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Abstract

The development of resistance to glucocorticoids (GCs) in therapeutic regimens poses 

a major threat. Generally, GC resistance is congenital or acquired over time as a result 

of disease progression, prolonged GC treatment or, in some cases, both. Essentially, 

disruptions in the function and/or pool of the glucocorticoid receptor α (GRα) underlie 

this resistance. Many studies have detailed how alterations in GRα function lead to 

diminished GC sensitivity; however, the current review highlights the wealth of data 

concerning reductions in the GRα pool, mediated by disease-associated and treatment-

associated effects, which contribute to a significant decrease in GC sensitivity. 

Additionally, the current understanding of the molecular mechanisms involved in driving 

reductions in the GRα pool is discussed. After highlighting the importance of maintaining 

the level of the GRα pool to combat GC resistance, we present current strategies and 

argue that future strategies to prevent GC resistance should involve biased ligands with 

a predisposition for reduced GR dimerization, a strategy originally proposed as the 

SEMOGRAM–SEDIGRAM concept to reduce the side-effect profile of GCs.

Introduction

Due to the interrelatedness of the stress and inflammatory 
responses, chronic persistent inflammation may be 
considered both a cause and a consequence of a prolonged 
disruption of the central HPA axis, a systemic signalling 
pathway of the stress response (1). This in turn, has 
many peripheral effects, such as an increase in circulating 
glucocorticoids (GCs) (2, 3).

Chronic stress or prolonged exogenous GC treatment 
also disrupts the central homeostatic nature of GC 
signalling, often resulting in various peripheral effects, 
one of which is the tissue-specific reductions in the 
glucocorticoid receptor α (GRα) functional pool. This 
reduction in the GRα functional pool may ultimately drive 
the development of acquired GC resistance and result in 
the progression of many psychological and pathological 
conditions.

Endogenous GCs, which are regulated by the HPA 
axis, are physiological mediators secreted in an ultradian 

or circadian manner (3) or in response to internal or 
external signals (2, 3, 4, 5, 6), such as infection, pain 
or stress, and function within the body to regulate 
inflammation and maintain internal homeostasis  
(2, 3, 6, 7). Exogenous GCs, designed to mimic the 
biological anti-inflammatory action of endogenous 
GCs, remain the mainstay therapeutic choice (7) for 
the treatment of chronic inflammation in various 
psychological and pathological conditions. GCs are 
currently one of the most widely prescribed drugs in the 
world with an estimated 1.2% of the population of the 
United States, using them (8). Although effective anti-
inflammatory agents, it is believed that approximately 
30% of all patients receiving treatment, experience 
a degree of GC insensitivity (9). Specifically, 4–10% 
of asthma patients (10), 30% of rheumatoid arthritis 
patients (10), almost all chronic obstructive pulmonary 
disease (COPD) (10) and sepsis patients (5) and 10–30% of 
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untreated acute lymphoblastic leukaemia (ALL) patients 
(11) experience varying degrees of GC insensitivity.

This stochastic response to GCs within disease 
groups (10), is compounded by inter-individual variation 
in patient sensitivity, as well as tissue-specific intra-
individual differences in GC responsiveness (1). Thus, 
research is now focussed on developing diagnostic tools 
for determining GC sensitivity prior to treatment, for the 
use in personalized therapeutic regimens (12), which will 
likely assist in limiting adverse side effects and restrict the 
development of further GC insensitivity.

This review begins by briefly describing the types of 
GC resistance and then discusses reductions in the GRα 
pool in various pathological and psychological conditions, 
in terms of acquired GC resistance. Primary focus is given 
to disease- or treatment-associated reductions in the GRα 
pool, which drive the development of GC insensitivity, 
followed by the molecular mechanisms involved in 
mediating these reductions. Furthermore, current 
methods to restore GRα protein expression and improve 
GC sensitivity are briefly detailed. Lastly, a potential 
role for the conformation of GRα in receptor turnover is 
proposed, and a strategy using conformationally biased 
ligands is advocated to combat acquired GC resistance.

GC resistance

Following GC secretion into the bloodstream, GCs are 
transported to various tissues and cells and diffuse across 
the cell membrane where they bind and mediate their 
biological effects via their cognate receptor, the ligand-
activated transcription factor, GRα (13). Upon ligand 
binding, the GRα undergoes a conformational change which 
allows for subsequent translocation to the nucleus (13). 
Here, the GC-bound GRα mediates the transrepression or 
transactivation of various GC-responsive genes (13, 14, 15).

Central to the ability of GCs to combat inflammation 
is the requirement for a significant amount of functional 
GRα through which they may mediate their effects (16, 
17). There are a multitude of factors which can regulate 
the functional pool of GRα, either at the level of the 
functionality of the receptor and/or at the level of the 
GRα pool, thus ultimately contributing to GC resistance. 
In short, disruptions in GRα function (1, 7, 18) are 
known to modulate, not necessarily independently of 
one another, the subcellular localization, ligand binding 
and transactivation ability of the receptor, and are 
regulated by, among others, increases in additional GR 
isoforms (GRβ and GRγ) due to alternative splicing events, 

inactivating GRα mutations, the inflammatory cytokine 
profile of the cellular microenvironment and mutations/
polymorphisms in the ERK pathway. However, rather 
than altered GRα function, the focal point of this review 
is reviewing the importance of the GRα pool, with regards 
to acquired GC resistance.

GC resistance is multi-faceted and has been extensively 
identified and studied in healthy and diseased states (9). 
Broadly speaking, GC resistance may be divided into two 
major groups: generalized (systemic/primary) or acquired 
(localized/secondary) GC resistance (1, 9). The generalized 
form of GC resistance falls beyond the scope of the current 
review, but for the interested reader is reviewed in several 
papers (1, 9, 15, 19). Essentially, these two groups of GC 
resistance are distinctively different in terms of the site 
of occurrence within a biological system, with acquired 
GC resistance often affecting specific tissues and/or cells 
while generalized GC resistance affects almost all tissues 
(1, 9). However, central to both types of GC resistance is 
perturbation of the GRα functional pool.

