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Abstract
Multilevel models often include nonlinear effects, such as random slopes or interaction effects. The estimation of these
models can be difficult when the underlying variables contain missing data. Although several methods for handling missing
data such as multiple imputation (MI) can be used with multilevel data, conventional methods for multilevel MI often do not
properly take the nonlinear associations between the variables into account. In the present paper, we propose a sequential
modeling approach based on Bayesian estimation techniques that can be used to handle missing data in a variety of multilevel
models that involve nonlinear effects. The main idea of this approach is to decompose the joint distribution of the data into
several parts that correspond to the outcome and explanatory variables in the intended analysis, thus generating imputations
in a manner that is compatible with the substantive analysis model. In three simulation studies, we evaluate the sequential
modeling approach and compare it with conventional as well as other substantive-model-compatible approaches to multilevel
MI. We implemented the sequential modeling approach in the R package mdmb and provide a worked example to illustrate
its application.
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Multilevel models have become one of the standard tools
for analyzing clustered data (e.g., with individuals clustered
within groups or repeated measurements clustered within
persons; see Raudenbush & Bryk 2002; Snijders & Bosker
2012). In addition, missing data are a common problem,
and multiple imputation (MI) has become one of the state-
of-the-art methods for dealing with them (Enders, 2010;
Schafer & Graham, 2002a). An important requirement of
MI is that the imputation model must “fit” the substantive
analysis model in the sense that all features of the analysis
must be accommodated during MI (Meng, 1994). In the
context of multilevel analysis, several studies have shown
that it is particularly important for the imputation model to

The supplemental materials are available on the OSF at https://osf.
io/aeqd2/.

� Simon Grund
grund@ipn.uni-kiel.de

1 IPN - Leibniz Institute for Science and Mathematics
Education, Kiel, Germany

2 Centre for International Student Assessment,
Munich, Germany

take the multilevel structure into account if analyses based
on the imputed data are to provide unbiased results (Enders
et al., 2016; Lüdtke et al., 2017).

However, recent research has also demonstrated that
the treatment of missing data in multilevel analyses is
still challenging if the substantive analysis model contains
nonlinear terms such as interactions or polynomial effects
(Grund et al. 2016, 2018b; Enders et al. 2016). Nonlinear
effects are extremely common in multilevel research, for
example, in models that include random slopes or cross-
level interactions and allow the relations between variables
to differ between clusters. For this reason, it has been
recommended that so-called substantive-model-compatible
methods be used for multilevel MI (e.g., Goldstein et al.
2014; Enders et al. 2020). These methods directly take the
substantive model into account during MI, thus ensuring
that the imputations are always in line with the intended
analysis (see also Bartlett et al. 2015).

In the present article, we present a sequential modeling
approach that allows for a substantive-model-compatible
treatment of missing data in multilevel research (see also
Erler et al. 2016, 2017). This approach was originally
proposed by Ibrahim et al. (2001) and has been considered
previously in the context of regression analyses with
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nonlinear effects (Lüdtke et al., 2020). The purpose of
this article is to extend this approach to the context
of multilevel analyses with random slopes and nonlinear
effects (e.g., cross-level interactions). The key feature of
this approach is that the joint distribution of the variables
in the imputation model is decomposed into a part that
represents the substantive analysis model of interest (e.g.,
a multilevel model with random slopes and cross-level
interaction effects) and a part that represents the model for
the incomplete explanatory variables. This approach allows
for a flexible specification of the imputation model, making
it possible to accommodate general nonlinear associations
between variables, including—but not limited to—those
implied by the substantive analysis model. In addition, the
approach can be used with general types of multilevel data,
including hierarchical data with three or more levels and
cross-classified data, as well as categorical and nonnormal
data.

We also developed the mdmb package (Robitzsch &
Lüdtke, 2019) for the statistical software R in which
the sequential modeling approach is implemented using
Bayesian estimation techniques. Although the mdmb pack-
age allows for both (a) Bayesian estimation of multilevel
models and (b) multilevel MI, we focus on multilevel MI,
which comes with the advantage that it separates the treat-
ment of missing data from the analysis (Carpenter & Ken-
ward, 2013). This can be particularly advantageous because
it allows using a rich imputation model with auxiliary vari-
ables, that is, variables that are used for the treatment of
missing data but are not included in the analysis model. The
main advantages of using auxiliary variables are that they
can increase the plausibility of the assumption that the data
are missing at random (MAR) and that they allow for a more
efficient use of the data. The sequential modeling approach
in the mdmb package allows for the flexible treatment of
auxiliary variables with multilevel data.

The article is structured as follows. In the first section,
we provide a motivating example for the treatment of
missing data in multilevel models with nonlinear effects.
In the second section, we outline the sequential modeling
approach to multilevel MI and provide a brief description of
its implementation in statistical software. In the third section
and the ones that follow it, we present the results of three
simulation studies in which we evaluated the performance of
the sequential modeling approach in different applications
of multilevel MI. Finally, we provide a worked example
with real data and close with a discussion of other possible
applications of the sequential modeling approach, such as
models with latent variables or cases with nonignorable
missing data.

Multilevel models with nonlinear effects

Suppose that we are interested in a multilevel model, in
which an outcome variable y is regressed on an explanatory
variable x at level 1 and an explanatory variable z at level
2. Suppose further that y and x are related at both levels 1
and 2 and that the effect of x on y is expected to vary both
at random and as a function of z. This corresponds to the
following multilevel model. For unit i (i = 1, . . . , nj ) in
cluster j (j = 1, . . . , J ),

yij = β0 + β1(xij − x̄•j ) + β2 x̄•j + β3zj

+ β4(xij − x̄•j )zj + β5 x̄•j zj

+ u0j + u1j (xij − x̄•j ) + eij .

(1)

This model includes a linear effect of the individual
deviations (xij − x̄•j ) from the cluster mean of x at level
1, a linear effect of the cluster means x̄•j of x at level
2, and a linear effect of zj at level 2, as well as a cross-
level interaction effect between (xij − x̄•j ) and zj and
an interaction between x̄•j and zj at level 2. In addition,
the model includes a random intercept u0j and a random
slope u1j of (xij − x̄•j ), thus allowing the two coefficients
to vary across clusters. Such a model may be used in
cross-sectional research, for example, to investigate whether
the relation between students’ self-efficacy and academic
achievement is moderated by school-level variables (e.g.,
Marsh & Rowe 1996); or in longitudinal research, for
example, to investigate whether the extent to which daily
stress affects individuals’ well-being depends on person-
level characteristics (e.g., Sliwinski et al. (2009); see also
Hoffman and Rovine 2007).

More generally, multilevel models can be used to
investigate nonlinear relations between variables in a variety
of ways. To this end, it is convenient to represent the
multilevel model in a more compact way as a multivariate
model for the response vector yj = (y1j , . . . , ynj j ) in
cluster j :

yi ∼ N(μj , σ
2Ij ) with μj = h(xj ; βj ) , (2)

where h(·) represents a general nonlinear function of
the explanatory variables xj and the (possibly random)
coefficients βj , σ 2 is the residual variance at level 1, and
Ij is an identity matrix with size nj . In the example above,
h(xj ; βj ) = β0j1j + β1j (xj − x̄•j ) + β2 x̄•j + β3zj +
β4 x̄•jzj +β5(xj − x̄•j )zj , where 1j is a vector of ones, and
all values at level 2 are expanded into vectors of length nj

(e.g., zj = zj1j ). In the following, we will continue to use
this compact notation and refer to the substantive analysis
model in more general terms by denoting the conditional
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distribution of y given x as P(y|x) and the corresponding
density function as f (y|x; θ) with parameters θ = (β, σ 2).

The treatment of missing data in multilevel analyses
can be challenging, particularly when missing data occur
in the explanatory variables x and when the substantive
analysis model includes nonlinear effects. Several authors
have argued that conventional methods for multilevel MI
that (a) are based on the multivariate normal distribution,
thus implying only linear relations between variables, or (b)
use a “reversed” imputation model (Grund et al., 2016) are
not well suited for this task and can lead to biased parameter
estimates (e.g., Enders et al. (2020) and Grund et al.
(2018b); see also Enders et al. 2018). This is because, if
the substantive analysis model f (y|x; θ) includes nonlinear
terms such as random slopes or interaction effects, then the
conditional distribution of the explanatory variables x given
y tends to be more complicated than those used to generate
imputations in conventional methods for multilevel MI
(Kim et al., 2015). To address the challenges associated with
nonlinear effects, it has been suggested that substantive-
model-compatible methods be used for multilevel MI. In the
following, we outline one such approach that is based on
sequential modeling.

