in BGa(x) when intermittent moving objects are removed,
but it matched with the samples in BGc(x). Thus, the current observation was still classified as
background, and then there were no ghosts left.
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2.4. Parameter Analysis

As stated above, our proposed approach involved three important parameters: Similarity threshold
of LBSP gu,C,k(x), distance threshold R(x), and time subsampling factor φ(x). We analyze them in
detail in this section.

2.4.1. Similarity Threshold of LBSP

In SuBSENSE, gu,C,k(x) was initialized to gr.iu,C,k(x) and gr was set to 0.3 experimentally.
Thus, the initial value of gu,C,k(x) only depends on the intensity of the pixel x and is not relevant to
the location of x, so it is a global threshold. It is obviously unreasonable to use the same threshold in
different scenarios or different regions of the same scenario because of the same iu,C,k(x). This case
is illustrated by the pixels (451, 637) and (166, 653) of #000001 frame from “fall” video sequence of
the CDnet 2014 dataset in Figure 6. The pixel (451, 637) locates in the static region while the pixel
(166, 653) locates in the dynamic region. Both of their reference intensities located in the red # are 112.
Thus, the thresholds of both pixels are set to 33 (0.3*112 = 33) at the initial time. In fact, the threshold
of the pixel (451, 637) should be set to a smaller value (i.e. 15) for detecting the horizontal texture in
“154”, “141” and “131” (marked using the blue 3). The threshold of the pixel (166, 653) should be set
to a larger value (i.e., 50) for suppressing dynamic background. Although gu,C,k(x) is automatically
regulated over time based on the texture magnitude of the analyzed scenes in SuBSENSE, making little
texture scenes with a smaller threshold than that cluttered scenes. However, the regulation is based on
frame-level texture magnitude rather than pixel-level texture magnitude. Thus, gu,C,k(x) is always a
global threshold and cannot reflect the characteristics of a pixel or a local area.
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As analyzed above, gu,C,k(x) should vary with different scenarios or different regions.
We adaptively computed gu,C,k(x) based on the mean squared error of the background samples
in the paper. First, the background samples at location x integrated the spatial-temporal local
information of the pixel, since some of them came from the feature of the previous frames and the
others came from the feature of neighborhood pixel. Then, the distribution of the background sample
set in high-contrast region (i.e., swaying trees, rippling water) was more dispersed than that in
low-contrast regions (i.e., road, wall). Therefore, the dynamic background region had a large mean
squared error (MSE). Correspondingly, a small value was produced in the static background region.
Since the foreground pixels or noise can be involved into the background model in the model update,
the background samples with large difference (i.e., the maximum and minimum sample values) in the
model should not participate the calculation. Thus, gu,C,k(x) is defined as

gu,C,k(x) =ha,C(x), k = 1, 2, · · · , Nu (21)



Sensors 2020, 20, 4558 10 of 22

where

ha,C(x) =

√√√√√√ na∑
q=1

(
ia,C,q

(
x)−bga,C(x)

)2

na
(22)

Sa =
{
ia,C,k(x)

∣∣∣ia,C,k(x) − bga,C,min(x) > th1&
∣∣∣bga,C,max(x) − ia,C,k(x)

∣∣∣> th1, k = 1, 2, · · · , Na
}

(23)

bga,C(x) =

∑
ia,C,q(x)∈Sa

ia,C,q(x)

na
(24)

Here, na is the number of background samples in set Sa at location x. bga,C,min(x) and bga,C,max(x)
are the minimum and maximum color sample values in BGu(x), respectively. th1 is disturbance
threshold and was set to 3 experimentally. gu,C,k(x) was limited to the interval [3,30]. It is worth
mentioning that the main model and the candidate model utilized the same similarity thresholds in
this paper, since the main model better could reflect the change of scene.