Acquired GC resistance is significantly more common 
in the general population and has been linked to a 
number of psychological and pathological conditions/
diseases. An apt description for this form of GC resistance 
is a ‘consequence of a pathophysiological process’ (5) 
affecting specific tissues/cell types (9). Furthermore, the 
clinical use of GCs, although effective initially, may lead 
to the development of acquired GC resistance thus posing 
a significant challenge for the long-term treatment of 
these conditions (9).

GC-resistant patients often require higher GC doses 
for prolonged periods of time in order to efficiently 
combat chronic inflammation, which likely leads to 
adverse side effects and may aggravate GC insensitivity 
(16). Thus, it is of importance for practitioners to be able 
to evaluate the GC responsiveness, of individual patients, 
to permit personalized GC treatment to obtain an optimal 
therapeutic outcome (12). Acquired resistance is more 
difficult to diagnose than generalized resistance, which 
generally displays a ‘clinical picture’ of GC resistance 
(1). In terms of generalized GC resistance, no single, 
standardized method for determining patient sensitivity 
to GC treatment exists (12), however, a range of 
endocrine (1) (e.g. cortisol awakening rise/response (CAR) 
or the 24-h urinary-free cortisol (UFC)) and biochemical 
methods (9) (dexamethasone suppression test (DST) or 
the more recent Dex/CRH suppression test) are employed 
to determine generalized GC resistance. In contrast, 
patients with or developing acquired GC resistance 
are mostly asymptomatic, thus, a range of in depth 
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biochemical diagnostic approaches (12, 20, 21) (e.g. BrdU 
incorporation lymphocyte steroid sensitivity assay (BLISS) 
and measuring the GC-responsive gene expression) are 
required to determine the GC responsiveness of specific 
tissues and/or cells. Although GC response can be 
determined, an increasing demand for more sensitive and 
specific tests remain, to avoid the unnecessary chronic GC 
use in treatment regimens (22).

Reductions in the GRα pool and implications 
for acquired GC resistance

In many, but certainly not all, stress-related, psychological 
and pathological conditions, reductions in the GRα pool 
have been noted (9) (Table  1). These disease-associated 
reductions in the GRα pool often produce GC-resistant 
forms within disease groups, which are exceptionally 
challenging to manage clinically (9). In addition to the 
disease-associated reductions in the GRα pool, generally 
mediated via increased circulating endogenous GCs, GC 
treatment-associated reductions in the GRα pool are well 
documented (Table 2). It is often difficult to distinguish 
between disease- and treatment-associated GRα turnover 
because withholding GC treatment from patients would 
not be ethical. Moreover, the treatment-associated effects 
on the GRα pool often exacerbate those that are disease-
associated (23), further contributing to the development 
of acquired GC resistance.

Disease-associated reductions in the GRα pool

There is a wealth of evidence associating stress, 
psychological and pathological conditions, with the 
development of an acquired GC resistance, through 
reductions in the GRα pool (Table 1).

Specifically, in terms of stress, the modulation of the 
GRα pool is fundamentally dependent on the duration 
of the stressor, the environment in which the stress 
occurs, and the individual’s sensitivity to stress (24, 25, 
26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 
41, 42, 43). Various stressors ranging from pre- or post-
natal to physical and psychological stress, in a number 
of human and rodent studies, encompassing various 
different tissues and cells, result in significant reductions 
in the GRα mRNA and/or protein pool (Table  1). These 
reductions are generally, but not always (26), correlated 
with stress-induced increases in circulating endogenous 
GCs (24, 25). Whilst GC-mediated receptor turnover is 
thought to be an adaptive mechanism employed by the 

cell to protect against the damaging effects of unrelenting 
stress, this reduction in the GRα pool has implications in 
GC sensitivity, often leading to a blunted GC response 
(42). Jung et  al. (38), supported by Quan et  al. (43), 
noted reductions in the GRα mRNA, and protein pool 
following repeated social defeat in rodent models, and 
importantly correlated these reductions to a consequent 
diminished GC sensitivity. In addition to encouraging 
the development of GC resistance, certain chronic 
physical, psychological and/or pre- or post-natal stressors 
can also increase susceptibility to severe psychological 
or pathological conditions (44, 45). An example is a 
recent study by Han et  al. (44) where stress-induced 
hypercortisolemia mediated a decrease in the GRα protein 
pool in the hypothalamus of mice, which subsequently 
increased their susceptibility to psychological disorders 
(e.g. depression).

In many psychological disorders, including 
depression and schizophrenia, a large cohort of patients, 
but not all (46, 47), display consistent biological findings 
(48, 49), namely an increase in inflammation and 
hyperactivity of the HPA, which drives hypercortisolemia, 
with consequences for the GRα pool in peripheral tissues 
(50). Whilst it must be noted that vast heterogeneity 
in GRα expression exists in patients with psychological 
conditions (48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 
59), the current review focuses on conditions/disorders 
which have been explicitly linked to reductions in the 
GRα pool (Table  1). Specifically, a number of studies 
have demonstrated a reduction in the GRα mRNA pool 
in patients suffering from major depression (MD) (52, 53, 
58), schizophrenia (58), bipolar disorder (58) and post-
traumatic stress disorder (54, 56, 57, 59) in various tissues 
of the brain (e.g. the hippocampus and prefrontal cortex) 
as well as in peripheral blood mononuclear cells (52, 53, 
58). Furthermore, in patients suffering from generalized 
anxiety disorder, a negative correlation was made between 
circulating GC concentrations and the GRα mRNA pool, 
which was subsequently shown to result in diminished 
GC sensitivity (55).

In terms of pathological conditions, it is difficult to 
tease apart whether modulations in the GRα pool are a 
pathological consequence of the disease, as in the case of 
many psychological disorders, or as a result of prolonged 
GC treatment, which many of these patients require 
(60). Nevertheless, this review highlights cases in which 
reductions in the GRα pool are noted in autoimmune or 
inflammatory-linked conditions, cancers and infection or 
other conditions, attempting to limit it to cases in which 
patients were not receiving treatment (Table 1).
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In autoimmune and inflammatory-linked conditions, 
a significant correlation between disease-associated 
reductions in the GRα pool and GC resistance has been 
demonstrated for atopic dermatitis (AD) (61), systemic 
lupus erythematosus (SLE) (62, 63, 64), adult immune 
thrombocytopenia (65) (ITP), steroid-resistant Type II 
asthma (66, 67), chronic obstructive pulmonary disease 
(68, 69, 70, 71) and osteoarthritis in humans (72, 73, 74). 
However, it has been suggested that the level of the GRα 
pool is not the primary determinant for GC sensitivity 
in all inflammatory-linked conditions as in the resistant 
form of irritable bowel disease (75, 76) and rheumatoid 
arthritis (73), for example, a reduction in the GRα pool 
does not always correlate with GC resistance, nevertheless 
a partial role for the GRα pool likely exists. Furthermore, 
in a rodent model, T-cells obtained from mice with 
experimental autoimmune encephalomyelitis, have a 
reduced GRα mRNA pool, which was linked to diminished 
GC sensitivity, in terms of GC-resistant apoptosis (77).