Sequential modeling approach tomultilevel
MI

The main way in which MI deals with missing data is by
defining a joint distribution g(y, x; γ ) for all variables, from
which replacements for the missing data can be drawn given
the observed data. For example, in single-level data with
only linear associations between the variables, one popular
choice for g(y, x; γ ) is the multivariate normal distribution.
However, when the data have a clustered structure and there
are nonlinear associations between the variables, it can be
challenging to specify the joint distribution directly. For this
reason, the sequential modeling approach to MI specifies
the joint distribution in a sequence of models, in which
every variable is represented by a conditional univariate
model, including a model for the outcome variable in the
substantive analysis and a model for each of the explanatory
variables. In doing so, the substantive analysis model (or an
extension thereof) can be directly included in the imputation
model, thus ensuring that imputations are always in line
with the intended analysis (for a more general account of
substantive-model-compatible MI, see also Ibrahim et al.
(2002; Carpenter & Kenward 2013, and Bartlett et al. 2015).
Specifically, the joint distribution is modeled as follows. Let
xp denote the pth explanatory variable (p = 1, . . . , P ) in

x = (x1, . . . , xP ). Then, the sequence can be written as

g(y, x; γ ) = gy(y|x; γ y)

P∏

p=1

gxp (xp|x1, . . . , xp−1; γ xp
) ,

(3)

where gy(y|x; γ y) represents a conditional model for the
outcome variable y given all explanatory variables x
with parameters γ y ; and gxp(xp|x1, . . . , xp−1; γ xp

) is a
conditional model for xp with parameters γ xp

, given all
explanatory variables placed “earlier” in the sequence. The
imputations generated in this way are said to be substantive-
model-compatible if f (y|x; θ) is nested within gy(y|x; γ y),
that is, if the imputation model is at least as general as the
substantive analysis model (Bartlett et al., 2015); see also
Lüdtke et al. (2020).

Specifying the imputation model as a sequence such as
this has several advantages. For example, the conditional
models can include different types of (generalized) linear
mixed-effects models, which allows addressing different
types of variables (e.g., discrete and continuous variables;
see Lee and Mitra 2016) as well as nonnormal (e.g.,
skewed) data. Furthermore, the conditional models for
the explanatory variables, gxp (xp|x, . . . , xp−1; γ xp

), can
themselves be nonlinear, allowing for a more flexible
specification of the imputation model and improved
robustness in cases in which nonlinear associations might
not be restricted to the outcome model gy(y|x; γ y). Finally,
the sequence of models can be extended to include
measurement models for latent variables, or selection or
pattern-mixture models to address cases with data that are
missing not at random (MNAR; see also Diggle & Kenward
1994; Molenberghs et al. 1997, and Ibrahim et al. 2001).

Markov chain Monte Carlo algorithm

The sequential modeling approach proposed here uses
Markov chain Monte Carlo (MCMC) methods to estimate
the parameters of the imputation models and sample
imputations for the missing data from the conditional
distributions of the variables (Gelman et al., 2014). To this
end, the algorithm iterates along the sequence of models,
where each model in the sequence takes the form of a
multilevel model for variables at level 1 or a regression
model for variables at level 2. For example, the multilevel
model for the outcome at level 1 is given by

gy(yj |xj ; γ y) =
∫

p(yj |xj , uj ; γ y)p(uj ; γ y) duj , (4)
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where uj is the vector of random effects, which are
integrated out of the density. At each iteration, the algorithm
provides updated values for the model parameters and
imputations for the missing data. In addition, to ensure
that imputations for the missing data are compatible with
the substantive analysis model, the sampling steps in the
MCMC algorithm are combined with Metropolis-Hastings
(MH) steps for drawing the replacements for the missing
data.

In the MH steps, at each iteration t , the algorithm draws
replacements for the missing data as follows. Let z(t)

j =
(z(t)

j1 , . . . , z
(t)
jQ) denote the current data on both the outcome

y and the explanatory variables x in cluster j , where the
data on the q th variable are denoted by z(t)

jq (q = 1, . . . , Q).

Let further z(t)
j (−q) = (z(t)

j1 , . . . , z
(t−1)
j (q−1), z

(t−1)
j (q+1), . . . , z

(t)
jQ).

For each variable and each cluster with incomplete data,
the MH steps are carried out by first drawing values
z∗
jq = (z∗

1jq , . . . , z∗
nj jq) from a proposal distribution

N(z
(t−1)
ijq , τ 2zijq

) specific to each value in each cluster. Then
the MH ratio is calculated as

Mjq(z∗
jq , z(t−1)

jq ) = Lq(z∗
jq |z(t)

j (−q), γ
(t))

Lq(z(t−1)
jq |z(t)

j (−q), γ
(t))

, (5)

where Lq(·|z(t)
j (−q), γ

(t)) is the density of the posterior
distribution given the current values for all other variables
zj (−q) and the model parameters γ . The proposed value z∗

jq

is accepted with probability min(Mjq, 1), setting z(t)
jq = z∗

jq

if accepted, and z(t)
jq = z(t−1)

jq otherwise.1

Notice that this algorithm calculates the MH ratio at
level 2, thus simultaneously accepting or rejecting proposed
values for all individuals within a cluster. This is required
because, if the substantive model includes the cluster
means of explanatory variables (e.g., Eq. 1), then imputing
individual values within a cluster would change the cluster
mean, thus altering the posterior distribution of the other
values in the same cluster. Therefore, imputations in the MH
step must be drawn simultaneously for all individuals within
a cluster if the substantive model includes cluster means
or other aggregated scores at level 2 (e.g., within-cluster
variances or counts).

1In the literature, acceptance rates of roughly between .40 and .50 are
considered optimal (Gelman et al., 2014; Hoff, 2009) for obtaining
an MCMC chain that has a relatively low autocorrelation and mixes
well. To achieve a desirable acceptance rate, the standard deviation
of the proposal distribution is tuned during the burn-in phase of the
MCMC algorithm by applying an adaptive procedure described by
Draper (2008, p. 116).

Other methods for substantive-model-compatible
multilevel MI

The sequential modeling approach (henceforth called SMC-
SM) is not the only method that has been proposed
in the literature for implementing an MI approach that
is compatible with a substantive analysis model (see
also Murray 2018). Two similar approaches have been
recommended: joint modeling (SMC-JM) and the fully
conditional specification (SMC-FCS). These methods—
like SMC-SM—use a factorization of the joint distribution
to include the substantive analysis model directly in the
imputation of missing data, but they differ in how they
model the explanatory variables. In the following, we
provide a brief description of these approaches and discuss
their similarities and differences.

SMC-JM

In the SMC-JM approach, the joint distribution of the data
is factorized into an outcome model that pertains to the
substantive analysis model and a joint model that describes
all the explanatory variables simultaneously. Specifically,
with SMC-JM, the joint distribution is expressed as follows:

g(y, x; γ ) = gy(y|x; γ y) gx(x; γ x) , (6)

where gx(x; γ x) is a joint model for all explanatory
variables. The joint model for the explanatory variables is
a multivariate multilevel model, which may also include
variables at level 2 or different types of variables (e.g.,
continuous and categorical; see also Carpenter & Kenward
2013; Quartagno & Carpenter 2019a). One of the main
advantages of SMC-JM is that only a single model needs
to be specified to provide imputations for all explanatory
variables with missing data. One disadvantage, however, is
that the joint model for the explanatory variables typically
assumes that only linear associations exist between the
explanatory variables, that is, that nonlinear effects are
restricted to the model for the outcome variable (see also
Lüdtke et al. 2020). The SMC-JM approach is implemented
in the R package jomo (Quartagno et al., 2019b).

