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ABSTRACT
This paper reports the improvement in the efficiency of embedded-cluster model (ECM) calculations in ORCA thanks to the 
implementation of the fast multipole method. Our implementation is based on state-of-the-art algorithms and revisits certain 
aspects, such as efficiently and accurately handling the extent of atomic orbital shell pairs. This enables us to decompose near-
field and far-field terms in what we believe is a simple and effective manner. The main result of this work is an acceleration of the 
evaluation of electrostatic potential integrals by at least one order of magnitude, and up to two orders of magnitude, while main-
taining excellent accuracy (always better than the chemical accuracy of 1 kcal/mol). Moreover, the implementation is versatile 
enough to be used with molecular systems through QM/MM approaches. The code has been fully parallelized and is available 
in ORCA 6.0.

1   |   Introduction

During the last three decades, electrostatic embedded-cluster 
methods (ECM) have proven very efficient for studying defects 
or local electronic properties in semi-conductors and insulators 
[1–8]. The strategy is to put most of the computational effort on 
a well localized area of interest, the finite cluster, using accurate 
but demanding quantum mechanical (QM) methods to describe 
it. The applied level of theory can be density functional theory 
(DFT), Hartree–Fock (HF), or higher-accuracy post-HF as offered 
by the employed QM calculator. The effect of the environment is 
retrieved in an approximate fashion by electrostatically embed-
ding the cluster into an array of point charges (PC), the molecu-
lar mechanics (MM) area. In between the QM and MM areas, a 
layer of effective core pseudo-potentials (ECP) is inserted, which 
prevents the overpolarization of the QM density by the positive 
PCs in the MM part also known as the “electron spill-out” prob-
lem [9–12]. The PCs reproduce the long-range electrostatic inter-
actions present in an infinite crystal. This can be achieved in two 

ways: either through a periodic array of PCs [13] or a finite array 
of PCs [14]. The unpolarized electrostatic potential generated by 
the MM PCs is incorporated into the one-electron part of the QM 
Hamiltonian. In the context of a QM/MM additive scheme, this 
is commonly referred to as the coupling term between the QM 
and MM regions. To refine this model, one can account for the in-
duction effect by using a polarizable embedding, where the MM 
and QM components are mutually and self-consistently polarized 
during the QM calculations [15, 16].

One advantage of such ECM models is that they do not suffer 
from spurious self-interactions between defects or adsorbates 
that happen in the alternative periodic boundary conditions 
(PBC) calculations often used to study semi-conductors and in-
sulators. One can indeed increase the size of the supercell in the 
PBC model to prevent such artificial interactions, but this comes 
with an increase of the computational cost. In this respect, the 
ECM models optimize computational resources (time and mem-
ory) by prioritizing the description of the electronic structure of 
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the QM part and enable the use of broad range of methods from 
non-periodic QM programs, methods often not yet available 
under PBC [17, 18]. For example, the domain-based local pair 
natural orbital coupled-cluster theory (DLPNO-CCSD(T)) [19] is 
currently a reference method, providing access to more precise 
electronic energies than DFT approaches, with a linear scaling 
[20]. Both methods (ECM + DLPNO-CCSD(T)) have recently 
been used together to properly evaluate the adsorption energy of 
CO2 on the surface of rutile (TiO2) [21].

Interestingly, these ECM approaches also provide access to 
properties typically considered obtainable only through periodic 
calculations, such as the band gap of semi-conductors [22]. In 
some cases, ECMs can even yield better results than PBC calcu-
lations by accurately modeling the antiferromagnetic properties 
of oxide materials [23]. However, it is important to recognize that 
ECMs are only complementary to PBCs. While ECMs cannot be 
applied to metals with a vanishing band gap and lack the ability 
to describe critical aspects such as system symmetry and long-
range dispersion corrections—which can be crucial depending 
on the system studied—they still offer valuable insights. When 
used alongside PBC calculations, ECMs enhance the overall un-
derstanding of the material properties.

Another field where those approaches could prove particularly use-
ful is heterogeneous catalysis, where the cluster approach enables 
to access crucial information about the reaction intermediates 
[24]. In order to go beyond and reach real-surface electro-catalysis 
with accurate atomistic structure description under operando 
conditions, it is necessary to increase the cluster size. Today, it ap-
pears that the minimum number of PCs to reach the convergence 
of the property of interest (i.e., the calculated property is not im-
pacted anymore by an increase of the size of MM area), can go up 
to NPC = 104 if not 106 for QM clusters made of 200–300 atoms. 
However, for 104 − 105 PCs, the evaluation of the PC electrostatic 
potential becomes one of the most demanding steps of the whole 
single-point QM calculation. It requires summing the Coulomb in-
teractions between all relevant charge distributions within the sys-
tem. Specifically, this process scales quadratically with the number 
of basis functions (NBF) used to describe the quantum cluster, since 
interactions must be evaluated between each pair of basis func-
tions. Additionally, the scaling is linear with respect to the number 
of point charges in the environment, as each point charge interacts 
with every basis function. Consequently, as the size of the system 
grows, both in terms of basis functions and point charges, the com-
putational cost increases significantly, becoming more demanding 
for larger systems, with an overall scaling of O(NPC × N2

BF). As 
a matter of illustration, it already takes ≈ 30% of one single point 
calculation for a cluster of 136 NaCl atoms surrounded by 7 × 104 
PCs at the DFT level of theory (PBE/def2-TZVP [25, 26]).

It would be beneficial to reduce the computation of this PC elec-
trostatic potential, which serves as an approximate correction 
to account for the environment, in order to preserve one of the 
primary objective of ECM approaches, that is reduce the compu-
tational time attributed to the MM area. However, the Coulomb 
potential, V(r) = 1

r
, converges very slowly with distance r, so 

that long-range Coulombic interactions are difficult to ignore 
by truncation. On the quantum side, certain techniques like 
prescreening negligible integrals (e.g., the Schwartz inequality) 

can significantly reduce computational effort. In this context, 
we leveraged the highly efficient prescreening tools already im-
plemented in ORCA [27]. However, the challenge remains in 
efficiently handling the classical environment's impact on the 
overall calculation. Established solutions to cope with this up-
scale effect of adding numerous PCs are the Ewald summation 
method with its improved particle mesh version [28, 29] and 
the fast multipole method (FMM) [30]. Both methods share the 
philosophy of splitting the interactions between a short and a 
long range terms, fixed by a distance parameter. In the short 
range (SR) regime, direct pairwise interactions are calculated 
explicitly, while in the long-range, the interactions are approxi-
mated in order to save computational time. The approximation, 
again, depends on a summation parameter. The Ewald sum-
mation methods have been developed to deal with periodic sys-
tems. There, the long-range interactions are evaluated through 
Fourier transform in the reciprocal space. On the contrary, the 
FMM can be used with both periodic [31–33] as well as finite 
embedding. Regarding the latter case, it has actually already 
been used and proven extremely useful in the context of QM/
MM calculations, especially when more expensive polarizable 
embedding schemes are employed [34–40].