GCs are a primary therapeutic choice in cancer 
for either their pro-apoptotic effects or their use as an 
adjuvant therapy, in combination with chemotherapeutic 
agents, to reduce symptoms such as inflammation, allergic 
reactions, pain and nausea, which may also be caused by 
the tumour itself (78). However, both the type of cancer 
cell as well as the level of the GRα pool of certain cancer 
cells are thought to play a significant role in mediating the 
response to GC treatment (78, 79, 80, 81, 82). It is fairly well 
documented that high GRα expression is associated with a 
good response to GC treatment in lung cancer; however, 
drastic reductions in the GRα pool, thought, in part, to 
be a pathological consequence of the tumorigenic process 
may lead to GC insensitivity. Specifically, a number of 
authors have detailed that a reduction in the GRα pool is 
negatively correlated to GC response (78, 79, 80, 81, 82). 
For example, in acute lymphoblastic leukaemia (ALL) (83, 
84, 85, 86), multiple myeloma (MM) (87, 88, 89, 90, 91), 
lung cancer (i.e. small-cell lung cancer (SCLC) and non-
small-cell lung cancer (NSCLC)) (78, 79, 80, 81, 82) and 
breast cancer (92, 93), reductions in the GRα pool, have 
been associated with treatment-resistant forms of these 
cancers and/or diminished GC sensitivity. Furthermore, 
Vanderbilt et al. (94) established that the GC response in 
a rat hepatoma cell line was modulated in accordance to 
the level of the GRα pool.

Apart from autoimmune and inflammatory-linked 
diseases and certain cancers, disease-associated reductions 
in the GRα pool have been documented in conditions such 
as sepsis (95, 96), nephrotic syndrome (NS) (97), keloid 
disease (98) and stroke (99). Although these reductions in H
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receptor expression were generally negatively correlated 
to GC sensitivity, in sepsis, the association between the 
GRα pool and the GC response is, however, highly variable 
(5). In children with NS, the level of the GRα protein 
pool was assessed before exogenous GC treatment in two 
patient groups, namely the steroid-sensitive (SSNS) and 
the steroid-resistant (SRNS) groups (97). Patients from the 
SRNS group were reported to have reductions in the cellular 
GRα protein pool, which Hammad et al. (97) postulated 
may be one of the pathophysiological mechanisms of 
acquired GC resistance in these children. As with NS 
(97), patients with keloid disease may be separated into 
two groups, namely non-responders (nRPs) or responders 
(RPs) (98). Before receiving GC therapy, tissue isolated 
from keloid scars from nRPs displayed reductions in the 
GRα pool, both mRNA and protein, which was associated 
with decreased GC sensitivity following treatment (98). 
Lastly, in an in vitro model of hypoxia (used to mimic 
stroke events), endothelial cells isolated from mice 
brains, following O2/glucose deprivation had significant 
reductions in their GRα protein pool, relative to normoxic 
cells, which was proposed to be the cause of a decrease in 
subsequent GC sensitivity (99).

It is clear that chronic stress and certain psychological 
and pathological conditions drive disease-associated 
reductions in the GRα pool, often independently of 
exogenous GC treatment. More importantly, in many 
cases, these reductions in the GRα pool have been directly 
correlated to an increase in GC insensitivity and resistant 
forms of these diseases.

GC treatment-associated reductions in the GRα pool

It is often difficult to discriminate between disease- and 
treatment-associated reductions in the GRα pool (60). 
However, some clinical studies have demonstrated 
treatment-associated reductions in the GRα pool 
independent of disease-associated reductions (100, 101). 
Using various in vitro, in vivo and ex vivo human and/or 
rodent models, a number of studies have demonstrated 
that exogenous GC treatment, e.g. with dexamethasone 
(Dex), results in significant dose- and time-dependent 
reductions in the GRα pool with implications for GC 
sensitivity (Table 2).

Specifically, in vitro Dex treatment led to time-
dependent reductions in the GRα mRNA and/or protein 
pool, of between 50 and 90% (60, 99, 102, 103, 104, 105, 
106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116). 
Interestingly, Dex treatment of HeLa cells conducted for 
2 years, led to reductions in the GRα mRNA and protein 

pool to below detectable levels (103). Moreover, in most 
of these studies, where both the GR mRNA and protein 
pool was assessed, it would appear that the Dex-mediated 
reductions in the GRα protein pool were generally greater 
than that observed for the GRα mRNA pool. In a study 
by Bellingham et  al. (112), the rapid Dex-mediated 
reduction in GRα protein expression was maintained even 
after 4  weeks, while GRα mRNA expression displayed a 
‘biphasic pattern’, with an initial decrease followed by rise 
in receptor mRNA expression and a subsequent decline, 
which was attributed to ligand-induced transcriptional, 
post-transcriptional and translational regulation in 
mediating receptor mRNA expression, which was not 
reflected at the protein level (112). A number of studies 
using ex vivo and in vivo models mirror results of Dex-
mediated reductions in the GRα mRNA and/or protein 
pool obtained in cell lines. In a variety of mouse tissues 
and rat liver tissue, prolonged treatment with Dex led to 
significant reductions in the GRα pool (60, 102, 107, 113, 
114, 115, 116), which in some cases was associated with 
diminished GC sensitivity (102, 116).

Importantly, several in vitro, ex vivo and in vivo studies 
have demonstrated that GC sensitivity is compromised 
following prolonged Dex treatment, as a result of a 
significant reduction in the GRα pool (60, 99, 102, 103, 
104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 
116), highlighting how long-term GC therapy contributes 
to the development of acquired GC resistance. In addition 
to Dex, Table 2 also summarizes the reductions in the GRα 
mRNA and/or protein pool mediated by other exogenous 
GCs (23, 101, 117, 118, 119, 120, 121, 122), such as 
hydrocortisone (118).