As an example of the pixel (37, 102) on the #001430 frame from the “highway” video sequence and
the pixel (194, 73) on the #001030 frame from the “sofa” video sequence in Figure 7, Figure 7a,b show
the location of two pixels in the original frames. The former locates in the dynamic region and the latter
locates in the static region. Figure 7c–h are the color and intra-LBSP features in background sample set
obtained on blue channel using three methods: Our proposed algorithm with and without outliers, and
SuBSENSE. Here, the intra-LBSP features were defined as the number of “1.” Table 1 lists MSE of color
and LBSP feature in background sample set on three methods. It is not hard to find from Figure 7f–h that
our proposed method could obtain richer LBSP texture features at location (194, 73) than SuBSENSE,
which can also be illustrated by a larger LBSP MSE in Table 1. This was beneficial to detect camouflaged
static foreground objects. Then, we can see by comparing Figure 7d,e with Figure 7g,h that the color
and intra-LBSP features at location (37, 102) were more widely distributed than those at (194, 73) using
our proposed algorithm with outliers and SuBSENSE. The similarity threshold at location (37, 102)
should be set to a larger value. However, the difference of the color MSEs was small at two locations.
That is because some outliers (i.e., foreground pixels, noise) were included in the background sample
set. It is easy to cause the camouflaged object to go missing, which can be demonstrated by the missed
box in Figure 7o,p (marked by red #). Thus, these outliers were excluded in our final algorithm
(see Equation (22)) for detecting the camouflaged object (see Figure 7n). Moreover, since the distribution
of the background sample set was more disperse at location (37, 102), the difference of the color MSE
without outliers or with outliers was not obvious. Therefore, outliers only had a great influence on the
static flat region. In addition, although our proposed algorithm without outliers had a smaller color
MSE (21.57) than that of SuBSENSE (24.55) on pixel (37, 102), the dynamic background (marked by
yellow �) was still suppressed, as shown in Figure 7j. It attributes to our two-layer background model,
since the periodic motion background samples were stored in the candidate model and could match
with the current pixel.
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Figure 7. Comparison of background sample set between in static and dynamic regions. (a) Location
of observed pixel (37, 102) on highway #001430. (b) Location of observed pixel (194, 73) on sofa
#001030. (c) Background sample set obtained on (37, 102) by our proposed algorithm without
outliers. (d) Background sample set obtained on (37, 102) by our proposed algorithm with outliers.
(e) Background sample set obtained on (37, 102) by SuBSENSE. (f) Background sample set obtained
on (194, 73) by our proposed algorithm without outliers. (g) Background sample set obtained on
(194, 73) by our proposed algorithm with outliers. (h) Background sample set obtained on (194, 73) by
SuBSENSE. (i) Ground-truth masks of highway #001430. (j) Detection results of our proposed algorithm
without outliers on highway #001430. (k) Detection results of proposed algorithm with outliers on
highway #001430. (l) Detection results of SuBSENSE on highway #001430. (m) Ground-truth masks
of sofa #001030. (n) Detection results of our proposed algorithm without outliers on sofa #001030.
(o) Detection results of proposed algorithm with outliers on sofa #001030. (p) Detection results of
SuBSENSE on sofa #001030.

Table 1. MSE comparison of color and LBSP feature in background sample set on three methods.

Method SuBSENSE Our Proposed Algorithm
with Outliers

Our Proposed Algorithm without
Outliers (GhostDeReBS)

highway color: 24.55
LBSP: 3.16

color: 23.36
LBSP: 3.79

color: 21.57
LBSP: 3.32

sofa color: 28.21
LBSP: 0.28

color: 21.79
LBSP: 1.93

color: 1.64
LBSP: 1.79

2.4.2. Distance Threshold

The distance threshold R(x) is an extremely important parameter which adjusts the precision and
sensitivity of the background model for the local changes. In initial time, the color threshold Rcolor(x)
is set to 30 in SuBSENSE [11], 23 in WeSamBE [12], and 35 in SWCD [13], and the texture threshold
Rlbsp(x) is set to 3 for all the experimental scenarios. Then, they are automatically adjusted over time
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based on the historical detection results of each pixel. In fact, the initial value R0
color(x) and R0

lbsp(x)
directly influences the final segmentation results. It is unreasonable that they are set to the same
value for all scenes. Instead, they should be set to a large value in these scenes with highly dynamic
background and rich texture information for reducing false negatives. Otherwise, it is a small value
in static and weak texture scenes for increasing the true positive. In the paper, we initialized this
parameter according to the dynamic range, background dynamics, and texture complexity of every
scene. In fact, the dynamic range of a scene reflects the distribution of pixels. A narrow dynamic range
means that the distribution of pixels relatively concentrates and the difference between pixels is small
in the scene. Thus, a small distance threshold should be selected so as to detect the moving objects in
the scene. The background dynamics represent the background changes. These changes could be local
(i.e., swaying tree in the wind) or global (i.e., camera motion). In order to make sure that changing
background is not detected as foreground, a large distance threshold should be set. A rich texture can
improve identification of the foreground, but it increases the false positive in background region with
complex texture. This is a tradeoff. Thus, we appropriately increased the distance threshold in the
texture region.

First, the distribution of the color histogram was used to measure the dynamic range of an image
in Equation (25). If most of color values of an image are concentrated on a few bins, the dynamic range
is small.