In this work we show how to improve the efficiency of ECM and 
(additive) QM/MM calculations using ORCA [1], by accelerating 
the evaluation of the unpolarized electrostatic potential gener-
ated by the MM PCs. Though many quantum chemistry pack-
ages are equipped with FMM or have been interfaced with FMM 
libraries [34, 37, 41–43], we believe that adding it to ORCA would 
be a great benefit to the community enabling to couple efficient 
ECM calculations with ORCA's cutting-edge electronic-structure 
methods. Therefore, we have implemented the very FMM 
(VFMM) in ORCA using state of the art algorithms based on an 
octree hierarchy, avoiding complex arithmetic and handling ex-
tent of atomic orbital shell pairs (SP) in an efficient and accurate 
way [44–47], for the evaluation of the PC electrostatic potential.

In the Theoretical Background section (Section 2), we introduce 
the algorithm and its relevant parameters necessary for the 
reader to understand the discussion. Details about the specific 
implementation in ORCA [48] are provided in Section  3. In a 
fourth section, we discuss the results obtained with the imple-
mented FMM for a solid state calculation (cf. Section 4.1), both 
regarding the accuracy and the efficiency of the algorithm, and 
we provide suggestions for the selection of crucial model param-
eters. Following that, in Section 4.2, based on the conclusions 
drawn in Section 4.1, we apply the methodology to a biological 
example, photosystem II in a lipidic membrane, to ensure the 
implementation is general enough. The next section (Section 4.3) 
focuses on one of the main parameter (the Tree Depth [TD]) 
of the algorithm, offering a direct method for determining its 
value without the need for iterative adjustments. Finally, the last 
Section  4.4 provides a discussion on the scaling of the imple-
mented method.

2   |   Theoretical Background

In this section, we only reiterate the important considerations 
in order to make this paper self-contained and introduce the 
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notations for the specific case of QM/PC interactions through 
FMM. Indeed, the FMM algorithm has already been fully de-
scribed in several references [30, 37, 49].

The idea of the algorithm is handle short- (SR) and long-range 
(LR) interactions differently. In the SR or near-field (NF) re-
gime, the electrostatic interaction between a point charge A 
(qA, rA) and a Gaussian distribution overlap �(r) = �(r)�(r) 
with center in rB (rA ≠ rB), UNF

A� , can be expressed as:

In the paper the Coulomb constant, k = 1

4��0
, is set to 1, accord-

ing to the atomic unit convention.

Since ORCA 6.0, these specific NF one-electron integrals are 
evaluated through SHARK which drives most integral-related 
tasks in ORCA [27].

In the LR or far-field (FF) regime, this Coulomb type interaction 
is approximated by a multipole expansion. In the following, we 
will introduce the main equations derived for the evaluation of 
this FF interaction, UFF (more details on the derivation can be 
found in Supporting Information).

In a space of origin O(0,0,0), let A (rA) and B (rB) be the centers of 
two charge distributions (cf. Figure 1). The Coulomb interaction 
between these two centers can be expressed as:

The Coulomb interaction kernel 1

∣ rA − rB ∣
 can also be formulated 

by the partial-wave expansion:

with ΔrAB = rAP − rBQ and � the angle between the two vectors 
rQP and ΔrAB.

Pl(cos(�)) are Legendre polynomials, with ∣ Pl(cos(�)) ∣ ≤ 1, so 
that the series converge if and only if ∣ ΔrAB ∣ < ∣ rQP ∣. This is 
the reason why A and B have to be well separated, which de-
fines the FF regime.

Alternatively, following the work of Helgaker et al. the partial-
wave expansion can be given in terms of regular (Rl,m) and irreg-
ular (Il,m) solid scaled harmonics [46, 50]:

with

and Cl,m, Racah normalized spherical harmonics.

We can now introduce the multipole moment Q(rC, P) expanded 
in P (rP) of a charge distribution centered in rC. It is a vector, 
with elements Ql,m = f

(
Rl,m

(
r − rP

))
 defined by the pair of values 

(l, m).

In the case of a point charge A (qA, rA) we have (r = rC):

For a Gaussian overlap distribution, �� centered in rB the multi-
pole moment integrals are given by

Now the electrostatic interaction between �(r)�(r) with center 
in rB and a point charge A (qA, rA) in its FF, can be expressed as:

with Q and P being the respective centers of the multipole ex-
pansions and I being the interaction matrix which elements are 
defined as:

In practice, the summation in Equation (4) is truncated to a max-
imum value of l, which is referred to as the maximum angular 
momentum (Lmax) of the expansion. As stated in Ref. [46], one 
can actually estimate an upper boundary of the error, �Lmax

AB
, due 

to the truncation of the expansion. Following Equation (3) and 
using summation formula on the hypergeometric series one gets:

and an upper boundary for the error, �Lmax,max
AB

, is then:

(1)UNF
A� = ∫

qA�(r)�(r)

∣ rA − r ∣
dr

(2)UAB = f

(
1

|rA − rB|

)

(3)
1

∣ rA − rB ∣
=

∞∑

l=0

Pl(cos(�))
Δrl

AB

rl+1
QP

(4)

1

∣ rA − rB ∣
=

∞∑

l=0

l∑

m=−l

∞∑

j=0

j∑

k=−j

(−1)jRl,m
(
rAP

)
Il+j,m+k

(
rQP

)
Rj,k

(
rBQ

)

(5)Rl,m(r) =
1

√
(l −m) ! (l +m) !

rlCl,m(r)

(6)Il,m(r) =
√
(l −m) ! (l +m) !

Cl,m(r)

rl+1

(7)QA
l,m

(
rA,P

)
= qA × Rl,m

(
rA − rP

)

(8)Q��

l,m

(
rB,P

)
= ∫ �

(
r�
)
Rl,m

(
r� − rP

)
�
(
r�
)
dr�

(9)∫
qA�(r)�(r)dr

∣ rA − r ∣
= Q��

(
rB,Q

)
I
(
rPQ

)
QA

(
rA,P

)

(10)Ilm,jk
(
rPQ

)
= (−1)jIl+j,m+k

(
rPQ

)

(11)

�
Lmax
AB

=

∞∑

l=0

ΔlrAB

rl+1
QP

Pl(cos �)−

Lmax∑

l=0

ΔlrAB

rl+1
QP

Pl(cos �)≤
∞∑

l=0

ΔlrAB

rl+1
QP

−

Lmax∑

l=0

ΔlrAB

rl+1
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FIGURE 1    |    Two particles A and B in the far field of each other, with 
their respective center of expansion P and Q.
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From Equation  (12), one can see that �Lmax,max
AB

 is a function of 
both the Lmax and the rQP distance between centers of expansion: 
the higher Lmax, the smaller the error; similarly, the bigger rQP, 
the smaller the error.