Taken together, both disease and/or exogenous 
GC treatment drive reductions in the GRα pool and 
development of acquired GC resistance, a major clinical 
challenge. With the burden of resistance to GC treatment 
mounting, it is of utmost importance to understand the 
molecular mechanisms involved in ligand-induced GRα 
turnover.

Molecular mechanisms of GC-mediated 
reductions in GRα pool

To date, a number of GC-mediated molecular mechanisms 
employed by the cell have been identified to tightly 
regulate the GRα pool (Table 3).

The regulation of the GRα pool may be described 
using a simple ‘push’ vs ‘pull’ mechanism where, when 
in a dynamic state of equilibrium and unperturbed,  
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the synthesis of GRα is roughly equivalent to receptor 
turnover and the level of the GRα pool remains constant 
(Fig. 1). The ‘push’ is governed by two processes namely 
transcription and translation while the ‘pull’ is defined by 
proteasomal degradation, specifically via the ubiquitin-
proteasome pathway (UPS). One can assume that 
perturbations in the equilibrium state of GRα regulation 
will most likely result in alterations in the GRα pool. One 
of the ways in which the equilibrium of this dynamic state 
may be perturbed is via an increase in circulating GCs, either 
endogenous (i.e. disease-associated increases; Table  1) or 
exogenous (due to prolonged treatment; Table 2), which 
subsequently induces GC-mediated GRα turnover.

GC-mediated regulation of the GRα pool is complex 
and involves multiple layers of epigenetic, transcriptional, 
post-transcriptional and post-translational regulation (9, 
15). At each level of regulation, the molecular mechanisms 
function in a highly specific manner to stabilize or 
destabilize the GRα, which contributes to the complexity 
of the finely tuned GC/GRα signalling pathway, with 
receptor destabilization potentially advancing acquired 
GC resistance. This review focuses specifically on the 
molecular mechanisms, which function to reduce the 
GRα mRNA and protein pool in a ligand-dependent 
manner, however, ligand-independent regulation has 
been described (1, 9, 15).

GRα mRNA regulation

Epigenetic regulation
DNA methylation of the GRα (NCR31) promoter (123) has 
been identified as one of the major mechanisms involved 
in disease-associated acquired GC resistance across species 
(24, 25, 30, 32, 33, 42, 55, 81, 92) and has been positively 
correlated with an increase in circulating GCs (42). 
GC-mediated increases in DNA methylation of the GRα 
promoter generally, but not always (47), lead to a reduction 
in the GRα mRNA pool and possibly a corresponding 
reduction in the GRα protein pool (Table 3).

A specific exonic sequence in the rat GRα gene has 
been identified as a region that undergoes substantial 
DNA methylation following stressful events (30, 32, 42).  

Specifically, increased DNA methylation at the exon 
17 promoter, within the GRα promoter, was shown to 
mediate a reduction in the GRα mRNA pool (30, 32, 
42), with Mifsud et al. (42), demonstrating up to a 75% 
reduction in the GRα mRNA pool in dentate gyrus 
neurons of male Wistar rats. In mice, methylation of the 
same exon 17 promoter led to a significant reduction in 
the GRα protein pool (33). Additionally, human studies 
have demonstrated that DNA methylation of the GRα 
gene, specifically at exon1F, exon 1D, exon 1B, exon 1H 
and exon 1C, resulted in reductions in the GRα mRNA 
pool (24, 25, 55, 81, 92). DNA methylation of the exon 
1F promoter led to reductions in the GRα mRNA pool in 
tissues/cells from victims with a history of abuse (25) and 
patients with generalized anxiety disorder (55), with the 
latter being correlated to diminished GC sensitivity (55). 
Similarly, for exon 1B, exon 1C and exon 1H, an increase 
in the methylation status at these sites was associated 
with a decrease in the GRα mRNA pool, in breast cancer 
tissue (92) and the hippocampi of suicide completers (24). 
Furthermore, Kay et al. (81) showed that a 6% increase in 
GRα methylation resulted in a reduction in the receptor 
protein pool by up to 50%, in human small-cell lung 
cancer cells. Collectively, these studies highlight a role for 
DNA methylation in GC-mediated reductions in the GRα 
pool and demonstrate that this epigenetic mechanism is 
likely to contribute to the development of acquired GC 
resistance.

Transcriptional regulation
The GRα promoter has a negative glucocorticoid response 
element (nGRE) (107, 124). GC-mediated inhibition of 
transcription initiation of the GRα gene was shown to 
be the primary mechanism for up to a 90% reduction in 
the nascent GRα mRNA pool (107). Specifically occurring 
through a long-range interaction between the GC-bound 
GRα, at a nGRE present in exon 6, and a NCOR1 repression 
complex, which is assembled at the transcription start 
site of the gene (107). The ability of the GC-bound GRα 
to regulate its own transcription was neither species nor 
tissue specific (107). Whilst Ramamoorthy et  al. (107) 

Figure 1
Regulation of the GRα protein pool described by 
a simple ‘push’ vs ‘pull’ mechanism.
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convincingly demonstrated that the GC-mediated auto-
regulatory loop to repress the GRα gene occurs via an 
nGRE in the GRα gene promoter; it appears to be the only 
study to do so.

Post-transcriptional regulation
Unlike transcriptional regulation of the GRα gene that 
modulates nascent receptor mRNA expression, post-
transcriptional regulation involves the destabilization 
of mature receptor mRNA via the presence of adenylate 
uridylate (AU)-rich elements present in the 3′-untranslated 
region (UTR) of the GRα mRNA transcript, which may 
ultimately affect receptor protein expression, presenting 
another level of regulation for fine-tuning GRα expression 
(125). One of the ways in which this can occur is through 
the regulatory role of miRNAs, which bind to 3′-UTR of 
GR mRNA (22). These miRNAs are a family of small non-
coding RNAs, which primarily prevent efficient translation 
of mRNA transcripts but can also induce degradation of 
these transcripts (126).