RI = (XL + (1−KL)) + (Xa + (1−Ka)) + (Xb + (1−Kb)) (25)

where

Kcc =

∑
Hcc(i)>2(h∗w)/256

Hcc(i)

(h ∗w)
(26)

Xcc = #
{
Hcc(i)

∣∣∣Hcc(i) ≥ 2 ∗ (h ∗w)/256, i = 1, 2, . . . , 256
}
/256 (27)

Here, h and w specify the height and width of input image, respectively,
and Hcc(i)(i = 0, 1, 2, . . . , 255, cc = {L, a, b}) is defined as the frequency of the ith grayscale on Lab color
space. Kcc and Xcc represent the proportion of pixels and number of grayscale with higher frequencies,
respectively. Thereby, the larger Kcc is and the smaller Xcc is, the more concentrated the distribution
pixel values are. RI effectively reflects the dynamic range of a scene, and its value is in the interval
[0.3,1.3] in most of the scenarios.

Second, the change of background is measured by the mean value of the absolute difference
M0 between the first two frames. Generally, there are few moving objects in the first two frames.
Thus, M0 represents the background dynamics of the scene. M0 is almost equal to 0 in a static scenario
and a large value if the dynamic background elements are included in the scene or the camera moves.

M0 =

h∗w∑
q=1

∣∣∣In2(q) − In1(q)
∣∣∣

h ∗w
(28)

Here, In1 and In2 are the intensity of the first and second frames, respectively.
Third, the texture complexity of the scene is measured utilizing the mean value of Laplacian

texture feature of the first frame L0. A large L0 indicates that the scene has a strong texture.

L0 = Mean(Laplacian(In1)) (29)

where L0 ∈ [10, 60] in the CDnet2014 dataset.
Finally, the initial distance threshold can be obtained by

R0
color(x) = K0 ∗ (1 + RI) + M0 + L0/a (30)
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R0
lbsp(x) = L0/b (31)

Here, K0, a, and b are user-defined parameters. Comprehensively considering the research
results described by the authors of [11–13], we bound R0

color(x) and R0
lbsp(x) to the intervals [10,40]

and [1,6], respectively, to adapt most of the practical environments. Thus, we defined K0 = 10, a = 10,
and b = 10 in the paper. The modified initial R(x) can achieve a robust detection result against the
environment changes.

Next, the distance thresholds need to be updated for adapting gradual background changes in test
frames after their background/foreground segmentation. In Reference [11], it was adjusted according
to two important indexes: Background dynamics and local segmentation noise levels.

Background dynamics of the pixel x at time t is measured by a recursive moving average Dmin(x):

Dmin(x) = Dmin(x)·(1− α) + dt(x)·α (32)

where
dt(x) = min

{
dist

(
It(x), bga,k(x)

)∣∣∣∣k = 1, 2, · · · , Na
}

(33)

Here, α is the learning rate, and αST (=1/25) and αLT (=1/100) are a short-term learning rate and
a long-term learning rate, respectively, in SuBSENSE. dt(x) is the minimal normalized color-LBSP
distance between all samples in BGa(x) and It(x). Therefore, Dmin(x) ≈ 0 in a completely static
background region, and Dmin(x) ≈ 1 in a dynamic region and foreground object region.

The local segmentation noise level is measured by the accumulator v(x) of blinking pixels
(alternatively marked as foreground and background in time).

v(x) =
{

v(x) + vincr, if Xt(x) = 1
v(x) − vdecr, otherwise

(34)

where
Xt(x) = f gt(x) ⊕ f gt−1(x) (35)

Here, ⊕ refers to an XOR operation, and the increment parameter vincr and decrement parameter
vdecr are 1 and 0.1, respectively. v(x) converges to 0 for a stable pixel, and v(x) would have large
positive for constantly changing pixels.

Based on Dmin(x) and v(x), the distance threshold factor r(x) and distance threshold R(x) was
updated for each new frame according to Equations (36)–(38). Unlike Reference [11], we fused the
similarity threshold of LBSP ha,C(x) to update Rcolor(x). The improved distance threshold could quickly
respond to the change of the environment and accelerate the convergence of the algorithm, since ha,C(x)
has a large value in dynamic background region and a small value in static background region.

r(x) =
{

r(x) + v(x), if r(x) < (1 + Dmin(x) · 2)
2

r(x) − 1/v(x), otherwise
(36)

Rcolor(x) = (1− β) · r(x) ·R0
color(x) + β · (ha,R(x)+ha,G(x)+ha,B(x) )/3 (37)

Rlbsp(x) = 2r(x) + R0
lbsp(x) (38)

where r(x) was initialized to 1, βwas weighed and set to a little value (0.1 in the paper). ha,R(x), ha,G(x),
and ha,B(x) were updated by Equation (22).