The distinction between NF and FF regions arises from de-
composing the space into discrete boxes. This process involves 
placing the entire system into a single box, which is then itera-
tively subdivided into eight smaller boxes, forming hierarchical 
levels. This hierarchical structure, known as an octree, is the 
natural outcome of domain decomposition in three dimensions 
(3D) (see Figure 2). The maximum level of subdivision, which 
indicates the depth of the tree, is referred to as the TD.

The NF is usually composed of one layer of 26 nearest neighbors 
boxes (in 3D) (dark purple boxes in Figure 2), while the FF con-
tains (8TD − 27) boxes. In our implementation we revisited the 
definition of the NF area (cf. Section 3), so that the number of 
NF boxes is always greater or equal than 27, and the QM distri-
bution is well separated from the FF PCs.

For each box (B) at the deepest level (i.e., smallest boxes), con-
taining elements of the QM subsystem, the electrostatic potential 

generated in B, VB, due to PCs in the MM subsystem, can be di-
vided between a close NF (VNF

B ) and a distant FF potential (VFF
B ):

with:

Regarding the FF term, the center of the expansion (P) is arbi-
trary (cf. Equations (7) and (8)). Thus, for all PCs within a Box C 
centered in C, we can use C as center of expansion. By summing 
the resulting multipole expansions of each point charge within 
the box, we can form a single, unique multipole expansion:

and VFF
B  becomes:

Besides, as visible in Figure  2, we can divide the FF area be-
tween a local FF (LFF) area and a remote FF area (RFF), so that 
a recursive scheme between levels appears:

The LFF boxes are the boxes in the NF of the parent but not 
in the NF of the children, that represents a maximum of 189 
boxes. The RFF potential is due to boxes which actually rep-
resent the FF area of the parent box of B. This means that one 
only needs to calculate the LFF term at every level, the rest 
of the potential will be inherited from the parent box. This is 
done by translating the center of the expansion of the potential 
from the center of the parent box to the center of Box B. The 
translation of these expansions is made possible by invoking 
again the addition theorem for solid harmonics, which enables 
to introduce the translation matrix W and its transposed form 
WT [46]. The first one will be used to translate a multipole 
expansion (Q) from one center to another (e.g., children to 
parent):

The second will be used to translate a potential (VB = I
(
rPB

)
QP):

The elements of the translation matrix are defined as:

(12)

�
Lmax,max

AB
=

∞∑

l=0

ΔlrAB

rl+1
QP

−

Lmax∑

l=0

ΔlrAB

rl+1
QP

=
1

rQP−ΔrAB

(
ΔrAB
rQP

)Lmax+1 (13)∀B, VB = VNF
B

+ VFF
B

(14)VNF
B =

∑

A(rA)∈NF(B)

qA
∣ rA − rB ∣

(15)QC
(
rC
)
=

∑

A∈C

QA
(
rA,C

)

(16)VFF
B =

∑

C∈FF(B)

I
(
rCB

)
QC

(
rC
)

(17a)∀B, VFF
B

= VLFF
B

+ VRFF
B

,

(17b)VFF
B = VLFF

B +WT
Parent(B)→B

VFF

Parent(B)
,

(18)Q
(
r2
)
=W

(
r1 − r2

)
Q
(
r1
)

(19)V
(
r2
)
=WT

(
r1 − r2

)
V
(
r1
)

(20)Wlm,jk

(
rPQ

)
= Rl−j,m−k

(
− rPQ

)

FIGURE 2    |    Illustration of the octree box hierarchy in 2D. Up to 
three divisions of the initial box are shown, corresponding respectively 
to levels L = 1, L = 2, and L = 3. The nearest-neighbors boxes of a light 
purple box are represented with dark purple. The FF boxes ones are rep-
resented either with green when in the Local Far Field or with gray oth-
erwise (Remote Far Field).
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Finally, for every SP, the corresponding electrostatic perturbation 
to the one-electron Hamiltonian due to the PCs can be written as:

3   |   Implementation

The PC embedding FMM method was implemented in a devel-
opment version of ORCA program package, and is now available 
within ORCA 6.0. With this version all calculations referred to 
in this paper were performed.

The algorithm can be summarized and divided in five princi-
ple steps:

1.	 Building the octree hierarchy, label QM boxes, and sepa-
rate NF from FF boxes.

2.	 Evaluate the multipole moments at the deepest level for 
every box in the FF.

3.	 Translate the multipole moments from bottom to top of the 
tree (i.e., from children to parent).

4.	 Build VFF at the highest level and translate it to the bottom 
of the tree (i.e., from parent to children).

5.	 For every SP, build the corresponding multipole moment inte-
grals (Equation 8) and evaluate the electrostatic potential inte-
grals (Equation 21), which are added to the core Hamiltonian 
matrix (i.e., the one-electron part of the Fock matrix).

3.1   |   Building the Octree Hierarchy

The total number of levels, which corresponds to the TD, is set 
by the user directly, or indirectly by setting the box dimension at 
the deepest level. In the latter case, the value of the box length 
at the deepest level, a, is doubled N times until the value ob-
tained is greater or equal than the length of the initial box, a0, 
surrounding the whole system: 2N × a ≥ a0. The TD is then set 
accordingly to the value N.

An option has been implemented to refine the box dimension 
such that TD is kept unchanged but the dimension of the box is 
as small as possible (plus a small increment of 0.2 a.u. for safety). 
That is the box dimension is redefined according to:

The impact of the optional refinement of a is discussed in 4.3. 
At every level, the boxes are indexed with three integers I, J, and 
K, defining their 3D coordinates (for instance the blue box in 
Figure 4 is defined by the indices (3,2,0)). These three integers 
are then zipped into a single integer, which was inspired from 
Gargantini's quadtree [45] and uniquely defines the box in the 
hierarchical grid. This unique identifier enables to efficiently ac-
cess information such as the parent or children box index, and 

the box level. The zipping operation is done by combining the 
bits of I, J, and K integers in an interleaved manner bit by bit, 
using the AND, OR, and SHIFT operations. As a matter of illus-
tration, the index of box (I = 3, J = 2, and K = 0) (at Level l = 2, i.e., 
third highest level) is obtained by combining the bits of 3 (11), 
2 (10), and 0 (00) in the following way 011001 which is equal to 
16 + 8 + 1 = 25. Twenty five is the index of this specific box (3,2,0).