SMC-FCS

In the SMC-FCS approach, the general idea is similar to
that of SMC-JM. However, the joint distribution of the
explanatory variables is not specified directly but is instead
approximated by a sequence of conditional models more
similar to SMC-SM (Bartlett et al. 2015; see also van
Buuren et al. 2006). The main difference between SMC-
FCS and SMC-SM is that, with SMC-FCS, the conditional

2634 Behav Res (2021) 53:2631–2649



models are estimated separately from each other in an
iterative procedure, that is,

gy(y|x; γ y) ġxp (xp|x−p; γ̇ xp
) , for all p = 1, . . . , P ,

(7)

where ġxp (xp|x−p; γ̇ xp
) is an imputation model for the pth

explanatory variable, given all other explanatory variables in
the data set. The imputations for missing data in xp are then
drawn from the conditional distribution P(xp|y, x−p) ∝
gy(y|x; γ y) ġxp (xp|x−p; γ̇ xp

). The SMC-FCS approach is
implemented for single-level data in the R package smcfcs
(Bartlett & Keogh, 2019) and for multilevel data in the
standalone software Blimp2 (Keller & Enders, 2019).

In the following, we present the results of three
simulation studies, in which we evaluated the statistical
properties of these methods in a number of settings that
differed in the complexity of the substantive analysis models
and in the nature of the nonlinear associations that existed
between the variables. The purpose of these studies was
twofold. First, we aimed to evaluate the statistical properties
of the SMC-SM approach in the mdmb package. Second,
we aimed to compare SMC-SM with other approaches
to multilevel MI including those implemented in jomo
and Blimp, which are based on SMC-JM and SMC-FCS,
respectively. In study 1, we evaluated the properties of
the procedures in an application with a multilevel random-
coefficients model, which included random slopes and
interaction effects but only “overall” (i.e., conflated) effects
of the explanatory variables. In study 2, we extended the
multilevel analysis model to also include centering, which
allowed for separate effects of the explanatory variables at
levels 1 and 2, where the random slopes and interaction
effects were focused on the (unconflated) effects at level
1. Finally, in study 3, we introduced additional nonlinear
associations both in the substantive analysis model and
between the explanatory variables.

Study 1

Data generation

In study 1, we generated data for three standardized
variables x, y, and z, where y is an outcome variable at
level 1, x is an explanatory variable at level 1, and z is an
explanatory variable at level 2. We simulated the data in

2Starting with version 3, the Blimp software also supports SMC-SM
in addition to SMC-FCS.

multiple steps. First, the explanatory variables x and z were
simulated as

xij = xL2
j + xL1

ij

zj = zL2
j ,

(8)

where the level 2 components xL2
j and zL2

j followed
a bivariate normal distribution with correlation ρxz, and
the level 1 component xL1

ij followed a univariate normal
distribution. The amount of variance in x at level 1 and
2 was determined by its intraclass correlation (ICC, ρIx).
Then, the outcome variable y was simulated in accordance
with the following substantive analysis model

yij = β0 + β1xij + β2zj + β3xij zj + u0j + u1j xij + eij .

(9)

This model is illustrated in Fig. 1 (panel A) and includes
an “overall” (i.e., conflated) effect of x at level 1 (for a
discussion, see Hoffman 2019; Preacher et al. 2016), an
effect of z at level 2, and a cross-level interaction (CLI)
between x and z. In addition, the model includes a random
intercept and a random slope for the overall effect of x. The
random effects, u0j and u1j , and the residuals at level 1
were distributed as follows:

(u0j , u1j )
T ∼ N(0,T) , T =

[
τ 20
τ01 τ 21

]
,

eij ∼ N(0, σ 2) .
(10)

In the data generating model, we fixed the variance of the
random slopes to a certain value, whereas the random inter-
cepts and the residuals at level 1 were chosen in such a way
that the ICC of y (ρIy) approximately matched a certain value.

Missing data

We induced missing data in x on the basis of the values in
y by simulating a (latent) propensity for missing data using
the following linear model:

rij = λ0 + λ1yij + vij , vij ∼ N(0, 1 − λ21) , (11)

where λ0 is a quantile of the standard normal distribution
and corresponds to the probability of missing data (e.g.,
−0.674 for 25% missing data), and λ1 controls the
missing data mechanism. A value in x was deleted if the
corresponding value in r was larger than 0.

Simulated conditions

The simulated conditions are summarized in Table 1. We
varied the sample sizes at level 1 (n = 10, 20) and level 2
(J = 50, 100, 200, 500, 1000) in order to study both the
small- and large-sample behavior of the methods used to
treat missing data. We set the ICCs to be equal for x and y

and varied them to include small, moderate, and large values
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a b c

Fig. 1 Schematic representation of the substantive analysis models in study 1 (a), study 2 (b), and study 3 (c). xc
ij = (xij − x̄•j )

(ρIx = ρIy = .10, .20, .50), where the smaller values reflect
conditions typically found in cross-sectional research, and
the larger ones are more common in longitudinal research.
For the regression coefficients, we chose a moderate effect
of x (β1 = .40), a small to moderate effect of z at level 2
(β2 = .20), and a small to moderate CLI (β3 = .20). For the
slope variance, we chose a fixed value of τ 21 = .10, which
corresponds to conditions in which the slope variance was
large, moderate, or small in relation to the ICCs. Finally,
we chose a fixed value of ρxz = .20 for the correlation
between x and z and assumed that the random effects were

uncorrelated (τ01 = 0). In the generation of missing data,
we simulated data that were missing completely at random
(MCAR) by setting λ1 = 0 or missing at random (MAR)
by setting λ1 = .35 or .70. Finally, we set the proportion
of missing data to 30%. Each simulated condition was
replicated 1000 times.

Procedures

The procedures used for the treatment of missing
data included both conventional and substantive-model-

Table 1 Simulated conditions in studies 1, 2, and 3

Design factor Study 1 Study 2 Study 3

Data structure

Level 1 sample size 10, 20 10, 20 20

Level 2 sample size 50, 100, 200, 500, 1000 50, 100, 200, 500, 1000 1000

ICCs of X and Y .10, .20, .50 .20 .20

Explanatory variable model

Correlation of X and Z .20 .20

Total R2
xz .50

Nonlinear proportion of R2
xz 0, .25, .50, .75, 1

Substantive analysis model

Effect of xij .40 .15

Effect of (xij − x̄•j ) .40

Effect of x̄•j 0

Effect of zj .20 .20 .15

Effect of xij zj .20 .15

Effect of (xij − x̄•j )zj .20

Effect of x̄•j zj 0

Effect of x2
ij .15

Effect of z2j .15

Missing data

Proportion missing 30% 30% 30%

Effect of Y on missingness 0, .35, .70 0, .35, .70 0, .35, .70

Note. ICC = intraclass correlation

2636 Behav Res (2021) 53:2631–2649



compatible methods for multilevel MI. Reflecting the more
conventional approach to multilevel MI, we used an FCS
approach based on the R package mice (van Buuren &
Groothuis-Oudshoorn, 2011) in which we used a “reversed”
imputation model to treat missing data in the explanatory
variable with passive imputation3 of the interaction effect
(see also Grund et al. 2016, 2018b; Enders et al. 2016).
The substantive-model-compatible methods for multilevel
MI included the sequential modeling approach (SMC-SM)
implemented in the mdmb package as well as the SMC-
JM approach implemented in jomo, and the SMC-FCS
approach implemented in Blimp. All of the substantive-
model-compatible methods were able to fully accommodate
the model of interest, so we expected that they would per-
form similarly well. In addition, we also included analyses
of the complete data (CD) and listwise deletion (LD) to
make comparisons. Each method was carried out with an
appropriate number of iterations to ensure the convergence
of the procedures, which we determined by checking the
convergence criteria (R̂; Gelman & Rubin 1992) and diag-
nostic plots in a subset of the simulated conditions in which
we expected the convergence to be slowest (e.g., small
samples, small ICCs). All methods were specified with non-
informative priors.4 Ten imputations were used throughout
the simulation.