2.4.3. Time Subsampling Factor

The time subsampling factor φ(x) is another important parameter in the sample-based detection
algorithm. φ(x) controls the update speed of the background model. A small φ(x) makes the model
updated with high chances, which leads to the cases in which slowly moving objects are assimilated
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into the background, generating false negatives. Conversely, a large φ(x) causes the background model
to adapt to the background changes slowly, resulting in ghosts that are not eliminated for a long time,
generating false positives.

φ(x) was initialized to 2 and was limited to the interval [2,∞]. It was updated by

φ(x) =

 φ(x) + 1
v(x)·Dmin(x)

, if f gt(x) = 1

φ(x) − v(x)
Dmin(x)

, otherwise
(39)

Meanwhile, in order to avoid camouflaged foreground pixels into background model, the edge
information was utilized to regulate the time sub-sampling factor in the process of neighbor diffusion.
More precisely, there is often strong texture information at the border between the background and
foreground regions. The neighborhood diffusion should slow down at the boundary. That is, we used
a large φ′(y) to update the background model of pixel y (a neighbor of x) when a pixel x was classified
as background ( f gt(x) = 0) and the Laplacian texture feature L(y) was larger than a user-defined
threshold th2, that is,

φ′(y) =
{
φ(x), if f gt(x) = 0&L(y) < th2

m0 ∗φ(x), if f gt(x) = 0&L(y) ≥ th2
(40)

where
th2 = 2(ha,R(x)+ha,G(x)+ha,B(x) )/3 (41)

Here, m0 should choose a slightly large value for slowing diffusion. The value was set to 5
experimentally in the paper.

3. Experimental Analysis

3.1. Dataset and Evaluation Metrics

In order to evaluate the performance of the proposed method, we selected the CDnet dataset [27]
as the test dataset. Compared with other dataset (i.e., Wallflower, PETS), the CDnet dataset has two
merits. One is the variety of scenarios. The earlier vision (CDnet 2012 dataset) offers 31 real world
scenes (more than 88,000 frames) and is classified into six video categories: Baseline, camera jitter
(CJ), dynamic background (DB), intermittent object motion (IOM), shadow, and thermal. In 2014,
the dataset was expanded to 53 videos (nearly 160,000 frames, 11 categories). The new added 22
videos are divided into five categories: Bad weather (BW), low frame rate (LF), night videos (NV), PTZ,
and turbulence, which have greater challenges. The expanded dataset almost covers all challenges on
change detection. The other is labeled ground-truth masks, making the results more reasonable for
comparing the proposed method with other methods.

The results were compared and quantified by the following seven metrics [27]: Recall (Re),
Specificity (Sp), False Positive Rate (FPR), False Negative Rate (FNR), Percentage of Wrong
Classifications (PWC), Precision (Pr), and F-Measure. The seven metrics are considered as official
metrics to test the effectiveness of the change-detection algorithms.

3.2. Discussion

3.2.1. How to Determine Na and Nc

We introduced two important parameters in the two-layer background model in Section 2.1:
Na (number of background samples in the main model) and Nc (number of candidate background
samples). Na was set to 50, 25, and 35, respectively, in SuBSENSE, WeSamBE, and SWCD. Nc was the
parameter increased in the paper. To determine the two parameters, the relationship among Na, Nc and
the average F-measure was analyzed on the CDnet 2014 dataset. We discussed Na and Nc in interval
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[0,50] with the increment of 5 to remain consistent with the above-mentioned literature. Here, we only
list the results of the bad weather, camera jitter, dynamic background, and low frame rate categories
in Tables 2–5, since the four categories represent four typical scenarios. For example, a bad weather
scene with lots of noise and a narrow dynamic range, camera jitter with the periodic and a global
background motion, dynamic background with a local background motion, and low frame rate scene
with the large displacement of a moving object.

Table 2. Average F-Measure scores obtained on camera jitter category using different Na and Nc.