3.2   |   Separation Between NF and FF 
(Well-Separateness Criterion)

Boxes containing SP centers are labeled as QM boxes, and all 
PCs within these boxes are, by definition, in the NF. The re-
maining boxes are then classified as either NF or FF.

For interacting discrete PCs, the difference between the dis-
tances of the PCs to their respective expansion centers (ΔrAB) 
must be smaller than the distance between their expansion cen-
ters (rQP) to guarantee convergence of the multipole expansion 
(cf. Equation (3)). Thus, it is enough to employ a single layer of 
NF boxes for an FMM implementation in the case of classical 
PC/PC interactions. However, for continuous charge distribu-
tions, which are not by definition confined to a single point in 
space, this is not true anymore. Hence, for every SP ��, we define 
a center of expansion, P��, and an extent parameter rext, which 
delineate a sphere (centered in P��) of radius rext outside of which 
the overlap integrals and so the multipole integrals are negligi-
ble (i.e., Q𝜇𝜈

(
rext − rP

)
< 10−5) (For more information see SI and 

Neese et al. [51]).

Then for any SP �� in a Box B (rB) and centered in P (rP), the cor-
responding NF boxes are of two types: B's 26 nearest neighbors, 
and any Box C whose center is too close to the sphere of radius 
r
��

ext centered in P. Mathematically, this condition is fulfilled 
whenever the distance d = ∣ rP − rC ∣ − ∣ rext ∣ is smaller than 
the diagonal of the box: d <

√
3 × a. If not, this ensures that no 

point in space is both within the SP sphere and Box C.

For efficiency reasons, we define a unique subset of NF boxes, 
containing all NF boxes of every SP of all QM boxes (cf. Figure 3). 
The PCs of this subset are then removed from the list of PCs and 
the electrostatic potential generated by them is calculated in a 
direct pairwise manner in ORCA's integral module SHARK. In 
that way we have just excluded all PCs that could be too close to 
the charge distribution for the multipole expansion to converge. 
All other PCs are expanded into multipole expansions and dealt 
with through the FMM routine.

3.3   |   Evaluate the Multipole Moment of FF Boxes

The multipole moment generated by a point charge A (qA, r) is 
given by Equation (7), with rP the center of the box. The regu-
lar solid scaled harmonics terms (Rl,m) are generated through a 
recursive scheme following Ref. [46]. The truncation parameter 
of the expansion (Lmax) is set by the user. Boxes containing no 
particles are removed from the tree to gain efficiency. Complex 
numbers are avoided by handling real and imaginary compo-
nents of R separately.

(21)U
��

B
=

∑

A(rA)∈NF(B)
∫
qA�(r)�(r)dr

∣ rA − r ∣
+Q��

(
r�� ,B

)
VFF
B

(22)a =
a0
2TD

+ 0.2
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3.4   |   Evaluating Multipole Integrals

The multipole integrals over Gaussian SPs are currently eval-
uated in the Cartesian multipole basis through McMurchie 
Davidson scheme  [52] and afterwards transformed into the 
spherical multipole basis using ORCA's integral module SHARK 
[28]. The multipole-moment integrals are always expanded in 
the box centers to avoid the costly origin translation of the inte-
grals. The box in which the multipole moments integrals have 
their expansion center is assigned from the respective SP center 
(more details can be found in Ref. [51]).

3.5   |   Translations

One can decompose the translation operations between two 
steps, the first one being the translation of the multipoles from 
the deepest to the highest level, the second one being the trans-
lation of the FF potential from the highest to the deepest level.

Translation of the multipole moments from the chil-
dren boxes  to the parent boxes is done through the use of 
the W translation matrix. The translation of a potential from 
the top to the bottom of the tree is done using the trans-
posed WT matrix (cf. Equations  (18) and (19)). The trans-
lation matrices are actually not build per se and stored. 
Instead, we calculate on the fly the non-zero elements of the 
matrix and contract them  directly  with either the multipole 
moments (Equation  (18)) or with the FF potential vectors 
(Equation (18)). We use symmetry relationships between Rl,m 
terms (Rl,−m = (−1)mRl,m) in order to optimize vectorization 
potential of the compiler.

As the value of Lmax and, more importantly, the number of lev-
els in the octree hierarchy increase, the cost of the translation 
operation increases as well. This is a subject that has been in-
vestigated in the past and for which solutions have been found, 
in particular the rotation around the z-axis which provides a 
scaling of the order O(L3max) instead of O(L4max) [53]. In the sit-
uation we discuss here, the evaluation of the electrostatic po-
tential integrals through the FMM, the translation of the FF 
potential needs to be done only for boxes containing SP centers, 
that is QM boxes. By restricting this translation step to the QM 
boxes, the cost of the overall translation steps is dramatically 
decreased to the cost of the first translation step (i.e., transla-
tion of the multipole moments, cf. WMuMo in Tables S2, S3, S4, 
and S5). As a result, translations are not the most limiting step 
here (cf. Supporting Information) and no more improvement of 
the efficiency of their evaluation has been considered for the 
moment.

3.6   |   Building the FF Potential

Similar to the translation operations, the FF potential terms are 
computed on-the-fly to avoid storing large matrices [46]. This step 
involved the irregular solid scaled harmonics (Equation  (10)), 
which are, as for the regular ones, evaluated through a recursive 
scheme. If the VFMM is turned on, this is where the truncation 
parameter is adapted according to the position of the box (cf. fol-
lowing paragraph).

FIGURE 3    |    Illustration of the separation between NF and FF. Two SP centers and their corresponding extent are shown respectively by red and 
blue crosses and red and blue circles of diameter rext (which can be different for every SP). The NF areas of the twos SPs are shown by light red and 
blue boxes, to which are added respectively the pink and cyan boxes after considering the extent of the SPs. The whole set of NF PC are then separated 
from the FF ones, the latter being dealt with through the FMM routine.

FIGURE 4    |    Scheme of box indices in 2D to illustrate the VFMM 
strategy. The value K of the third dimension is 0 for every box shown 
here. Purple boxes indicate NF boxes of box (I = 0, J = 0, and K = 0). Light 
gray box is the closest box used to define the reference maximum error 
to setup the VFMM.
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3.7   |   The “Very” Fast Multipole Method

Due to the recursive scheme between levels, the FF felt in the 
center of a box is built by only calculating interactions with the 
LFF boxes at every level (cf. Equations (17a) and (17b)).

While the evaluation of the FF potential, as previously men-
tioned, is not the most time consuming step, speeding up the 
LFF potential calculation at each step is still advantageous. 
Additionally, a straightforward method to achieve this has al-
ready been reported [44]. The key idea behind accelerating the 
LFF potential calculation is to use different Lmax truncation pa-
rameters for the 189 boxes in the LFF area.