Parameters of interest and pooling

We estimated the substantive analysis model using the
R package lme4 (Bates et al., 2019), and we used
Rubin’s (1987) rules to pool the parameter estimates across
the imputed data sets. The parameters of interest in the
substantive analysis model were primarily the regression
coefficients for the effect of x (β1) and the CLI of x with z

(β3) as well as the slope variances of the effect of x (τ 21 ). To
compare the statistical properties of the parameter estimates
under each method, we calculated the bias, the root mean

3In the present case, where only x is incomplete, “passive” imputation
is not strictly needed. Instead, the product term of y and z used in
the “reversed” imputation model can simply be calculated a priori.
However, in the more general case with missing data in more than one
variable, “passive” imputation is needed to update product terms to
accommodate the most recently imputed values.
4For all methods, we placed an improper (uniform) prior on the fixed
effects and an inverse Wishart prior, W−1(ν,�), on the covariance
matrices at levels 1 and 2 with different specifications of the degrees
of freedom and the scale matrix. For jomo, these were specified as
least informative priors (ν = k, � = Ik for a matrix of size k; see
Schafer & Yucel 2002b). For Blimp and mdmb, we used improper
priors (ν = −(k + 1), � = 0 · Ik).

square error (RMSE), and the coverage rates of the 95%
confidence intervals (if applicable) for each parameter of
interest.

Results

In the interest of space, we focus on the main findings
here. The full set of results is provided in Supplement B
of the online supplemental materials (https://osf.io/aeqd2).
The results for the bias in the estimated parameters are
summarized in Fig. 2 and Table 2. In most of the simulated
conditions, using conventional methods for multilevel MI
(FCS) yielded biased results for the parameters of interest.
This bias was largest for the CLI (β3) and the slope variance
(τ 21 ) but also affected the other regression coefficients (β1).
Further, LD provided unbiased results only when the data
were MCAR (λ1 = 0) but biased results when they were
MAR (λ1 = .35, .70). By contrast, the substantive-model-
compatible approaches to multilevel MI (Blimp, jomo,
and mdmb) provided unbiased results for all parameters of
interest in most of the simulated conditions. However, the
procedures sometimes differed in how well they estimated
the slope variance. Specifically, the estimated slope variance
was sometimes downwardly biased with mdmb, primarily in
conditions with small samples at level 1 (n = 10) and large
ICCs (ρIx = ρIy = .50), whereas it was upwardly biased
with Blimp, primarily in conditions with small samples at
both level 1 (n = 10) and level 2 (J = 50).

The overall accuracy of the parameter estimates in terms
of the RMSE largely followed the same pattern as the
bias. Specifically, the RMSE was usually smallest with
Blimp, jomo, and mdmb, and the differences between
these procedures were negligible despite the differences in
the bias (e.g., for the slope variance). For the parameter
estimates obtained with FCS, the results for the RMSE were
more mixed. Specifically, as compared with the substantive-
model-compatible methods for multilevel MI, the RMSE
of the estimates obtained with FCS tended to be larger for
regression coefficients but smaller for the slope variance.
Finally, the RMSE of the estimates obtained with LD was
usually larger than with the other methods, especially when
the data were MAR.

The coverage rates of the 95% confidence intervals are
summarized in Table 3 for the regression coefficients of
the CLI (β3). For Blimp, jomo, and mdmb, the coverage
rates remained close to the nominal level of 95% in most
of the simulated conditions. By contrast, the coverage rates
dropped well below the nominal level with FCS, especially
in larger samples. Finally, with LD, the coverage rates were
close to 95% when the data were MCAR but much lower
when the data were MAR, especially in conditions with
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Fig. 2 Bias (in %) of the estimated regression coefficients for the
overall effect of x (β1), the CLI (β3), and the slope variance (τ 21 ) in
conditions with small samples at level 1 (n = 10) and moderate ICCs
(ρIx = ρIy = .20) in study 1. J = level 2 sample size; CD = complete
data; LD = listwise deletion; FCS = multilevel MI (fully conditional

specification); JOMO = substantive-model-compatible multilevel MI
(joint modeling); BLIMP = substantive-model-compatible multilevel
MI (fully conditional specification); MDMB = substantive-model-
compatible multilevel MI (sequential modeling). The Monte Carlo
error ranged from 0.1% to 1.5% (median 0.4%)

larger samples and with a stronger MAR mechanism (λ1 =
.70).

Summary

The results of study 1 indicated that substantive-model-
compatible methods for multilevel MI such as those
implemented in jomo (SMC-JM), Blimp (SMC-FCS),
and mdmb (SMC-SM) can all provide unbiased parameter
estimates in multilevel analyses with missing data when
the substantive analysis model includes random slopes or
nonlinear effects. By contrast, using LD or conventional
methods for multilevel MI such as FCS can have the
potential to provide strongly biased estimates of the
parameters in the substantive analysis model. However,
in study 1, we focused on the relatively simple scenario,
in which the substantive analysis model included only
“overall” (i.e., conflated) effects. For this reason, in the
following study, we expanded the substantive analysis
model to include centering, which allows the explanatory
variables to have different effects at levels 1 and 2.

Study 2

Data generation

In study 2, we generated the explanatory variables x and z

in the same way as in study 1. However, in the substantive
analysis model, which we used to generate the outcome
variable y, this time we used cluster-mean centering to
decompose x into two separate components, (xij − x̄•j ) and
(x̄•j ), thus allowing the effect of x on y to differ between
levels 1 and 2:

yij = β0 + β1(xij − x̄•j ) + β2 x̄•j + β3zj

+ β4(xij − x̄•j )zj + β5 x̄•j zj

+ u0j + u1j (xij − x̄•j ) + eij .

(12)

This model was already shown in the motivating example
above and is also illustrated in Fig. 1 (panel B). In contrast
to the model used in study 1, this model includes both the
cluster means of x (x̄•j ) and the within-cluster deviations
(xij −x̄•j ) as separate explanatory variables, thus estimating
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Table 2 Bias (in %) of the estimated regression coefficient for the overall effect of x (β1), the CLI (β3), and the slope variance (τ 21 ) in study 1

MCAR (λ1 = 0) MAR (λ1 = .70)