Na

Nc
0 5 10 15 20 25 30 35 40 45 50

5 0.7046 0.7653 0.7679 0.7662 0.7660 0.7718 0.7719 0.7735 0.7725 0.7753 0.7778

10 0.7715 0.8144 0.8239 0.8302 0.8251 0.8300 0.8313 0.8332 0.8329 0.8352 0.8371

15 0.8027 0.8400 0.8497 0.8496 0.8519 0.8508 0.8522 0.8538 0.8529 0.8530 0.8524

20 0.8190 0.8484 0.8560 0.8537 0.8577 0.8589 0.8586 0.8601 0.8598 0.8589 0.8577

25 0.8277 0.8533 0.8541 0.8586 0.8582 0.8586 0.8603 0.8613 0.8610 0.8615 0.8619

30 0.8335 0.8521 0.8581 0.8599 0.8625 0.8615 0.8619 0.8625 0.8647 0.8634 0.8638

35 0.8417 0.8587 0.8605 0.8609 0.8620 0.8641 0.8631 0.8627 0.8623 0.8658 0.8629

40 0.8441 0.8575 0.8602 0.8634 0.8615 0.8626 0.8635 0.8645 0.8627 0.8643 0.8630

45 0.8442 0.8566 0.8601 0.8584 0.8657 0.8644 0.8631 0.8597 0.8577 0.8640 0.8598

50 0.8430 0.8489 0.8518 0.8435 0.8530 0.8535 0.8570 0.8544 0.8549 0.8558 0.8543

Table 3. Average F-Measure scores obtained on dynamic background category using different Na and
Nc.

Na

Nc
0 5 10 15 20 25 30 35 40 45 50

5 0.7505 0.7723 0.7911 0.8019 0.8146 0.8235 0.8292 0.8308 0.8340 0.8319 0.8313

10 0.7812 0.8041 0.8253 0.8496 0.8592 0.8644 0.8657 0.8679 0.8658 0.8611 0.8613

15 0.7995 0.8231 0.8558 0.8714 0.8782 0.8783 0.8786 0.8803 0.8750 0.8755 0.8702

20 0.8095 0.8398 0.8676 0.8800 0.8832 0.8851 0.8852 0.8845 0.8820 0.8820 0.8800

25 0.8252 0.8529 0.8797 0.8848 0.8873 0.8873 0.8861 0.8866 0.8862 0.8844 0.8836

30 0.8448 0.8667 0.8825 0.8874 0.8900 0.8897 0.8904 0.8911 0.8891 0.8886 0.8861

35 0.8589 0.8757 0.8861 0.8895 0.8922 0.8921 0.8921 0.8891 0.8898 0.8853 0.8837

40 0.8685 0.8799 0.8859 0.8926 0.8927 0.8935 0.8919 0.8910 0.8904 0.8850 0.8855

45 0.8754 0.8846 0.8894 0.8931 0.8922 0.8940 0.8923 0.8909 0.8891 0.8868 0.8843

50 0.8756 0.8867 0.8912 0.8922 0.8945 0.8923 0.8940 0.8900 0.8895 0.8877 0.8854
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Table 4. Average F-Measure scores obtained on low frame rate category using different Na and Nc.

Na

Nc
0 5 10 15 20 25 30 35 40 45 50

5 0.6487 0.6965 0.6885 0.6993 0.7162 0.7432 0.7631 0.7729 0.7793 0.7888 0.7925

10 0.6374 0.6513 0.6569 0.7040 0.7235 0.7420 0.7548 0.7643 0.7801 0.7941 0.8025

15 0.6932 0.6956 0.7007 0.7103 0.7325 0.7485 0.7511 0.7782 0.7965 0.8003 0.8085

20 0.7030 0.7003 0.7039 0.7101 0.7210 0.7414 0.7516 0.7800 0.7848 0.8064 0.8020

25 0.7071 0.7020 0.7053 0.7078 0.7252 0.7402 0.7530 0.7722 0.7937 0.7984 0.7978

30 0.7119 0.7159 0.7198 0.7079 0.7406 0.7319 0.7811 0.7927 0.7838 0.7983 0.8056

35 0.7067 0.7101 0.7170 0.7064 0.7159 0.7396 0.7599 0.7870 0.7857 0.7946 0.7985

40 0.7189 0.7138 0.7218 0.7169 0.7213 0.7402 0.7658 0.7646 0.7914 0.7965 0.8009

45 0.7149 0.7017 0.7150 0.7182 0.7258 0.7495 0.7751 0.7791 0.7817 0.7954 0.7977

50 0.7053 0.7209 0.7203 0.7229 0.7228 0.7376 0.7661 0.7769 0.7924 0.7935 0.7979

Table 5. Average F-Measure scores obtained on bad weather category using different Na and Nc.