If we consider a Box B in (0,0,0), of dimension a, the closest boxes 
in the LFF are located at a distance 2a. In order to make the 
discussion general for any level, we have divided the distance 
between the boxes by their dimension, a, such that in Figure 4, 
one of the closest LFF boxes is given by the position (I = 0, 
J = 2, and K = 0). The error due to the truncation of the multi-
pole expansion, �maxclosest box, in this box can be evaluated using 
Equation  (12), and considering the worst case scenario (wcs) 
for the position of PCs (definition of Δrwcs

AB
, which is a function of 

(I, J, and K), cf. Supporting Information). For any box in the LFF, 
we can similarly define Δrwcs

AB
, and rQP, so that we can evaluate 

𝛿max < 𝛿maxclosest box. Then, the value of Lmax in this box is decreased 
as long as the previous inequality is respected, with a minimum 
authorized value of Lmax = 2.

All results shown and discussed in the following have been ob-
tained using the VFMM option, unless otherwise stated.

4   |   Results and Discussion

4.1   |   Application to Solid State Calculations

In this section, we investigate the efficiency and accuracy of 
our newly implemented FMM PC embedding method for solid-
state ECM calculations. The model considered has been used 
by one of us in the past to investigate the photochromic prop-
erties of sodalite mineral (Na8

(
AlSiO4

)
6
Cl2) [4]. We have kept 

the same ECM protocol for sodalite using 93 atomic centers 
and 24 ECPs embedded in 45,883 PCs (Figure 5). The choice of 
the level of theory will obviously impact the overall calculation 
time. Here, we are running a single point DFT calculation with 
B3LYP hybrid-GGA [54–56] and double to triple-ζ split valence 
basis sets (see the reference paper [4] for more details). In this 
specific case then, the calculation of the one-electron part of 
the Hamiltonian takes 13% of the total time using analytic elec-
trostatic potential (ESP) integrals for every environmental PC. 
With PBE [25] GGA functional, this goes up to 35% of the total 
time, using in both case the default convergence parameters for 
self-consistent field (SCF) calculations in ORCA 5.

4.1.1   |   Accuracy

A faster algorithm is interesting if and only if it still provides 
good accuracy. That is why we first want to ensure that the ap-
proximation for the LR interactions, introduced by the FMM, 

does not spoil the overall accuracy. In that aim, we studied the 
impact of the different FMM parameters on the final single-
point energy.

The reference energy E0 is the one obtained without using 
the FMM for approximating the LR interactions. We note 
ΔE = E − E0, the error with respect to this reference (Figure 6).

The first parameter to set is the TD, that is, the number of times 
we divide the initial box. For the sodalite ECM calculation, the 
initial box has a dimension of 166.52 a.u. For TD = 2, the 64 
boxes at the deepest level have a dimension of a = 41.63 a.u. (cf. 
Table 1).

The position and extent of some SPs is such that the well-
separateness criterion is not met for all embedding boxes at 
this level. Hence, all PCs are considered to be in the NF of the 
QM boxes.

Thus the value of Lmax will not change the final result, and 
the use of the FMM algorithm should not impact either the 
accuracy or the efficiency. However, in Figure S1, one can see 
that log10 ∣ ΔE ∣ for TD = 2 is greater than the best numerical 
accuracy one can expect (ΔE = 10−16). This issue is related to 
the accumulation of numerical errors due to the finite pre-
cision of floating-point numbers. Consequently, the order of 
floating-point operations matters and can significantly impact 
the final result of a calculation: different sequences of opera-
tions can lead to different rounding errors. This phenomenon 
is known as numerical instability. For more detailed infor-
mation on this topic, refer to the Standards for Floating-Point 
Arithmetic (IEEE 754) and related literature on numerical 
analysis [57].

As can be seen from Figure 6, the influence of the TD on the 
FMM error is negligible (not considering here the already 
discussed case of TD = 2). According to Equation  (11), it is 
expected that the convergence of the energy as a function of 
Lmax should be slower for smaller boxes (cf. SI “Discussion 
on the convergence speed”). This implies that the greater the 
distance between the QM boxes and their FF, the faster the 
convergence of the energy with increasing Lmax. However, in 
our implementation (cf. Section 3), the NF layer is defined to 
encompass the spheres of all SPs, so that the number of NF 
boxes is always greater than or equal to 27. Consequently, the 
distance between the QM boxes and the FF region remains 
similar regardless of TD value. Table  1, presents the total 
number of NF boxes, defining the NF at the deepest level for 
various TD values, along with the corresponding number of 
NF particles.

The second input parameter is the termination index for the 
multipole expansion, what we refer to as Lmax. As shown in 
Figure 6, the error decreases with the increase of the Lmax, in a 
non-linear way, reflecting indirectly the alternating signs in the 
partial-wave expansion values (cf. Equation (3)).

For an Lmax ≥ 15, whatever the value of TD, one has reached 
an accuracy of 1 mHa (0.6 kcal/mol), which is lower than the 
“chemical accuracy” of 1 kcal/mol. If one wants to reach a � Ha 
precision, an Lmax ≥ 23 should be used.
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When the evaluation of the electrostatic embedding potential is 
actually far from the reference one (too big approximation due 
to too small Lmax), this leads to a noticeable different starting 
point in the SCF (difference in the energy in the first step >10−5 
a.u.) which usually leads to an increased number of SCF iter-
ations and large errors in the final SCF energy. These cases of 
deteriorated convergence only occurred for Lmax ≤ 10 (with or 

without VFMM). Thus, too small Lmax should be avoided to pre-
vent costly Fock matrix builds in the additional SCF cycles, over-
turning the overall efficiency of the implemented algorithm.

We tested the parameters on another (bigger) solid-state material 
example (NaCl), which was previously studied in the group, at 
PBE/def2-TZVP [25, 26] level of theory, to address the computa-
tion of solid-state chemical shifts in nuclear-magnetic resonance 
spectroscopy [5]. The clusters here are made of 136 QM atoms, 512 
ECP, and PC embedding clusters of size 54,224, 73,440, 124,352, 
and 156,816. For all calculations we observe a good accuracy for 
15 < Lmax < 23 (cf. Figure 7). An Lmax of 20 would then be a safe 
choice without any further analysis of the system.

4.1.2   |   Efficiency

Since the implementation leads to accurate results with an Lmax 
high enough (≈ 20), we turn our attention now to the FMM effi-
ciency. Again, the two parameters TD and Lmax can impact the 
efficiency. In the following, the efficiency is assessed by looking 

TABLE 1    |    Total number of boxes as well as box dimension and number of NF boxes at the deepest level for different TD input values, along with 
the corresponding number of NF particles at the deepest level.