The ability of miRNAs to regulate the GRα mRNA pool 
has been shown to be GC mediated and has been implicated 
in acquired GC resistance (Table 3). Vandevyver et al. (15) 
reviews most, but not all (38), of the miRNA target sites 
in the GRα mRNA transcript; however, the current review 
will focus only on miRNAs which reduce the GRα pool. 
Four miRNAs, namely miR-96, miR-101a, miR-142-3p and  
miR-433, drive reductions in the GRα mRNA pool by up 
to 40% in mice (127). Additionally, social stress in mice 
(38) and acute stress in rats (42), resulted in an increase 
in miR-29b and miR-340-5p and miR‐124a expression, 
respectively, which was associated with a significant 
reduction in the GRα mRNA pool. Reductions of the GRα 
protein pool in rats not necessarily reflected at the mRNA 
level have also been noted as a result of an increase in  
miR-18 (128, 129) and miR-124a (40). In humans, a 
reduction in the GRα pool (both mRNA and protein) was 
noted following a GC-mediated increase in miR-124, in ALL 
cells (130) and in T-cells of sepsis patients (95). Moreover, 
Tessel et  al. (89) demonstrated that overexpression of  

Table 3 GC-mediated molecular mechanisms involved in reducing GRα expression.

Level of regulation Molecular mechanism Species
GRα mRNA 
expression

GRα protein 
expression References

Epigenetic DNA methylation of GRα gene

• Rodents: exon 17
• Humans: exon 1F, exon 1C, exon 1B, 

exon 1H, exon 1D

Rodent
Human

Reduced
Reduced

Reduced
Reduced

(30, 32, 33, 42)
(24, 25, 81, 92)

Transcriptional GRα gene regulation via nGREa

• Present in exon 6 Human Reduced N.Db (107)
Post-transcriptional miRNA

• Rodents: miR-96, miR-101a,  
miR-142-3p, miR-433, miR-29b,  
miR-340-5p, miR-18 and miR-124a

• Humans: miR-124, miR-130b and 
miR-142-3p

Rodent
 

Human

Reduced
 

Reduced

Reduced 
 

Reduced

(38, 40, 42, 127, 128, 129) 

(84, 89, 95, 130)

Post-translational 
 

Phosphorylation

• Rodents:
◦ Multiple mouse mutations 

(Ser212, Ser220 and Ser234)
◦ Hyper-phosphorylation at Ser412

• Humans: hyper-phosphorylation at 
Ser211, Ser226 and Ser404

Mouse

Human

N.Ac

N.A

Decreased

Decreased

(136, 137)

(135, 136)

Ubiquitination

• Rodents: K426
• Humans: K419

Proteasome degradation (i.e. use of 
proteasome inhibitors)

• Rodents: MG132 or bortezomib (BZ)
• Humans: MG132 or BZ

Mouse
Human

Mouse
Human

N.A
N.A

N.A
N.A

Decreased
Decreased

Decreased
Decreased

(99, 104, 105, 139, 142)
(105, 141, 143, 144, 145, 146)

(99, 104, 105, 139, 142)
(105, 141, 143, 144, 145, 146)

Sumoylation
• Specific site unknown Human N.A Decreased (152)

aNegative glucocorticoid response element (nGRE), bNot detected (N.D), cNot applicable (N.A) as effects exerted on GRα protein.
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miR-130b mediated a reduction in the GRα protein pool in 
human MM cell lines; however, knockdown of this miR-130b  
did not alter GRα protein levels and whilst experiments 
were conducted in the presence of Dex, it is not clear 
whether GC’s directly mediated the expression of miR-130b 
(89). Moreover, an increase in miR-142-3p expression and 
consequent decrease in the GRα protein pool has been noted 
in GC-resistant ALL patients (84). Unfortunately, in many 
of these studies, it is unclear whether up to 80% increase in 
miRNA expression (38) is directly mediated via an increase 
in circulating GCs; however, from other studies, one could 
postulate that a positive correlation between the two exists.

GRα protein regulation

Post-translational regulation
Additionally, the GRα protein is also subjected to 
GC-mediated regulation in the form of post-translational 
modifications (PTMs). The nature and degree of these 
PTMs modulates both GRα function and pool, impacting 
GC responsiveness in selective tissues, and in some cases, 
contributes to an acquired GC resistance (15). In this 
review, we focus on GC-mediated PTMs, which drive 
reductions in the GRα pool via the proteasome. The effects 
of PTMs on GRα function are reviewed in several papers 
(7, 13, 15, 131, 132, 133, 134).

For GRα, the most widely studied and first PTM 
identified was phosphorylation (15). Since the initial 
discovery, additional GRα phosphorylation sites have been 
identified (Fig. 2). Basal GRα phosphorylation may occur in 
a ligand-independent manner (135, 136), however, hyper-
phosphorylation at several of these sites is GC-mediated 
(135, 136) and modulates GRα function as well as the 
receptor pool (15, 135, 136). Moreover, various kinases  
(e.g. p38, ERK, JNK, CDKs and GSK3β (136)) responsible for 
the phosphorylation of these sites have been described (15).

Webster et al. (137) demonstrated that multiple point 
mutations (i.e. at S212, S220 and S234) in the mouse GRα, 
which correlate to S203, S211 and S226 of the human 
GRα (15), respectively, restricted GC-mediated GRα 
protein turnover. GC-mediated hyper-phosphorylation 
of the human GRα at S211, S226 (135) and S404 (136) 
(or Ser412 in mice (136)) led to reductions in the GRα 
protein pool. Moreover, inhibiting the GC-mediated 
hyper-phosphorylation at S404, through the use of a 
mutant or a kinase inhibitor, resulted in a significant 
increase in GRα protein stability (136). To our knowledge, 
these are the only sites (135, 136, 137), which directly 
demonstrate the ability of GC-mediated phosphorylation 
of the human GRα (135, 136) and the mouse GRα (137) 
to affect the GRα pool.