Na

Nc
0 5 10 15 20 25 30 35 40 45 50

5 0.8405 0.8495 0.8524 0.8529 0.8540 0.8535 0.8534 0.8528 0.8527 0.8528 0.8521

10 0.8628 0.8684 0.8692 0.8690 0.8681 0.8668 0.8666 0.8657 0.8639 0.8636 0.8636

15 0.8734 0.8762 0.8751 0.8743 0.8734 0.8722 0.8714 0.8704 0.8696 0.8688 0.8675

20 0.8776 0.8796 0.8792 0.8769 0.8750 0.8744 0.8731 0.8723 0.8715 0.8706 0.8694

25 0.8807 0.8828 0.8819 0.8811 0.8793 0.8775 0.8767 0.8757 0.8745 0.8739 0.8732

30 0.8840 0.8667 0.8852 0.8845 0.8828 0.8815 0.8795 0.8787 0.8771 0.8762 0.8749

35 0.8857 0.8869 0.8853 0.8830 0.8813 0.8813 0.8801 0.8789 0.8766 0.8773 0.8760

40 0.8865 0.8879 0.8861 0.8841 0.8829 0.8809 0.8791 0.8785 0.8775 0.8756 0.8750

45 0.8886 0.8883 0.8871 0.8845 0.8826 0.8808 0.8786 0.8774 0.8770 0.8751 0.8750

50 0.8888 0.8893 0.8872 0.8850 0.8823 0.8800 0.8779 0.8760 0.8748 0.8742 0.8733

The blue entries indicate the better results in Tables 2–5. The F-Measure score first improved
and then degraded as Na or Nc increased. Therefore, it is not always better for Na or Nc to choose
a bigger value. Too many background samples cause the model to be overfitted. By comparing
Nc = 0 and Nc , 0 in Tables 2–5, it is not difficult to find that the candidate background model could
improve the F-Measure score. Taking the camera jitter category as an example, the F-Measure score
of Na = 20 and Nc = 10 was improved by about 2.3% over Na = 30 and Nc = 0. For the scenes
with background motion, such as camera jitter and dynamic background, a large Na was required to
store diverse background samples, and a relatively small Nc was set to rapidly adapt to the changing
scene. For example, the optimal F-Measure score was concentrated in Na = 45 and Nc = 25 in Tables 2
and 3. Moreover, it can be seen from Table 4 that Na was a small value in the relatively static scene
and Nc should be selected a larger value for adapting slowly changing background and remaining
background samples for a long time for reuse. For example, the F-Measure score was better when
Na = 15 and Nc = 40 in low frame rate category. In addition, a small Nc was needed in the scene with
narrow dynamic range as shown in Table 5 because the difference among pixels was not obvious. As a
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consequence, Na and Nc were determined according to background dynamics and the dynamic range
of the scene. The computing equations are as follows.

Na(x) = m1 + Rdy(x) ∗m2 (42)

Nc(x) =
(
1−Rdy(x)

)
∗m3 + (RI − 0.5) ∗m4 (43)

where

Rdy(x) =

∑
q∈Wp(x)

fo f (q)

p ∗ p
(44)

Here, Wp(x) is the p ∗ p neighboring pixel of x and p = 21 in the paper, fo f (q) is the detection result
of the second frame image using optical flow method, and Rdy(x) reflects the strength of the background
motion. The value of Rdy(x) was in the interval [0,0.5] in most of the scenarios. According Tables 2–5,
it can be seen that the performance was better when 15 ≤ Na ≤ 40 and 5 ≤ Nc ≤ 50. Thus, we set
m1 = 10, m2 = 50, m3 = 10, and m4 = 50.

3.2.2. Threshold Performance Analysis

In order to analyze the effect of the improved threshold in the proposed method, we list the
detection results of the following four cases in Table 6: (1) Using the distance threshold, LBSP similarity
threshold, and time subsampling factor in SuBSENSE; (2) using the LBSP similarity threshold and
time subsampling factor in SuBSENSE and using the improved distance threshold; (3) using time
subsampling factor in SuBSENSE and using the improved distance threshold and LBSP similarity
threshold; and (4) using the improved distance threshold, LBSP similarity threshold, and time
subsampling factor.

Table 6. Performance analysis of four cases on CDnet2014 Dataset.

Method Re Sp FPR FNR PWC Pr F-Measure

(1) 0.7569 0.9930 0.0070 0.2431 1.4777 0.8177 0.7535
(2) 0.7752 0.9944 0.0056 0.2248 1.2644 0.8172 0.7681
(3) 0.8420 0.9914 0.0086 0.1580 1.3260 0.7920 0.7890
(4) 0.8456 0.9908 0.0091 0.1544 1.3704 0.7892 0.7898

Note that red-bold entries indicate the best results in a given column, and blue-bold entries indicate that the
second-best results.