TD Number of boxes Box dimension a Number of NF boxes Number of NF particles

2 64 41.63 64 45,883

3 512 20.92 136 12,113

4 4096 10.56 310 3397

5 32,768 5.38 1070 1569

6 262,144 2.79 3981 716

FIGURE 6    |    Evolution of the error as a function of the maximum angu-
lar momentum (Lmax) truncation parameter. Different TD has been used.

FIGURE 5    |    (a) The QM cluster without ECPs—sodium, aluminum, silicon and oxygen atoms are respectively represented in yellow, cyan, blue, 
and red. The green sphere represents the F-center, responsible for the color of the material. (b) The QM cluster (red) surrounded by a layer of ECPs 
(light blue) and PCs (gray points).
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at the time required to evaluate the electrostatic potential in-
tegrals, using either analytic integrals for every PC (tint

ref
) or the 

implemented FMM version (tintFMM). The FMM speedup, SFMM, is 
then defined as the ratio SFMM = tint

ref
∕ tintFMM:

Additionally, we incorporated a newly optimized version of 
the electrostatic-potential (ESP) integrals code, built on the 
SHARK infrastructure in ORCA [27], which is now the default 
in ORCA 6. As a result, the evaluation of the NF one-electron 
integrals is also significantly accelerated compared to ORCA 
5. The overall speedup, combining FMM with the faster NF 
one-electron integral evaluation, is referred to as Stot. This 
leads to a dramatic improvement in performance, as shown in 
the case of sodalite for TD = 2, where no approximation in the 
FF is made: a 70% reduction in the time needed to evaluate the 
one-electron integrals is observed (192 s compared to 674 s, cf. 
SI Figure S4).

Finally, we examine the specific improvement introduced by 
the FMM (SFMM) using the timing for TD = 2 as a reference. 
This reference represents the performance of ORCA 6 without 
the use of FMM (cf. Figure 8a). As anticipated, an increase in 
Lmax corresponds to a decrease in efficiency. This is explained 
by the increasing cost as the truncation parameter of the mul-
tipolar expansion increases (cf. time for “Multipole integrals” 
in Figure 9). The evaluation of the multipole integrals, is obvi-
ously independent of TD.

Regarding the number of levels, we reach an optimum for 
TD = 5, with a systematic improvement from TD = 2 to TD = 5. 
This is due to the reduction of the number of PCs in the NF as 

we decrease the box dimension at the deepest level, illustrated 
by the reduction of the red boxes in Figure 9. At some point, the 
evaluation of the FF potential becomes the most expensive part 
of the calculation and the cost of adding more levels is visible. 
This is related to the computation and translation of the mul-
tipole expansions of the PCs in the FF and to a lesser extent to 
the translation of the FF potentials (cf. “Eval VFF” in Figure 9, 
and Tables  S2, S3, S4, and S5). The cost becomes significant 
after six divisions of the initial box, making it less interesting 
to use TD = 6 than TD = 5. In the end, by using five levels, that 
is a box dimension of ≈ 5a. u. here, and aiming at an accuracy 
of mHa (Lmax = 15), one can speedup by a factor of eight the 
evaluation of the electrostatic potential. In total, the two new 
implementations (improved analytic integrals and FMM) lead 
in that case to a 28-times faster code (cf. Figure 8b). For a � Ha 
accuracy, one can expect a 10-times faster calculation of the 
electrostatic potential from the embedding.

To illustrate the efficiency gained with the use of the VFMM 
option, we report in Figure 10 the best case with and without 
the use of VFMM, that is for TD = 5. In SI, one can find all 
other cases for different values of TD without using VFMM. 
Apart from values of Lmax ≤ 10, which have already been ex-
cluded from relevant choices, the use of VFMM as shown on 
Figure  10b provides similarly accurate results than the nor-
mal FMM algorithm even though the latter reaches the mHa 
accuracy for Lmax = 14 instead of 15. Regarding the efficiency 
(cf. Figure  10a), the use of VFMM enables to reach slightly 
higher acceleration (SFMM), from three to seven times faster 
(15 ≤ Lmax ≤23) against two to six times faster without the use 
of the VFMM option.

FIGURE 7    |    Evolution of the accuracy index parameter as a function of Lmax and TD for NaCl system made of 136 QM atoms, 512 ECPs and re-
spectively: (a) MM = 54,224 PCs, (b) MM = 73,440 PCs, (c) MM = 124,352, and (d) MM = 156,816 PCs.
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In the end, if one wants to reach an accuracy of mHa, the use 
of TD = 5 and Lmax = 15 with the VFMM will reduce to ≈ 0.5% 
the time spent in the calculation of the electrostatic embedding 
potential along the whole SCF calculation (instead of 11%). It 
would go up to ≈ 0.8% for a more conservative Lmax of 20. The 
impact of using the FMM is even more noticeable, for calculation 
with pure GGA for which no Hartree–Fock exchange is calcu-
lated. In the previously mentioned rock salt (NaCl) system, the 
time required for evaluating the electrostatic embedding poten-
tial with the PBE [25] functional accounts for 20.2% and 40.6% 
of the SCF calculation time for 54,224 and 156,816 PCs, respec-
tively. In ORCA 6, without applying the FMM, this percentage 
decreases to 7% and 14%, respectively, due to an improved effi-
ciency of the NF integral evaluation. When the VFMM is en-
abled with a TD of 5 and Lmax set to 15, the evaluation time is 

further reduced to approximately 1% in both cases. However, if 
Lmax is increased to 20, the time slightly increases to around 3%.

4.2   |   Application to Biological Systems

In this section we investigate the performance of the imple-
mented FMM for molecular QM/MM calculations with electro-
static embedding. From the perspective of the evaluation of the 
ESP integrals, such type of QM/MM calculations for molecules 
are identical to non-periodic ECM calculations for solids. The sys-
tem taken as an example is the well-known photosystem II [58], 
with a setup used to investigate the nature and properties of trip-
let states within its reaction center [59, 60]. The QM part is made 
of two pigments of the system, with 153 atoms (cf. Figure 11b). 
The MM part is made of the rest of the protein system (75,894 
atoms) and part of the lipid membrane (see for more details [60]), 
reaching a total of 503,195 atoms (cf. Figure 11a). The level of the-
ory of the calculation is ωB97X-D/def2-TZVP [26, 61] with (D3BJ) 
dispersion correction [62].

For this system, the calculation of all one-electron integrals, in-
cluding the evaluation of the electrostatic interaction from the 
MM embedding takes 28% of the single-point calculation in 
ORCA 5 (4 h and 28 min with one CPU core), 10% in ORCA 6.