n J Par. CD LD FCS JOMO BLIMP MDMB CD LD FCS JOMO BLIMP MDMB

ρIx = ρIy = .10

10 200 β1 0.1 0.1 −4.0 0.0 −0.1 0.1 −0.1 −20.5 −8.7 −2.3 −0.9 −0.1

β3 0.5 0.3 −10.5 0.3 0.2 0.2 0.4 −21.9 −18.0 −1.8 −0.4 0.0

τ 21 −0.2 −0.4 −19.7 −1.0 0.2 −3.7 −0.1 −31.3 −23.4 −3.0 2.7 −4.2

1000 β1 −0.0 0.0 −3.4 −0.0 −0.1 0.1 0.1 −20.3 −7.0 −1.9 −0.4 0.2

β3 0.1 −0.1 −10.8 −0.1 −0.1 −0.2 −0.6 −22.9 −17.7 −2.7 −1.5 −0.9

τ 21 0.1 0.4 −22.2 0.3 0.5 −1.8 −0.1 −31.8 −28.3 −3.1 1.8 −3.2

20 200 β1 0.6 0.6 −3.4 0.6 0.5 0.6 −0.1 −19.8 −7.6 −2.0 −0.9 −0.4

β3 −0.2 −0.2 −9.9 −0.3 −0.2 −0.3 0.9 −20.7 −15.2 −1.1 −0.9 0.3

τ 21 0.1 0.0 −19.2 −0.3 0.1 −0.5 −0.8 −32.3 −25.0 −4.0 2.1 −1.0

1000 β1 −0.2 −0.2 −3.9 −0.2 −0.2 −0.1 −0.0 −19.7 −6.8 −1.8 −0.7 −0.1

β3 0.1 0.2 −9.6 0.2 0.1 0.1 0.0 −21.6 −15.7 −2.0 −1.9 −0.6

τ 21 0.1 0.1 −20.4 0.1 0.2 −0.3 −0.3 −31.7 −26.6 −3.2 2.7 −0.3

ρIx = ρIy = .20

10 200 β1 −0.4 −0.4 −4.3 −0.4 −0.6 −0.3 0.3 −19.9 −8.0 −1.9 −0.6 0.2

β3 −0.1 −0.3 −11.0 −0.4 −0.5 −0.5 −0.1 −22.2 −17.9 −2.4 −1.1 −0.8

τ 21 0.2 −0.3 −19.1 −1.0 0.3 −4.0 −0.1 −30.3 −23.3 −2.8 3.5 −4.6

1000 β1 0.2 0.1 −3.2 0.1 0.1 0.3 0.1 −20.1 −7.0 −2.0 −0.6 0.2

β3 0.1 0.1 −10.4 0.1 0.1 0.1 0.3 −22.1 −16.6 −1.8 −0.5 −0.1

τ 21 −0.0 −0.2 −22.4 −0.4 −0.1 −4.1 0.1 −30.5 −28.1 −2.6 2.1 −5.0

20 200 β1 0.1 0.0 −3.9 0.0 −0.0 0.1 0.1 −19.2 −7.5 −1.9 −1.1 −0.5

β3 0.2 0.0 −9.4 0.1 0.2 0.1 0.7 −20.9 −15.4 −1.7 −1.7 −0.7

τ 21 −0.2 −0.4 −19.0 −0.6 0.1 −1.4 −0.3 −30.4 −24.0 −2.6 4.4 −0.0

1000 β1 −0.0 −0.0 −3.7 −0.0 −0.0 0.1 −0.1 −19.4 −7.0 −2.0 −1.1 −0.4

β3 0.1 0.1 −9.3 0.2 0.1 0.1 −0.2 −21.7 −15.6 −2.3 −2.4 −1.3

τ 21 0.1 0.1 −20.1 0.1 0.2 −1.0 −0.3 −30.4 −26.4 −2.6 3.8 −0.8

ρIx = ρIy = .50

10 200 β1 0.5 0.5 −3.6 0.3 0.3 0.1 0.1 −16.1 −7.8 −2.2 −1.2 −0.5

β3 0.2 0.2 −10.0 0.3 0.3 −0.5 −0.1 −19.1 −18.1 −3.2 −2.2 −3.0

τ 21 −0.3 0.0 −18.7 −1.0 0.3 −20.0 0.1 −23.0 −22.5 −0.2 5.6 −25.1

1000 β1 0.0 −0.1 −3.4 −0.0 −0.0 −0.1 −0.0 −16.2 −7.0 −2.1 −0.9 −0.3

β3 −0.0 −0.1 −10.2 −0.0 −0.1 −0.9 0.2 −18.5 −16.3 −2.1 −1.1 −2.1

τ 21 −0.0 −0.2 −21.8 −0.1 0.3 −20.5 0.2 −23.1 −27.1 −0.2 3.7 −29.9

20 200 β1 −0.3 −0.2 −4.3 −0.3 −0.3 −0.5 0.1 −14.5 −7.3 −2.6 −2.1 −3.1

β3 −0.4 −0.1 −9.5 −0.2 −0.2 −0.9 −0.3 −17.1 −16.1 −4.1 −5.2 −6.9

τ 21 0.8 0.9 −18.0 0.3 1.0 −4.2 −0.3 −22.2 −22.8 2.0 8.7 −3.3

1000 β1 0.0 0.1 −3.8 0.1 0.1 −0.2 0.0 −14.5 −6.8 −2.4 −1.7 −2.7

β3 0.1 0.1 −9.4 0.1 0.0 −0.6 0.3 −16.6 −15.0 −3.0 −3.5 −5.3

τ 21 0.0 0.1 −20.1 −0.0 0.1 −5.0 0.1 −22.1 −24.8 2.0 7.3 −4.1

Note. Biases larger than ±10% are printed in bold. n = level 1 sample size; J = level 2 sample size; ρIx = ρIy = intraclass correlations
of x and y; CD = complete data; LD = listwise deletion; FCS = multilevel MI (fully conditional specification); JOMO = substantive-model-
compatible multilevel MI (joint modeling); BLIMP = substantive-model-compatible multilevel MI (fully conditional specification); MDMB =
substantive-model-compatible multilevel MI (sequential modeling). The Monte Carlo error ranged from 0.1% to 0.8% (median 0.2%)

2639Behav Res (2021) 53:2631–2649



Table 3 Coverage of the 95% confidence intervals for the CLI (β3) in conditions with moderate ICCs (ρIx = ρIy = .20) in study 1

MCAR (λ1 = 0) MAR (λ1 = .70)

n J CD LD FCS JOMO BLIMP MDMB CD LD FCS JOMO BLIMP MDMB

10 50 94.0 93.7 94.5 94.0 94.3 93.6 93.8 85.2 92.4 94.2 94.1 94.7

100 96.0 96.0 94.2 95.3 95.8 95.1 94.1 82.0 89.4 95.1 93.7 93.5

200 93.6 93.4 89.9 93.1 93.5 93.4 95.1 66.0 80.9 96.6 95.3 94.8

500 94.6 94.7 78.8 94.6 94.9 94.0 94.8 32.8 58.9 97.4 94.7 94.1

1000 94.8 95.2 68.1 96.1 95.4 95.5 96.4 7.5 31.5 99.1 95.6 95.3

20 50 93.5 92.9 92.6 93.3 93.6 93.1 93.8 85.5 91.5 95.4 95.1 94.1

100 94.5 94.1 90.8 94.8 93.9 94.5 94.9 75.6 87.2 96.1 95.5 94.5

200 95.2 95.9 90.1 96.1 96.2 95.9 93.7 59.7 77.7 95.9 93.2 93.8

500 95.2 94.9 79.9 94.8 94.9 94.2 96.0 21.5 50.4 98.1 94.1 95.4

1000 94.7 94.6 62.5 94.8 94.6 94.2 94.9 2.1 21.1 98.7 91.4 93.9

Note. Coverage rates below 92.5% are printed in bold. n = level 1 sample size; J = level 2 sample size; CD = complete data; LD = listwise
deletion; FCS = multilevel MI (fully conditional specification); JOMO = substantive-model-compatible multilevel MI (joint modeling); BLIMP =
substantive-model-compatible multilevel MI (fully conditional specification); MDMB = substantive-model-compatible multilevel MI (sequential
modeling). The Monte Carlo error ranged from 0.2% to 1.1% (median 0.5%)

separate regression coefficients for the effects of x on y at
levels 1 and 2. In addition, the model includes an effect
of z at level 2 as well as a CLI of (xij − x̄•j ) with zj , a
level 2 interaction between x̄•j and zj , and a random slope
of (xij − x̄•j ). The distributions of the random effects and
residuals were the same as in study 1, and missing data were
induced in x as before.

Simulated conditions

The simulated conditions are summarized in Table 1. For
most aspects of the design, we left the simulated conditions
unchanged. For the regression coefficients, we chose a
moderate effect of (xij − x̄•j ) at level 1 (β1 = .40), no effect
of x̄•j at level 2 (β2 = 0), a small to moderate effect of z at
level 2 (β3

2 = .20), a small to moderate CLI (β4 = .20), and
no interaction at level 2 (β5 = 0). As before, each condition
was replicated 1000 times.

Procedures and parameters of interest

The procedures used for the treatment of missing data were
the same as in study 1. However, not all software imple-
mentations of the substantive-model-compatible methods
for multilevel MI allowed the cluster means and the centered
scores of the explanatory variables to be included in the
specification of the substantive analysis model. Specifically,
only the SMC-SM approach in mdmb and the SMC-FCS
approach in Blimp allowed the cluster means and centered
variables to be included, whereas the SMC-JM approach in
jomo allowed explanatory variables to be included only “as
is” (i.e., with conflated effects). In this context, it is worth

noting that Blimp and mdmb handle the cluster means in
slightly different ways, where mdmb includes manifest clus-
ter means, whereas Blimp includes latent clusters means
(for a detailed discussion, see Lüdtke et al. 2008). How-
ever, previous studies have found that the two options tend
to produce similar results unless in extreme cases (e.g., with
strongly imbalanced sample sizes across clusters; see Grund
et al. 2018a; Resche-Rigon & White 2018). For this rea-
son, both Blimp and mdmb can be considered compatible
with the substantive analysis model, and we expected that
they would both perform better than jomo. The parameters
of interest were primarily the regression coefficients of the
effect of x at level 1 (β1) and the CLI (β4) as well as the
slope variances of the effect of x at level 1 (τ 21 ). For each
procedure and parameter of interest, we calculated the bias,
the RMSE, and the coverage rates of the 95% confidence
intervals as before. However, in the interest of space, we
focus here on the bias and coverage rates.