It can be seen from Table 6 that Re and the average F-measure score was continuously improved
from case (1) to case (4). Meanwhile, by comparing case (1) and (2) and case (2) and (3) in Table 6,
it is not hard to find that the average F-measure had a great improvement after using the improved
LBSP similarity threshold or the improved distance threshold. The reason was that the two thresholds
were adaptively determined according to the change of the scene and region itself, that is, a large
threshold in the regions with a fast-changing background, and a small threshold in the static and
low-contrast regions. In addition, the average F-measure had not been obviously improved after using
the improved time subsampling factor, as shown in case (3) and (4), because the time subsampling
factor was slightly adjusted.
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3.3. Experimental Results

3.3.1. Ghost Removal

The critical ghosts appeared in intermittent object motion (IOM) category and in
“tunnelExit_0_35fps” video sequence of “low framerate” category on the CDnet2014 Dataset.
In Section 2, we discuss the “sofa” and “tunnelExit_0_35fps” video sequence in Figures 2 and 3.
It can be seen that our proposed method removed ghosts. In order to analyze the advantages and
disadvantages of our proposed method, we tested more video sequences in Figure 8, which included
the “abandonedBox,” ”parking,” and “winterDriveway” scenario in the IOM category. In the
“abandonedBox” scenario, there was a red box on the road from the first frame, and then it started to
move from the #2446 frame. In the “parking” scenario, there was a white car in the parking lot from
the first frame and then it was driven away from the #1334 frame. Both the red box and car in the two
video sequences were used to model the background, hence ghosts often occur (marked by pink �)
after being moved away in most of detection method. However, our proposed algorithm effectively
removed ghosts. It is well known that no algorithm is omnipotent. Our proposed method could not
remove ghosts when the background changed, as shown in “winterDriveway” scenario in Figure 8.
In future work, we will extend our method to adapt to background changes.

1 
 

 

Figure 8. Analysis of advantages and disadvantages of our proposed method in ghost removal.

3.3.2. Average Performance on CDnet2014 Dataset

In this section, we demonstrate the effectiveness of our proposed method by comparing Re, Sp,
FPR, FNR, PWC, Pr, and F-Measure with those of the state-of-the-art change detection approaches.
The website on changedetection.net (CDnet) reported detailed segmentation results and evaluation
data of dozens of change-detection algorithms on CDnet. In this paper, we systematically compared
the proposed method with several related the state-of-the-art methods, such as SuBSENSE, PAWCS,
WeSamBE, SWCD, SharedModel [6], and BSUV-Net [18]. First, the average performance of several
algorithms is summarized in Table 7. By observing Table 7, we can see that our proposed method
had the highest recall (0.8456) and the lowest FNR (0.1544). In particular, the recall obtained by our
method outperformed the second-best method (SuBSENSE) by about 3.3%. The precise achieved by our
method was ranked second. Meanwhile, the F-measure value (0.7898) was improved by 3% compared
to SWCD and was even better than BSUV-Net. Thus, the proposed method was in competition with
best methods.
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Table 7. Overall performance analysis of several the state-of-the-art methods on CDnet2014 Dataset.

Method Re Sp FPR FNR PWC Pr F-Measure

SuBSENSE 0.8124 0.9904 0.0096 0.1876 1.6780 0.7509 0.7408
PAWCS 0.7718 0.9949 0.0051 0.2282 1.1992 0.7857 0.7403

SharedModel 0.8098 0.9912 0.0088 0.1902 1.4996 0.7503 0.7474
WeSamBE 0.7955 0.9924 0.0076 0.2045 1.5105 0.7679 0.7446

SWCD 0.7839 0.9930 0.0070 0.2161 1.3414 0.7527 0.7583
BSUV-Net 0.8203 0.9946 0.0054 0.1797 1.1402 0.8113 0.7868

GhostDeReBS 0.8456 0.9908 0.0092 0.1544 1.3704 0.7892 0.7898

Note that red-bold entries indicate the best results in a given column, and blue-bold entries indicate that the
second-best results

Furthermore, the F-measure of each category is presented in Table 8. The proposed method
gave superior results in the bad weather, camera jitter, intermittent object motion, low framerate,
and turbulence categories. Especially, the F-measure of the camera jitter, low framerate, and turbulence
categories increased about 4.3%, 5.5%, and 11% compared to the second-best method, respectively.
For the dynamic background and shadow categories, our method ranked second. However, our method
was not good at the night video and PTZ categories. The reason was that the proposed algorithm could
only deal with background movements in a small range.

Table 8. F-measure comparison of each category on the CDnet 2014 dataset.