It was postulated, but not demonstrated experimentally, 
that, apart from the inability to be phosphorylated, the 
phospho-deficient GRα mutants (137, 138), could not 
be ubiquitinated. Protein ubiquitination is preceded by 
phosphorylation and is a fundamental requirement for 
protein degradation via the proteasome; however, GRα 
ubiquitination is not well documented with only a handful 
of papers specifically demonstrating GC-mediated GRα 
ubiquitination (99, 104, 105, 139, 140, 141, 142, 143, 144, 
145, 146). Moreover, the idea that ubiquitination of GRα 
increases following GC treatment seems to be controversial, 
with one paper demonstrating a Dex-mediated increase 
in GRα ubiquitination (140) while others noted a Dex-
induced reduction in GRα ubiquitination in the presence 
of a proteasome inhibitor (105, 142). It seems necessary 
for further research to be conducted in this specific area of 
GC/GRα signalling. To date, only a single ubiquitination 
site for GRα that occurs within the PEST degradation 
motif at Lys426 in mice and Lys419 in humans has been 
identified, with mutations at these sites restoring the 
GRα protein pool, by restricting GRα turnover via the 

Figure 2
Post-translational modification sites of human GRα with focus on phosphorylation, ubiquitination and sumoylation. The human GRα protein consists of 
777 amino acids and undergoes PTMS at numerous sites. Moreover, many of these PTM sites are contained within the N-terminal domain (NTD) (amino 
acids 1 to 421) of the receptor, with two present in close proximity to the DNA-binding domain (DBD) (amino acids 421 to 486). Specifically, 
phosphorylation (P) occurs at serine (e.g. S211, S226 and S404) residues, whilst ubiquitination (U) and sumoylation (S) occurs at lysine residues (i.e. K419 
and K277, K293 and K703, respectively). Unlike the others, the K703 sumoylation site occurs within the ligand-binding domain (LBD) of the receptor 
(amino acids 526 to 777). Moreover, PTMs at these sites are known to modulate GRα function (white) or protein expression (red) and in some cases affect 
both receptor function and protein expression (pink).
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proteasome (104, 105). Nevertheless, several studies have 
through the use of proteasome inhibitors, definitively 
implicated the ubiquitin-proteasome system (UPS) in the 
control GRα degradation rates, ultimately contributing to 
the stringent regulation of the GRα protein pool (99, 102, 
104, 105, 139, 142, 145, 147).

Similarly to ubiquitination, sumoylation is a dynamic, 
reversible process, which involves a multi-step, enzyme-
catalysed reaction to mediate the covalent attachment 
of the SUMO protein (e.g. SUMO-1, SUMO-2/3) to the 
protein of interest (148). Sumoylation of the GRα is known 
to modulate GRα function (131, 149, 150, 151, 152) and, 
less frequently, promote reductions in the GRα pool 
(152). Specifically, Le Drean et al. (152) demonstrated that 
overexpression of SUMO-1 aids Dex-mediated receptor 
downregulation; however, this paper is the only paper 
to describe the potential of sumoylation to regulate GRα 
protein expression.

Enzymes of the UPS that mediate GRα 
protein turnover
Proteasomal degradation of a substrate (i.e. GRα) requires 
rounds of ubiquitination, mediated by various enzymes 
of the UPS (Fig. 3) to form a poly-ubiquitin chain, which 
the proteasome recognizes, resulting in degradation. 
There are number of UPS enzymes and additional 
co-regulators (153, 154, 155, 156, 157, 158, 159), which 
interact with the GRα protein (Fig. 3), in a GC-dependent 
or independent manner, as regulators of the GRα pool 
and function. The co-regulator/GRα interactions, which 
mediate reductions in the GRα pool via the ubiquitin-
dependent proteasomal degradation pathway (104, 105) 
have implications in GC sensitivity and is the primary 
focus of this section.

The binding of two enzymes associated with the UPS, 
namely the inactive E2 conjugating enzyme, tumour 
susceptibility gene 101 (TSG101) (160) or the E3 ligase, 
carboxy-terminus of heat shock protein 70-interacting 
protein (CHIP) (161), to the GRα protein does not require 
prior ligand binding (Table 4). Moreover, whilst binding 
of CHIP to GRα is unaffected by GC treatment (139), 
the formation of the TSG101/GRα complex only occurs 
in the absence of ligand binding (162). Specifically, 
TSG101, which like the unliganded GRα is located in the 
cytoplasm, binds to the N-terminal region of the hypo-
phosphorylated unliganded receptor and prevents protein 
turnover of the unliganded GRα by acting as a dominant 
negative regulator of ubiquitination due to its catalytically 
inactive characteristic (162, 163). Knockdown experiments 
in which TSG101 was targeted demonstrated a decrease 
in the stability of the hypo-phosphorylated form of 
GRα, thus suggesting a role for TSG101 in protecting the 
unliganded GRα from receptor turnover (162). A mutant 
GRα receptor (S203A/S211A), incapable of undergoing 
even basal phosphorylation showed enhanced interaction 
with TSG101 (162), indicating that the association of GRα 
with TSG101 is dependent on the GRα phosphorylation 
status. Unlike TSG101, CHIP interactions with GRα seems 
to be phosphorylation and ligand independent, however, 
it appears to be a major regulator of unliganded receptor 
turnover (164) and its presence in the cell is vital for basal 
GRα protein turnover (139). Overexpression of CHIP 
in HT22 cells, where steady-state receptor levels were 
unaffected by prolonged hormone treatment, is able to 
restore GC-mediated GRα protein turnover, confirming a 
role for this E3 ligase in reducing the GRα pool (139).

Binding of F-box/WD repeat-containing protein 
7 (FBXW7α), an E3 ligase, to its substrate, requires 
substrate phosphorylation at a CDC4 phosphodegron 

Figure 3
The ubiquitination of a substrate requires multiple rounds of a multi-step enzymatic process before being targeted to the proteasome. 1. Ubiquitin (U) is 
activated by an activating enzyme (E1) in an energy (ATP)-dependent manner. 2. The activated U molecule is then transferred to E2, a conjugating 
enzyme. 3. E3 binds the substrate and the E2 and the transfer of the activated U molecule from E2 to the substrate occurs. 4. This is repeated, until a 
poly-ubiquitinated chain is formed and the ubiquitinated substrate is then actively (i.e. ATP-dependent) delivered to the proteasome. 5. The catalytically 
active proteasome recognizes and degrades the substrate to produce inactive protein fragments.
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motif (165) to mediate phosphorylation-dependent 
ubiquitination and subsequent proteasomal degradation 
(166). Specifically, FBXW7α binding to GRα is primarily 
dependent on GSK3β-mediated phosphorylation at S404 
(136), which then targets it for proteasomal degradation 
(167). Malyukova et  al. (167) demonstrated that a GRα 
phosphorylation mutant (S404A) was incapable of 
GC-mediated ubiquitination, which partially restricted its 
degradation via the proteasome. In addition, inactivation 
of FBXW7α, via mutations, restricted GRα protein turnover 
(167). From this evidence, it is clear that FBXW7α activity 
and expression has implications for GC sensitivity by 
regulating GC-mediated reductions in the GRα pool.