Results

The results for the bias are summarized in Fig. 3. Similar
to study 1, using FCS or LD (under MAR) led to biased
estimates of the regression coefficients for the effect of x at
level 1 and the CLI (β1 and β4) as well as the slope variance
(τ 21 ) in most of the simulated conditions. By contrast, Blimp
and mdmb both provided essentially unbiased estimates of
the parameters. In contrast to study 1, this also included the
estimates of the slope variance (τ 21 ), which were unbiased in
all conditions. However, in contrast to Blimp and mdmb, the
estimates obtained with jomo tended to be biased in most
conditions, reflecting the fact that this method could not
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Fig. 3 Bias (in %) of the estimated regression coefficients for the
effect of x at level 1 (β1), the CLI (β4), and the slope variance (τ 21 ) in
conditions with small samples at level 1 (n = 10) and moderate ICCs
(ρIx = ρIy = .20) in study 2. J = level 2 sample size; CD = complete
data; LD = listwise deletion; FCS = multilevel MI (fully conditional

specification); JOMO = substantive-model-compatible multilevel MI
(joint modeling); BLIMP = substantive-model-compatible multilevel
MI (fully conditional specification); MDMB = substantive-model-
compatible multilevel MI (sequential modeling). The Monte Carlo
error ranged from 0.1% to 1.5% (median 0.5%)

fully accommodate the substantive analysis model during
MI.

The coverage rates for the 95% confidence intervals
are shown in Table 4 for the regression coefficient of
the CLI (β4). Overall, the results were similar to study 1
and followed the same pattern as the bias in most cases.
Specifically, the coverage rates were generally close to
the nominal level of 95% when Blimp or mdmb were
used, whereas the coverage rates often dropped well below
the nominal value when FCS or LD (under MAR) were
used, especially in larger samples. However, although the
estimates of the parameters of interest that jomo provided
were sometimes biased, this did not appear to influence the
coverage rates of the 95% confidence intervals, which were
still close to the nominal level in most cases.

Summary

The results of study 2 indicated that substantive-model-
compatible methods for multilevel MI can provide unbiased
estimates in multilevel analyses with interactions and

random slopes even when the model includes centering
to distinguish between the effects of explanatory variables
at levels 1 and 2. By contrast, conventional methods for
multilevel MI and LD were not able to preserve the relations
between variables and led to biased estimates of the model
parameters. However, in contrast to study 1, only Blimp and
mdmb were able to provide unbiased results, whereas jomo
was not able to fully accommodate the substantive analysis
model. Nonetheless, it is important to emphasize that this
does not constitute a restriction of the SMC-JM approach
in general but only refers to specific implementations in
software. More generally, this highlights the importance
of the correct specification of the imputation model
for ensuring unbiased estimates in multilevel analyses.
In the previous simulations, we primarily investigated
how nonlinear effects in the substantive analysis model
can be accommodated with substantive-model-compatible
methods for multilevel MI. In the following study,
we extended our investigation to include cases with
additional nonlinear associations between the explanatory
variables.
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Table 4 Coverage of the 95% confidence intervals for the cross-level-interaction (CLI, β4) in conditions with moderate ICCs (ρIx = ρIy = .20)
in study 2

MCAR (λ1 = 0) MAR (λ1 = .70)

n J CD LD FCS JOMO BLIMP MDMB CD LD FCS JOMO BLIMP MDMB

10 50 93.5 93.0 94.7 93.4 93.6 93.8 94.5 89.3 94.5 93.5 93.9 94.3

100 95.3 94.1 92.0 94.6 94.2 94.5 95.0 83.7 91.1 95.1 94.6 94.7

200 95.2 95.1 91.6 95.0 95.6 94.5 95.8 77.5 86.7 95.9 95.4 95.1

500 95.6 94.9 81.3 94.6 94.1 95.1 95.3 53.1 73.6 96.1 95.5 96.2

1000 95.5 95.5 65.6 94.5 95.6 95.4 94.5 22.3 45.4 94.7 93.4 94.4

20 50 95.2 93.9 93.7 94.2 94.1 94.7 94.5 87.7 93.4 95.1 94.8 95.0

100 94.2 94.2 93.5 94.7 94.5 94.4 94.8 79.3 88.5 95.1 94.7 94.6

200 95.9 95.3 88.4 95.3 95.1 94.9 94.1 64.6 79.7 96.4 94.7 94.7

500 95.5 95.5 76.8 95.3 95.1 95.4 95.6 35.1 63.6 96.9 94.6 94.8

1000 94.2 94.1 62.4 93.7 94.1 93.4 96.0 7.3 34.6 97.8 95.7 95.7

Note. Coverage rates below 92.5% are printed in bold. n = level 1 sample size; J = level 2 sample size; CD = complete data; LD = listwise
deletion; FCS = multilevel MI (fully conditional specification); JOMO = substantive-model-compatible multilevel MI (joint modeling); BLIMP =
substantive-model-compatible multilevel MI (fully conditional specification); MDMB = substantive-model-compatible multilevel MI (sequential
modeling). The Monte Carlo error ranged from 0.2% to 1.2% (median 0.5%)

Study 3

Data generation

In study 3, we aimed to investigate the effects of additional
nonlinear associations between the variables, especially
those that may exist between the explanatory variables x and
z. For this reason, we simulated the explanatory variables
in accordance with a nonlinear model. Specifically, z was
standardized and followed a univariate normal distribution.
Then, we generated x as follows:

xL2
j = φ0 + φ1zj + φ2z

2
j + εj , εj ∼ N(0, ρIx(1 − R2

xz))

xL1
ij ∼ N(0, 1 − ρIx) ,

(13)

where R2
xz denotes the total amount of variance explained

in x by both the linear and nonlinear effects of z, and the
regression coefficients φ0, φ1, and φ2 were chosen in such
a way that x would have a mean of zero and the linear
and nonlinear effects would contribute a given amount
of variance (in %) to the total R2

xz. Then, we simulated
the outcome variable y in accordance with the following
substantive analysis model:

yij = β0 + β1xij + β2zj + β3xij zj + β4x
2
ij + β5z

2
j

+u0j + u1j xij + eij . (14)

This model is illustrated in Fig. 1 (panel C) and is
similar to the data generating model in study 1 in that
it includes only “overall” (i.e., conflated) effects of the
explanatory variables at level 1. However, the model
includes additional nonlinear (i.e., quadratic) effects of the
explanatory variables x and z. The distributions of the
random effects and residuals were the same as in study 1,
and missing data were induced in x as before.

Simulated conditions

The simulated conditions are summarized in Table 1. To
keep the design as simple as possible, we only simulated
conditions with large samples at level 1 (n = 20) and level
2 (J = 1000). In addition, we fixed the total R2

xz to .50
and varied the relative weight of the nonlinear effect of z

to the R2
xz in finer steps (w = 0, .25, .50, .75, 1), which

reflected conditions in which the relation between x and z

was linear or nonlinear to varying degrees (i.e., completely
linear, mixed, or completely nonlinear). Note that, although
this value for the total R2

xz may be considered large, it
implies a reasonable range of the values of the correlation
between x and z, which takes values roughly between 0 and
.7, depending on the weight w of the nonlinear term (e.g.,
ρxz ≈ .7 if w = 0 and ρxz = 0 if w = 1). For the
regression coefficients in the substantive analysis model, we
chose a uniform value of .15. As before, each condition was
replicated 1000 times.
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Procedures and parameters of interest

The procedures used for the treatment of missing data were
the same as in studies 1 and 2. However, of the three
methods for substantive-model-compatible multilevel MI,
only the SMC-SM approach (mdmb) allowed us to take the
nonlinear association between the explanatory variables into
account. By contrast, the SMC-JM (jomo) and SMC-FCS
(Blimp) approaches also accommodated the substantive
analysis model but did not allow the nonlinear association
between the explanatory variables to be included in the
specification of the imputation model. For this reason, we
expected that mdmb would outperform jomo and Blimp.
The parameters of interest primarily included the regression
coefficients in the substantive analysis model, that is, the
coefficients of the linear and quadratic effects of x and z (β1,
β2, β4, and β5) as well as their CLI (β3). For each procedure
and parameter of interest, we calculated the bias, the RMSE,
and the coverage rates of the 95% confidence intervals as
before. However, in the interest of space, we focus on only
the bias.