Category SuBSENSE PAWCS SharedModel WeSamBE SWCD BSUV-Net GhostDeReBS

BW 0.8619 0.8152 0.8480 0.8608 0.8233 0.8713 0.8718
baseline 0.9503 0.9397 0.9522 0.9413 0.9214 0.9693 0.9517

CJ 0.8152 0.8137 0.8141 0.7976 0.7411 0.7743 0.8583
DB 0.8177 0.8938 0.8222 0.7440 0.8645 0.7967 0.8817

IOM 0.6569 0.7764 0.6727 0.7392 0.7092 0.7499 0.7841
LF 0.6445 0.6588 0.7286 0.6602 0.7374 0.6797 0.7923
NV 0.5599 0.4152 0.5419 0.5929 0.5807 0.6987 0.5141
PTZ 0.3476 0.4615 0.3860 0.3844 0.4545 0.6282 0.4112

shadow 0.8986 0.8913 0.8898 0.8999 0.8779 0.9233 0.9131
thermal 0.8171 0.8324 0.8319 0.7962 0.8581 0.8581 0.8190

turbulence 0.7792 0.6450 0.7339 0.7737 0.7735 0.7051 0.8907

Note that red-bold entries indicate the best results in a given row, and blue-bold entries indicate that the
second-best results.

Finally, some visual results for various video sequences are shown in Figure 9. From top to bottom,
the sequences are skating, badminton, fall, tramstop, turnpike_0_5fps, backdoor, and turbulance0.
They are from the bad weather, camera jitter, dynamic background, intermittent object motion,
low frame rate, shadow, and turbulence category, respectively. From the #1141 frame in the badminton
sequence, the #3189 frame in the fall sequence, and the #2580 frame in the turbulance0 sequence,
we can see that our proposed algorithm was less sensitive to dynamic background, camera jitter
(periodic motion background), and noise compared with other methods because of a large distance
threshold. In the “tramstop” scenario, there was a red box, which was put on the road from the #1030
frame and then kept motionless. Sample-based background subtraction often makes the static objects
slowly incorporated into the background. However, our proposed algorithm still remained a part of
foreground object after 2000 frames, as shown in green 3. Meanwhile, as seen from the #917 frame
in the skating sequence, our proposed algorithm detected the camouflaged person (marked using
pink �). In addition, our proposed algorithm eliminated weak shadow (marked using red 3).
Therefore, our proposed algorithm was effective for suppressing dynamic background, removing the
ghosts, and detecting camouflaged objects.
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Figure 9. Some segmentation results for various video sequences on the CDnet 2014 dataset.

3.3.3. Processing Speed

In this paper, all algorithms ran on an AMD Ryzen 3.7 GHz processor, which produced by AMD
(Advanced Micro Devices, Inc.) in Sunnyvale, California, USA and was sourced in Chengdu, China.
The experimental code is edited and complied in VS2015 and Opencv 3.0 with 16GB RAM. Table 9
lists the runtime of our proposed algorithm and SuBSENSE on three video sequences with different
resolution. The runtime of our proposed algorithm was slower than that of SuBSENSE by about
one-fifth on “highway,” one-fifth on “skating,” and one-third on “fall,” respectively. The reason is that
Equation (12) and Equation (22) in our algorithm needed spend more time. The time complexity on
“fall” was higher than “highway” and “skating” because of a higher number of background samples
used on “fall.” In the future work, we will modify the update mechanism in Equation (22) and the
connected region computation strategy to reduce the overall computing time of the algorithm.

Table 9. Runtime comparison on three video sequences with different resolution.

Method Highway (240*320) Skating (360*540) Fall (480*720)

SuBSENSE 15.3 fps 6.7 fps 4.2 fps
GhostDeReBS 12.6 fps 5.2 fps 2.8fps

4. Conclusions

In this paper, we proposed a ghost detection and removal method using sample-based two-layer
background model and histogram similarity, which removed the ghosts caused by incorrect model
initialization and intermittent object motion. In addition, the candidate background model added
could decrease the false positive detection cause by periodic background motion because it extends
the lifespan of the background samples. Then, we modified the color and texture distance threshold,
internal similarity threshold of LBSP feature, and time subsampling factor according to the characteristic
of the scene and region. The improved parameters were beneficial to suppress dynamic background
and detect camouflaged objects. Our proposed algorithm was proved to be effective in comparison to
other the state-of-the-art methods. However, our proposed algorithm was not suitable for the scenarios
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with substantial background changes. In this case, ghosts were removed slowly by the neighborhood
diffusion strategy in the SuBSENSE framework. This problem is a promising direction for future work.
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