Ubiquitin-conjugating enzyme (UbcH7), an 
E2-conjugating enzyme, is a known co-regulator of steroid 
hormone receptors (168), including the GRα. It has been 
shown to modulate the function and level of the GRα pool, 
by targeting the receptor for degradation in response to 
GCs (169). Immunofluorescence studies have elucidated 
that UbcH7 is predominantly co-localized with GC-bound 
GRα in the cell’s nucleus, however, cytoplasmic UbcH7 
was also observed (169). Overexpression of a dominant 
negative form of UbcH7 preserved the GRα pool through 
increasing the stability of the receptor and restricting 
GC-mediated GRα turnover, thus confirming UbcH7 as a 
key regulator of the GRα pool and supporting a role for 
UbcH7 in mediating GC sensitivity (169).

Lastly, another UPS enzyme involved in the regulation 
of the GRα pool is the E3 ligase, murine double minute 2 
(i.e. Mdm2 (144) or Hdm2, the human homologue (170)). 
Unlike the other enzymes, Mdm2 relies on the presence 
of p53 to form a trimeric complex with GRα to mediate 
receptor proteasomal turnover, both in the presence and 
absence of GCs (155). Dex treatment of human umbilical 
endothelial cells enhanced GC-mediated ubiquitination 

of GRα in the presence of all three proteins (i.e. GRα, 
p53 and Hdm2) (140). Furthermore, disruption of the 
interaction of p53 with Hdm2 prevented Dex-induced 
ubiquitination of GRα (140). Interestingly, both the 
presence of Mdm2 and p53 where required for oestrogen-
mediated GRα protein turnover, via the proteasomal 
degradation pathway (144).

Strategies to restore the GRα pool for 
improved GC sensitivity

It is clear that reductions in the GRα pool, whether 
disease-associated (Table  1), treatment-associated 
(Table  2), or both, contribute to the development of 
acquired GC resistance. With the increasing incidence of 
severe stress, psychological and pathological conditions, 
in combination with the looming threat of acquired 
GC resistance, a dire need exists for the development of 
novel GC therapeutics to combat chronic inflammation, 
without eliciting GC resistance.

Current strategies

In recent years, as discussed, a number of molecular 
mechanisms involved in GRα turnover have been 
uncovered and these have been explored and in some 
cases utilized in a clinical setting (40, 99, 102, 145).

For example, proteasome inhibitors, such as MG132 
(104, 105), used in tissue culture cells, and bortezomib 
(BZ), used clinically (145) may prevent GC-induced GRα 
downregulation. Moreover, the repurposing of BZ, a Food 
and Drug Administration (FDA)-approved therapeutic 
(146), has been shown to restore GC sensitivity by 
preventing receptor turnover (99, 145). Specifically, in 

Table 4 Enzymes of the UPS that mediate GRα protein turnover.

Enzyme
Type of UPS 

enzyme

Interactions with GRα depend on
Role in GRα 
turnover References

Ligand-binding status Phosphorylation status
Unliganded Liganded Hypo Hyper

TSG101 inactive E2 
conjugating 
enzyme

Yes No Yes No Protects 
unliganded 
GRα from 
turnover

(162)

UbcH7 E2 conjugating 
enzyme

No Yes No Yes GC-mediated 
turnover

(169)

CHIP E3 ligase Yes Yes Yes Yes GC-mediated 
and basal 
turnover

(139)

FBXW7α E3 ligase No Yes No Yes; at S404 GC-mediated 
turnover

(136, 167)

Mdm2/Hdm2 E3 ligase Yes, but  
requires p53

Yes, but  
requires p53

Yes Yes GC-mediated 
turnover

(140,144, 155) 
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a model of hypoxic blood–brain barrier damage, O2/
glucose deprivation led to an approximate 80% reduction 
in the GRα protein pool, with BZ treatment restoring the 
receptor pool to 90% (in the absence of Dex) or 50% (in 
the presence of Dex) (99). Importantly, this restoration in 
the GRα pool was associated with increased GC sensitivity 
(99). Additionally, Lesovaya et  al. (145) demonstrated 
the ability of BZ to increase the anticancer activities of 
GCs, by maintaining the GRα pool through proteasomal 
inhibition. Although proteasomal inhibition (99, 104, 
105, 145) seems promising for restoring GC sensitivity, 
chronic inhibition of such a vital system for finely tuning 
the levels of numerous proteins (171) could be risky.

Other compounds, such as Yokukansan (YKS) (a 
Japanese herbal medicine for the treatment of psychiatric 
and psychological symptoms (172, 173)) and Ginsenoside 
Rh1 (102) (a major active compound in Ginseng (174)) 
have also been shown to exert a protective effect against 
GC-mediated GRα turnover. Specifically, YKS counteracted 
by approximately 20% a stress-induced reduction in 
the GRα protein pool in mice (40) through a molecular 
mechanism that reduced (by almost 50%) the expression 
of miR-124, which targets GRα mRNA. Combinatorial 
treatment of Ginsenoside Rh1, with Dex, restricted 
reductions in the GRα pool, thus potentiating Dex’s 
anti-inflammatory potential, specifically in prolonged 
treatments (102). Whilst the ability of Ginsenoside Rh1 
was found to require mRNA transcription and new protein 
synthesis (102), suggesting its ability to transcriptionally 
and post-transcriptionally regulate the GRα pool, the 
exact mechanism, remains to be elucidated.