Results

The results for the bias are summarized in Fig. 4. For
simplicity, we did not include the results for FCS in this
figure, because the bias that occurred with FCS often
exceeded the bias that occurred when other methods were
used by a substantial margin. Overall, the bias in the
estimated parameters depended strongly on the missing data
mechanism and the strength of the nonlinear association
between the explanatory variables. Specifically, when the
data were MCAR, all methods provided approximately
unbiased results for all parameters of interest. Under MAR,
all procedures sometimes produced biased results, but the
amount of bias that was produced and the parameters
affected by the bias often differed. Specifically, the
estimates obtained with FCS and LD were usually the most
biased regardless of the relative weight of the nonlinear
association between the explanatory variables. By contrast,
when the nonlinear association had no weight (w = 0),
Blimp, jomo, and mdmb all provided reasonable parameter
estimates with only little or no bias. When the nonlinear
association had moderate weight (w = .25 to .75), jomo
and mdmb still provided parameter estimates with relatively
little bias (up to 12.6% for jomo and 9.0% for mdmb),
whereas the bias obtained with Blimp tended to be larger
(up to 21.9%). Finally, when the weight of the nonlinear
association was large (w = 1), mdmb provided the estimates
with the least amount of bias (up to 4.9%), whereas the bias
obtained with Blimp and jomo was larger (up to 15.5% for
jomo and 21.2% for Blimp).

Summary

The results of study 3 illustrate two important points. First,
in cases with systematically missing data (i.e., MAR), the
treatment of missing data can be further complicated by
the existence of additional nonlinear associations between
the explanatory variables. In such a case, including
additional nonlinear effects in the imputation model for the
explanatory variables can be beneficial in the sense that
it can reduce the bias in parameter estimates in multilevel
analyses. Second, however, these differences tend occur in
only a small number of cases, in which both the missing
data mechanism and the nonlinear associations are relatively
strong. For this reason, the potential benefits of including
additional nonlinear effects in real-life applications (e.g.,
with SMC-SM) may be relatively small in comparison with
the overall benefits of using substantive-model-compatible
versus conventional methods for multilevel MI.

Empirical example

In the following, we provide an illustration of the methods
considered in this article using empirical data. The example
is based on an example fromHoffman (2015, Chapter 8) and
uses the data from the daily diary project in the MIDUS 2
study (Ryff & Almeida, 2017). The data include responses
from 2022 adults (M = 56.2 years, range, 33–84 years)
in a longitudinal study on the effects of daily (negative)
mood and stress on perceived physical symptoms with ten
measurements collected over 2 weeks. The data contain
missing values in both negative mood (7.9%) and stress
(7.9%). For ease of interpretation, we centered the data for
all variables before the analysis. The computer code used to
run the example analysis is provided in Supplement A of the
online supplemental materials (https://osf.io/aeqd2).

The substantive analysis model for this example can
be used to investigate the effects of negative mood and
stress as well as the participants’ gender and age on
physical symptoms. Specifically, the model includes effects
of negative mood and stress both within (level 1) and
between persons (level 2) as well as effects of gender
and age across persons (level 2) and potential interactions
between them. In the notation used by Raudenbush and
Bryk (2002), the model can be written as follows. For person
j at time point i,

Level 1:

Symptomsij = β0j + β1j (Moodij − Mood•j ) + β2jStressij

+β3(Moodij − Mood•j )Stressij + eij
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Level 2:

β0j = β0 + β4Mood•j + β5Stress•j + β6Genderj

+β7Agej + β8Mood•jStress•j

+β9Mood•jGenderj + β10Stress•jGenderj

+β11GenderjAgej + u0j (15)

β1j = β1 + β12Stress•j + β13Genderj + u1j

β2j = β2 + β14Mood•j + β15Genderj

At the within-person level (level 1), the model includes
effects of negative mood and stress. In addition, the model
includes a random slope for negative mood, which allows
the within-person effect of negative mood to vary across
persons. At the between-person level (level 2), the model
includes effects of negative mood, stress, gender, and age.
Finally, the model includes a number of interaction effects,
both within (level 1) and between persons (level 2) as well
as CLIs to investigate whether the within- and between-
person effects of negative mood and stress are moderated by
time-varying (level 1) or person-level characteristics (level
2). Notice that missing data occur in both of the two time-
varying explanatory variables (negative mood and stress).
In such a case, most software packages for multilevel
analyses will remove cases with incomplete data, leading to
a reduction in sample size. In the present example, a total of
1280 observations would be dropped from the analysis.

To handle the missing data, we used the substantive-
model-compatible methods for multilevel MI as outlined
above. This included SMC-JM, implemented in the R
package jomo; SMC-FCS, implemented in the Blimp
software; and SMC-SM, implemented in the R package
mdmb.5

Using each method, we generated 20 imputations for
the missing values. Finally, we used the R packages lme4
(Bates et al., 2019) and mitml (Grund et al., 2019) to
analyze the imputed data sets and pool the results. For
comparison, we also included LD.

The results are summarized in Table 5. In this
example, negative mood was associated with perceived
physical symptoms primarily at the person-level (level 2),
indicating that participants with a more negative mood also
experienced more physical symptoms. The within-person
effect of negative mood was smaller but also positive.
In addition, there seemed to be positive effects of the
participants’ gender and age, indicating that female and
older participants reported more physical symptoms. There
were no main effects of stress. However, stress seemed

5Notice that the substantive analysis model uses centering to
distinguish between the within- and between-person effects of negative
mood. These effects could be accommodated by Blimp and mdmb,
whereas jomo included only the “overall” (i.e., conflated) effect of
negative mood.

to moderate the effects of negative mood both within and
between persons as well as across levels, indicating that
the relation between negative mood and physical symptoms
is stronger for participants who experience more stressful
events on a given day or on average. Overall, the results
differed relatively little across the procedures, which usually
provided estimates well within one unit of a standard error
(SE). However, there were two exceptions. First, the CLI
between stress (at level 1) and negative mood (at level 2)
was slightly larger and just barely statistically significant
with jomo and Blimp, whereas it was slightly smaller
and not significant with mdmb. Second, the estimates of
the slope variance differed across procedures, which was
largest with Blimp, slightly lower with LD and jomo, and
lowest with mdmb. However, these differences should not
be overstated given that the model is fairly complex and the
uncertainty with which the parameters were estimated was
relatively high despite the low proportion of missing data.

Discussion

The analysis of multilevel models is often complicated
by the presence of missing data. It has been pointed
out by several authors that incomplete predictor variables
in multilevel models with cross-level interactions and
nonlinear effects are currently not easy to handle in
mainstream multilevel software (Grund et al., 2018b;
Enders et al., 2018). In the present paper, we introduced a
sequential modeling approach to multilevel MI (the SMC-
SM approach), which is implemented in the R package
mdmb and allows for a substantive-model-compatible
imputation of missing data in multilevel models with
random slopes and nonlinear effects. We showed that this
approach provides a versatile and effective tool for treating
missing data in multilevel analyses. In the following, we
discuss the limitations of our study and the sequential
modeling approach and consider additional applications, in
which the sequential modeling approach can be used.