We will use our new FMM implementation to reduce the cal-
culation time. Based on the previous discussion on solid-state 
systems, we tested only a reduced number of values for Lmax, all 
strictly greater than 10: 15, 20, and 25. If we look at the accuracy 
as a function of TD (cf. Figure 12a), as previously stated, it slightly 
decreases with addition of layers, but on the overall one can ex-
pect a � Ha precision with Lmax = 20 or 25. With Lmax = 15 the 
accuracy is lower but still one to two orders of magnitude higher 
than the chemical accuracy. In terms of efficiency, the gain is 
obvious. For TD = 6 the evaluation of the electrostatic potential 
is accelerated 12, 20, and 31 times with the use of Lmax = 25, 20, 
and 15, respectively (cf. Figure 12b). The total speedup with re-
spect to ORCA 5 is respectively 46, 74, and 133 (cf. Supporting 
Information).

By adding another level using TD = 7, we start losing efficiency 
due to the cost of the additional translation of information in 
the tree. These extra costs are not balanced by the reduced time 

FIGURE 8    |    Speedup obtained for different values of TD, as a function of Lmax (a) using ORCA 6 values as a reference (SFMM) or (b) taking ORCA 
51 values as a reference (Stot).

FIGURE 9    |    Decomposition of the time spent in the calculation of the 
ESP integrals in ORCA for the sodalite test case system. The white bar 
(192 s) is obtained with ORCA 6 [1] without using the FMM. The same 
bar is then decomposed for different values of TD (blue = 2, green = 3, 
red = 4, yellow = 5, and purple = 6) and different values of Lmax = 5, 10, 
15, 20, or 25. The time is first decomposed into NF and FF contribu-
tions, respectively “Total NF” red filled box and “Total FF” blue stroke 
rectangle. The FF is further decomposed into the evaluation of the FF 
potential from the PCs (blue dots) and the evaluation of the multipole 
integrals from the SPs (green hatches). The remaining white space in 
the FMM bars is the time spent in the building of the octree.
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for the fewer NF interactions. Moreover, with TD = 7, the mem-
ory required for the calculation starts becoming a  potential 
bottleneck. At Level 6, there are already 86 = 262,144 boxes, at 

Level 7, we need 2,097,152. Storing the multipole expansion in-
formation for all boxes, with Lmax = 20, requires large memory 
(48 GB for this system, cf. SI for more values).

FIGURE 10    |    Comparison between the FMM and VFMM algorithm in terms of (a) efficiency and (b) accuracy for the sodalite test case and TD = 5. 
The reference for the evaluation of both SFMM and ΔE is the calculation made with ORCA 6 without using the FMM.

FIGURE 11    |    (a) The whole QM/MM system including the membrane, water molecules, and the whole PSII. (b) QM atoms considered: C, N, O, H, 
and Mg represented respectively by gray, blue, red, white, and lime colors.

FIGURE 12    |    (a) FMM accuracy for PSII test case as a function of the number of TD for different Lmax values. (b) FMM speedup for PSII test case 
as a function of TD for different Lmax values. Lmax = 15 is in red, 20 in orange, and 25 in purple.
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4.3   |   From TD to Box Dimension

Setting an appropriate TD parameter is less straightforward 
than setting the Lmax. Increasing its value will not systemat-
ically lead to an increase in the accuracy. Setting TD to five 
works well in terms of accuracy and efficiency for the two test 
cases shown previously, sodalite and photosystem II, but for 
the latter TD = 6 gives a larger speedup and would be a better 
choice. If adding more levels when dealing with a bigger initial 
box is a priori the way to go, it is actually easier to think in 
terms of dimension of the box at the deepest level.

In the previous section, the dimension of the box at the 
deepest level a was set according to the number of levels (cf. 
Equation 22), with a0 being the dimension of the initial cubic 
box surrounding the whole system, and 0.2 being a safety pa-
rameter to avoid particles being on the outside limit being ne-
glected. The efficiency of our FMM implementation depends 
crucially on the box dimension a. Increasing a will reduce the 
time for evaluation of the FF potential VFF, especially when 
this decreases the value of TD. On the contrary, increasing a 
increases the time for the evaluation of the NF potential VNF. 
For VNF, the time does not depend only on the number of layers 
but also and the extent of the SP overlap, which will impact the 
total number of NF boxes, NbNF. As a matter of illustration we 
report for different values of TD, the number NbNF when using 
either def2-SVP or def2-TZVP [26] basis set for the same PSII 
calculation. In the case of def2-TZVP, each atom type within 
the QM subsystem comes with more diffuse functions and thus 
SPs with greater extent, leading to an increased number of ad-
ditional NF boxes (cf. NbNF values in Table  2). Interestingly, 
using a = 6.464/TD = 6 leads to the best efficiency for both 
basis sets considered here (cf. Supporting Information).

Hence finding the optimal box dimension is not straightfor-
ward without testing several options. However, most systems, 
despite their extreme diversity, have a similar number of atoms 
per unit volume, suggesting that we can use the same divi-
sion of space, that is, box dimensions, to obtain the optimal 
NbNF ∕NbFF ratio. If we take a look at the two test cases again 
with parameters showing the best efficiency, the box dimen-
sion were respectively a = 6.46 Bohr for PSII with TD = 6, and 
a = 5.38 Bohr for sodalite with TD = 5, which are both close to 
6 Bohr. Besides, if we imagine a system containing two times 
more particles than PSII and having similar density of parti-
cles, the volume of the initial box will be multiplied by two, 
but the dimension a0 of the box will be only increased by 20% 
(× 21∕3), as will be a, without incrementing the number of levels.

Another important aspect is that for a given TD value, smaller 
boxes are better than larger boxes concerning both efficiency (cf. 
Figure 13a) and accuracy (cf. Figure 13b). Though this is more 
of a tendency (cf. r2 values of the linear regression). Hence, the 
idea is to refine the box dimension to the smallest possible value 
while keeping the number of levels fixed (cf. Section 3). In that 
way, by starting from a = 9 a.u. for both test cases, it will end up 
setting the box dimension to a = 5.38 and a = 6.46 respectively 
for sodalite and PSII. This value of a = 9 a.u. should also cover 
similar systems with twice the number of particles since the 
value of a would then be ≈ 6.5 × 21∕3 = 8.1, without increment-
ing the number of levels.

In all tested cases (cf. SI), setting the initial box dimension to 
a = 9 Bohr will lead to the most or second most efficient param-
eter. The accuracy is mostly impacted by the Lmax parameter. If 
one has to launch many calculations with the same setting, it is 
though recommended to launch a quick single point calculation 
with moderate value of Lmax (e.g., 15) and different values of TD 
(e.g., 3, 4, 5, and 6) to determine the best settings. Still, the de-
fault parameters give excellent speedups, though improvements 
are possible when tuning them.