Future strategies

To date, current strategies to restore GRα levels for 
improved GC sensitivity have been based on combinatorial 
treatments and have not focussed on GRα ligands biased 
towards preventing a decrease in the receptor pool. 
Biased ligands, defined by Luttrell et  al. (175) as ‘novel 
pharmacologic entities that possess the unique ability to 
qualitatively change receptor signalling’, may display an 
increased efficacy and/or a defined functional selectivity 
(14, 134), which could be harnessed to improve the 
therapeutic index of GCs. Additionally, Luttrell et  al. 
(175) makes a strong case that the biological responses 
that arise from the interaction of a ligand with its cognate 
receptor are all encoded at that single point of contact 
with a distinct conformational change in the receptor 
being the initial consequence of ligand binding. Thus, 
conformationally biased ligands drive the conformational 

equilibrium towards a particular state, resulting in 
differential biological responses downstream.

Recently, De Bosscher et  al. (176, 177) developed 
the SEMOGRAM–SEDIGRAM strategy, which is 
essentially based on conformationally biased ligands 
that induce either monomers (SEMOGRAMs) or dimers 
(SEDIGRAMs) of the GR for use as selective therapeutics 
in chronic or acute inflammation, respectively. 
Whilst De Bosscher et  al. (176, 177) address selectively 
modulating the dimerization state of GRα in terms of 
the anti-inflammatory effects of GC signalling vs their 
adverse side effects, the ligand-selective effects of GRα 
conformation on receptor turnover, with implications 
in acquired GC resistance, are not addressed. We now 
suggest that co-opting the SEMOGRAM–SEDIGRAM 
strategy for acquired GC resistance could be fruitful and 
propose the idea of a ‘continuum of resistance’ (Fig. 4), 
where encouraging GRα dimerization though the use of 
SEDIGRAMs, may not only have negative implications in 
terms of the generation of adverse side effects (178, 179), 
but may also drive reductions in the GRα pool, which 
encourages a decrease in GC sensitivity. In contrast, the 
use of SEMOGRAMs, which abrogate GR dimerization, 
may result in reduced side effects and prevent acquired 
resistance while maintaining an adequate anti-
inflammatory potential, a therapeutic regimen more 
suited to chronic use.

In support of this, a wealth of pharmacological 
evidence supports the biased ligand behaviour of the 
SEMOGRAM, Compound A (CpdA) (180). The biased 
ligand behaviour of CpdA arises from its ability to 
abrogate GRα dimerization (181, 182), which favours 
transrepression of pro-inflammatory genes, which 
contributes to its potent immunosuppressive effects, 
over transactivation, generally associated with negative 
side effects and has proved effective in combatting 
inflammation in a number of in vivo models (116, 176, 
183, 184, 185, 186, 187) without resulting in adverse 
side effects (116, 184, 186, 188, 189). Furthermore, CpdA 
does not result in ligand-induced GRα turnover (106, 
116, 135), an ability that may be related to its ability to 
abrogate GR dimerization, and as such may be considered 
a biased ligand able to prevent acquired resistance. In 
fact, recent work from our own laboratory demonstrates 
that dimerization impairment, either through the use of 
CpdA or the dimerization deficient GR mutant (GRdim), 
restricts GRα turnover via the proteasome through a 
molecular mechanism involving a substantial reduction 
in hyper-phosphorylation at Ser404 and the interaction 
of GR with the E3 ligase, FBXW7α (190).
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Throughout this review reductions in the GRα pool 
mediated by classical GCs, such as Dex, of anywhere 
between 10 and 90% have been detailed, which promote 
GC resistance (Tables  1 and 2). Importantly, these GCs 
are known to induce GRα dimerization of the GRα (181, 
182, 191), prior to eliciting a biological response and 
subsequently driving receptor turnover, and may thus 
be termed dimerization promoting GCs or SEDIGRAMs. 
On the other hand, CpdA, which displays dimerization 
abrogating potential and is thus a SEMOGRAM, does not 
induce GRα turnover (106, 116, 135, 190) while maintaining 
its immunosuppressive capabilities even during prolonged 
treatment regimens (106, 116). We believe, this begs the 
question of whether the dimerization state of the GRα is 
likely to influence development of an acquired resistance 
to treatment, in prolonged GC regimens.

Caution should, however, be exercised in over-
enthusiastically embracing GR ligands conformationally 
biased towards loss of dimerization for prevention of 
acquired GC resistance as our understanding of the 
implications of GR dimerization in GC signalling is 
currently limited. Accordingly, a more prudent approach 
may be the development of biased ligands positioned along 
the continuum of GC resistance (Fig. 4) rather than at the 
extremes of the monomer/dimer dichotomy. Nonetheless, 
in addition to the current strategy of combinatorial use 
of compounds (99, 102, 145) that may restrict receptor 
turnover, we believe that disrupting dimerization through 
biased ligands, in a tissue-specific manner, may be a 
fruitful future strategy for developing tailored treatments 
to counteract the development of acquired GC resistance 
in a number of disease states. Moreover, an in-depth 
characterization of the dimerization capabilities (192) 
of GRα mutants (51), associated with generalized GC 
resistance, may provide more insight into generalized 
GC resistance and assist in the treatment of these rare, 
pathological conditions.

Conclusions

To conclude, acquired GC resistance, due to reductions in 
the GRα pool, is an ever-increasing therapeutic challenge 
for patients requiring chronic treatment and occurs 
ubiquitously throughout a number of psychological 
and pathological conditions. In recent years, a number 
of the molecular mechanisms which underpin these 
GC-mediated reductions in the GRα pool have been 
elucidated, with attempts to counteract GC-mediated 
receptor turnover being made through combinatorial 
treatment of GCs with other compounds, which disrupt 
transcriptional, post-transcriptional and post-translational 
GRα regulation. Whilst in some cases, these strategies have 
proved fruitful, they are not without limitations. Thus, 
we believe the strategy of using conformationally biased 
ligands, specifically the SEMOGRAM–SEDIGRAM strategy, 
which underscores the importance of GRα conformation, 
with particular reference to the receptor’s dimerization 
state, requires investigation and offers a novel perspective 
from which to approach the rational design of drugs that 
limit GC resistance.
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Figure 4
A ‘continuum of GC resistance’. As GRα 
dimerization increases, so increased ligand-
induced receptor turnover of the GRα pool, both 
at the mRNA and protein level, occurs. These 
significant reductions in receptor turnover, in 
many cases, drive the development of an acquired 
resistance to treatment and so the ability of a 
patient to respond to treatment diminishes.
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