In the SMC-SM approach, it is important to recognize
that its performance—as with MI in general—depends
on the correct specification of the imputation models.
Specifically, the order of the conditional models used
to impute the explanatory variables must be explicitly
specified. In other words, it must be decided which variables
occur “early” vs. “late” in the sequence, where “early”
refers to the variables which are assigned with the smallest
conditional models with the fewest predictors. For practical
applications, researchers have proposed several strategies
that allow the order of the conditional models to be selected
in such a way that problems with misspecified imputation
models can be greatly reduced (Ibrahim et al., 2005;
Murray, 2018). First, they recommend that the sequence
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Fig. 4 Bias (in %) of the estimated regression coefficients for the
linear effect of x (β1), the linear effect of z (β2), the CLI (β3), the
quadratic effect of x (β4), and the quadratic effect of z (β5) in study 3.
w = relative weight of the nonlinear effect of z on x; CD = complete
data; LD = listwise deletion; JOMO = substantive-model-compatible

multilevel MI (joint modeling); BLIMP = substantive-model-
compatible multilevel MI (fully conditional specification); MDMB
= substantive-model-compatible multilevel MI (sequential modeling).
The Monte Carlo error ranged from 0.1% to 0.4% (median 0.2%)

begin with the conditional models for level 2 variables,
followed by level 1 variables. Second, at levels 1 and 2, the
variables can be ordered by type, beginning the sequence
with categorical variables followed by continuous variables.
These two strategies are beneficial because models for
categorical or level 2 variables are more difficult to estimate

than models for continuous or level 1 variables. Third, the
variables should be ordered by their percentage of missing
data, beginning the sequence with the variables that exhibit
a lower percentage of missing values. This is motivated by
the fact that the specification of a conditional model has a
smaller influence on the missing data treatment if variables
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Table 5 Results from the empirical example

LD JOMO BLIMP MDMB

Parameter Est. SE Est. SE Est. SE Est. SE

Intercept (β0) -0.048 0.054 -0.171** 0.053 -0.173** 0.053 -0.202*** 0.052

Level 1

Mood (β1) 0.576*** 0.128 0.737*** 0.138 0.715*** 0.145 0.621*** 0.138

Stress (β2) -0.084* 0.042 -0.078 0.044 -0.074 0.045 -0.076 0.042

Mood × Stress (β3) 0.381** 0.144 0.470** 0.152 0.489** 0.166 0.428** 0.151

Level 2

Mood (β4) 1.933*** 0.223 1.568*** 0.235 1.650*** 0.233 1.579*** 0.216

Stress (β5) 0.183 0.201 0.242 0.204 0.244 0.206 0.082 0.204

Gender (β6) 0.570*** 0.069 0.559*** 0.068 0.553*** 0.068 0.548*** 0.067

Age (β7) 0.014*** 0.004 0.015*** 0.004 0.015*** 0.004 0.015*** 0.004

Mood × Stress (β8) 0.780** 0.254 0.688** 0.257 0.711** 0.258 0.645* 0.253

Mood × Gender (β9) -0.015 0.264 0.086 0.268 0.079 0.267 0.058 0.266

Stress × Gender (β10) 1.728*** 0.393 1.941*** 0.473 2.321*** 0.479 1.604*** 0.468

Gender × Age (β11) -0.001 0.005 -0.000 0.005 -0.000 0.005 0.000 0.005

Cross-level effectsa

Mood × Stress (β12) 0.275* 0.136 0.422** 0.152 0.435** 0.164 0.408** 0.154

Mood × Gender (β13) -0.075 0.056 -0.098 0.059 -0.085 0.061 -0.086 0.056

Stress × Mood (β14) 0.549* 0.262 0.611* 0.308 0.724* 0.323 0.481 0.305

Stress × Gender (β15) 0.196 0.116 0.297* 0.139 0.114 0.138 -0.130 0.108

Variance components

Intercept (τ 20 ) 1.535 1.390 1.396 1.398

Slope (Mood, τ 21 ) 1.535 1.399 1.801 1.106

Residual (σ 2) 1.659 1.797 1.785 1.823

∗ p < .05, ∗∗ p < .01, ∗∗∗ p < .001 (two-sided)
a For the cross-level effects, level 1 variables are named first (before the “×”) and level 2 variables second (after the “×”)

Note. LD = listwise deletion; JOMO = substantive-model-compatible multilevel MI (joint modeling); BLIMP = substantive-model-compatible
multilevel MI (fully conditional specification); MDMB = substantive-model-compatible multilevel MI (sequential modeling)

with fewer missing values are placed earlier in the sequence
because the unexplained variation tends to be larger for the
variables that come early in the sequence.

One particular challenge with substantive-model-
compatible MI occurs if there is interest in more than one
substantive analysis model, for example, in model selection
or research on multiple outcomes. In such a case, it can
be required to run the imputation procedure multiple times
with different specifications of the substantive analysis
model. However, there are several exceptions. First, model
selection can be performed on a single set of imputations as
long as the models under consideration are nested in each
other, in which case the imputation model should be spec-
ified in accordance with the most general model. Second,
when analyzing multiple outcomes, a single set of imputa-
tions can often be used when all models share the same form
and include a common set of explanatory variables. In this

case, in SMC-SM, the sequence of models can be extended
to accommodate multiple substantive analysis models.

Our study considered only cases in which the data
were MAR (or MCAR). In practice, this assumption may
be violated, and the data may be missing not at random
(MNAR) even after auxiliary variables are taken into
consideration in the treatment of missing data. Stubbendick
and Ibrahim (2003) showed how the SMC-SM approach
can be used to impute incomplete multilevel data under
MNAR by adding a statistical model for the occurrence of
missing values in the predictor variables (i.e., missingness
indicators). However, for MNAR data, strong assumptions
about the missing data mechanism are required to estimate
models for the missingness indicators. More specifically,
for each missingness indicator, a subset of variables (in
the imputation model) that cause the missingness in that
variable must be identified. Alternatively, it has been argued
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that models for MNAR data should primarily be used
to conduct sensitivity analyses that allow researchers to
investigate the extent to which the results are robust to
the MAR assumption in comparison with different MNAR
mechanisms (Carpenter & Kenward, 2013).

In the present article, we focused on the SMC-SM
approach for two-level data. However, the sequential
modeling approach can be used for multilevel data with
an arbitrary number of levels, both hierarchical (e.g.,
three-level data) and nonhierarchical (e.g., cross-classified
data; see Rasbash & Browne 2008), and with explanatory
variables and the outcome variable located at any level
in the multilevel structure. These extensions have also
been implemented in the mdmb package. However, research
on the performance of MI in data with three or more
levels is still scarce, and it would be an important topic
for future research to investigate under which conditions
(e.g., sample size, intraclass correlations) multilevel MI
provides unbiased and efficient estimates. In this context, it
is also important to point out that the sequential modeling
approach for multilevel data can also be implemented and
used to generate imputations with general-purpose Bayesian
software packages such as BUGS and JAGS (see also Erler
et al. 2017; Grund et al. 2018b). However, implementing
BUGS or JAGS code for the SMC-SM approach is often not
a viable option for researchers who do not have advanced
experience with these software packages, in which case
specific implementations of these methods can be helpful
(for packages implementing the SMC-SM approach using
existing software for Bayesian analysis, see also Erler et al.
2019).

For multilevel analyses without random slopes or
nonlinear effects, conventional methods for multilevel MI
include the FCS approach as well as joint modeling
(JM), which is available in many statistical software
packages (e.g., in Mplus, MLwiN, or the R packages jomo
and pan; Schafer & Yucel 2002b). Several extensions
of the JM approach have also been considered as
promising alternatives for handling missing data in models
with random slopes or interaction effects. For example,
multilevel JM has been extended to include random
covariance matrices at level 1 (Yucel, 2011) and this
method has been considered an alternative for handling
missing data in models with random slopes (e.g., Enders
et al. 2018; Quartagno & Carpenter 2016). In addition,
implementations of multilevel JM based on latent class
analysis or mixture distributions could provide a promising
alternative to substantive-model-compatible multilevel MI
in applications with complex interactions between multiple
variables (e.g., Vidotto et al. 2018). These methods should
be considered further in future research.

In summary, our article showed that a sequential mod-
eling approach has great potential for handling missing
data in complex multilevel models that include nonlinear
effects. We introduced the R package mdmb, which facili-
tates the application of the SMC-SM approach and provides
a flexible way to treat missing data in multilevel analyses.
However, more generally, our article also demonstrated the
utility and effectiveness of substantive-model-compatible
methods in comparison with conventional methods for
multilevel MI. Software implementations for substantive-
model-compatible multilevel MI such as those in mdmb,
jomo, Blimp, and others provide user-friendly implementa-
tions of these methods to a wide audience, and we hope that
this article will help to further their application in research
practice.
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