4.4   |   Discussion on the Scaling of the Method

The evaluation of the electrostatic potential scales as O(NPCN
2
BF), 

with NPC being the number of PCs in the environment and NBF 
being the number of basis functions in the QM region. We 

TABLE 2    |    Number of NF boxes NbNF and their dimension a at the 
deepest level for different TD and basis sets (def2-SVP or def2-TZVP 
[26]).

TD a def2-SVP def2-TZVP

2 100.418 56 59

3 50.309 76 82

4 25.254 164 195

5 12.727 436 506

6 6.464 1357 1593

7 3.332 2999 3758

FIGURE 13    |    Impact of the box dimension onto the accuracy and the 
efficiency, tested on the sodalite system. the corresponding values of TD 
are given thanks to a color code, that is respectively green, red, orange 
and purple for TD = 3, 4, 5, or 6. (a) Evolution of the efficiency ratio. (b) 
Evolution of the accuracy index with linear regression provided for ev-
ery subset of values attributed to a specific value of TD.
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believe that the number of basis functions is not the most rel-
evant parameter to look at and we prefer to look instead at the 
number of remaining SPs after pre-screening [27]. The impact 
of the first term can be seen by increasing the number of PCs in 
the environment. This was investigated for NaCl rock salt sys-
tem with 64 atoms in the QM region and different basis sets 
leading to different SP values: def2-SVP (SP = 63,160), def2-
TZVP [26] (SP = 153,204), and def2-QZVP [63] (SP = 384,712). 
As expected, the time for the evaluation of the electrostatic in-
tegrals increases linearly with the number of PCs in the system 
without the use of the FMM (cf. Figure  14). Moreover, as the 
number of SPs in the system increases, the slope of this linear 
relationship steepens: the slope coefficients are respectively 
0.0021, 0.0063, and 0.0230 for def2-SVP, def2-TZVP, and def2-
QZVP (cf. Figure  14). However, when the FMM is employed, 
the slope decreases dramatically—by one to two orders of mag-
nitude (e.g., 0.0001 against 0.0021 for def2-SVP, 0.0009 against 

0.0230 for def2-QZVP). As a result, the impact of increasing the 
number of PCs becomes nearly negligible. The scaling of the 
method, which was previously linear with respect to the num-
ber of PCs, now depends mainly on the number of SPs, reducing 
it to a constant. For larger basis sets, it becomes advantageous 
to activate the FMM at a later stage compared to smaller sets, 
considering the number of PCs in the environment (cf. crossing 
of the red and pink curves on Figure 14).

In this initial study, Figure 14 shows that increasing the number 
of SPs impacts the timing, whether the FMM is used or not. This 
increase primarily affects the expansion of the multipole inte-
grals, which is expected to scale linearly with the number of SPs 
and represents one of the most computationally expensive steps 
in the FMM process. It also influences the contraction with the 
FF potential during the construction of the Fock matrix. As a 
result, nearly linear scaling is anticipated when using the FMM.

FIGURE 14    |    Time required to evaluate the electrostatic-potential integrals as a function of the number of PCs in the environment, for NaCl sys-
tem made of 64 QM atoms. Different basis sets have been considered: def2-SVP (blue curves), def2-TZVP (green curves) and def2-QZVP (red and 
pink curves). Darker colors stand for the use of the FMM, as also explicitly stated in the caption. Linear fits are reported with their equation and 
respective R2 values in the caption.

FIGURE 15    |    Time required for the evaluation of the electrostatic-potential integrals as a function of the number of SPs in the QM part for NaCl 
system with 64 QM atoms and 54,368 PCs in the environment. Dark green data were obtained with the FMM (FMM = TRUE), and light green ones 
without (FMM = FALSE). Linear fits in the log scale are reported, with their respective equation in the caption.
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To further investigate this, we fixed the number of PCs and varied 
the number of SPs by adjusting only the basis sets. We included 
def2-SVP, def2-TZVP, def2-QZVP, and added STO-3G (15,660 SPs), 
3-21G (59,956 SPs), 6-311G (115,304 SPs), def2-TZVPP (160,380 
SPs), and def2-QZVPP (407,536 SPs) in our study. Figure 15 re-
ports results obtained with 54,368 PCs in the environment.

The data, presented on a log–log scale, were fitted linearly to 
extract the apparent scaling behavior of the method. Without the 
FMM (FMM = FALSE), the computational time scales nearly 
linearly with the number of point charges, with a scaling ex-
ponent of approximately 1 (×0.99). In contrast, when FMM is 
enabled (FMM = TRUE), the scaling exponent increases to just 
over 1.2, indicating a slightly super-linear scaling. This increase, 
compared to the ideal linear scaling, can be attributed to addi-
tional steps in the FMM algorithm, such as handling the expan-
sion of quantum mechanical (QM) multipole integrals. However, 
the scaling remains far from quadratic, and more importantly, 
the computational cost when FMM = TRUE has a prefactor two 
orders of magnitude smaller than without FMM.

Thus, despite the slightly steeper scaling with the number of SPs 
when FMM = TRUE, the overall computational cost remains 
significantly lower compared to FMM = FALSE. Additionally, 
increasing the number of point charges (cf. Figure S10) has al-
most no impact on performance when FMM is enabled, while a 
consistent increase in runtime is observed when FMM = FALSE. 
This difference reflects the aforementioned linear dependence 
on the number of PCs in the non-FMM case, which disappears 
when the FMM is used.

As a matter of illustration, in the example shown on Figure 15, 
enabling FMM for systems with around 20,000 point charges 
consistently yields a performance benefit across the different 
basis sets tested.

5   |   Conclusion

Based on previous developments, we provide an implementation 
of the FMM in ORCA for the evaluation of electrostatic poten-
tials in the context of electrostatic embedding. We have shown 
that the implemented version of the FMM provides accurate re-
sults, easily above the chemical accuracy requested, while sig-
nificantly speeding up the calculation. The tests indeed showed 
at least an order of magnitude increase in speed. The implemen-
tation is general and can be used in solid state as well as molec-
ular applications. The PSII tests show that by using the FMM 
the size of the MM subsystem (with more than 500,000 atoms) is 
really not a limitation in terms of efficiency. Default parameters 
(Lmax = 20, a = 9.0 a.u.) have been set to, first, ensure an accu-
racy in the total energy in the order of 0.1 mHa, and second, to 
provide faster calculations. Further investigations are currently 
conducted regarding the evaluation of the multipole integrals 
and will be reported in another article. We believe that our new 
implementation will be a major benefit, in particular when 
being applied in the field of heterogeneous catalysis. It offers an 
accurate description of the fundamental long-range Coulombic 
potential from the embedding at a limited computational cost. 
This efficiency allows for more precise study of the electronic 

structure of the quantum mechanical part using high-level 
methods for both ground-state and excited-state calculations.
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