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Abstract
The symbiotic relationship between soybean [Glycine max L. (Merr.)] roots and

bacteria (Bradyrhizobium japonicum) lead to the development of nodules, important

legume root structures where atmospheric nitrogen (N2) is fixed into bio-available

ammonia (NH3) for plant growth and development. With the recent development of

the Soybean Nodule Acquisition Pipeline (SNAP), nodules can more easily be quan-

tified and evaluated for genetic diversity and growth patterns across unique soybean

root system architectures. We explored six diverse soybean genotypes across three

field year combinations in three early vegetative stages of development and report

the unique relationships between soybean nodules in the taproot and non-taproot

growth zones of diverse root system architectures of these genotypes. We found

unique growth patterns in the nodules of taproots showing genotypic differences in

how nodules grew in count, size, and total nodule area per genotype compared to

non-taproot nodules. We propose that nodulation should be defined as a function of

both nodule count and individual nodule area resulting in a total nodule area per root

or growth regions of the root. We also report on the relationships between the nodules

and total nitrogen in the seed at maturity, finding a strong correlation between the tap-

root nodules and final seed nitrogen at maturity. The applications of these findings

could lead to an enhanced understanding of the plant-Bradyrhizobium relationship

and exploring these relationships could lead to leveraging greater nitrogen use effi-

ciency and nodulation carbon to nitrogen production efficiency across the soybean

germplasm.

1 INTRODUCTION

The production of ammonia (NH3) through the Haber–Bosch
system uses enormous energy to convert atmospheric nitro-
gen (N2) into an available ammonia form as fertilizers, which
is required for plant health, yet symbiotic bacteria in legume

Abbreviations: Cwt, 100-seed weight; NCNPE, nodulation carbon to
nitrogen production efficiency; RSA, root system architecture; SNAP,
soybean nodule acquisition pipeline.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium,
provided the original work is properly cited and is not used for commercial purposes.
© 2022 The Authors. Crop Science published by Wiley Periodicals LLC on behalf of Crop Science Society of America.

plants have been doing this for over 60 million years (Mylona
et al., 1995; Sprent, 2007). The specialized root structures,
known as nodules, are where symbiotic bacteria species fix
atmospheric nitrogen into ammonia, which is bioavailable to
the plant and essential to meet its growth and developmental
needs, including metabolic needs, protein, and amino acids
production. The seeds of nitrogen (N)-fixing legume crops
typically have 14 to 36% crude protein compared to major
cereal grain crops with 6 to 11% (Akibode & Maredia, 2012;
Hall et al., 2017; Koehler & Wieser, 2013). In crop species
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that can form nodules, N fixation allows the host plant to meet
up to 98% of its N requirements depending on the prevail-
ing soil type (Bergersen et al., 1985; Hardarson et al., 1984;
Matheny & Hunt, 1983; Roy et al., 2020; Salvagiotti et al.,
2008).

There are several ways to determine N-fixation rates. In
soybean [Glycine max L. (Merr.)], the more common methods
are through the study of nitrate reductase activity (Fabre &
Planchon, 2000; Soussana et al., 1989; Thibodeau & Jaworski,
1975) and ureide measurement (Kibido et al., 2020; Moro
Rosso et al., 2021; Takahashi et al., 1992). These methods
are instrumental; however, few studies have correlated these
chemical N-fixation rates with nodule counts (Herridge et al.,
1990). Although nodule count and nodule distribution at sin-
gle growth stages in numerous environments have been stud-
ied (Caetano-Anolles & Gresshoff, 1993; Chung et al., 2020;
Kluson et al., 1986; Voorhees et al., 1976), relatively few stud-
ies have evaluated nodulation across multiple growth stages
(Fabre & Planchon, 2000; Herridge et al., 1990). A knowl-
edge gap exists between N-fixation with nodule counts and
their placement throughout the roots in the early vegetative
stages (Fabre & Planchon, 2000). Prior research has estab-
lished the critical role of nodulation in early growth stages on
chlorophyll content, leaf size, plant height, number of pods
per plant, 1000-seed weight, and seed protein and oil content
(Vollmann et al., 2011); therefore, it is imperative to explore
nodule formation and distribution on roots at early growth
stages.

While the process of nodulation and N-fixing has garnered
scientific interest and research (Du et al., 2020; Ren et al.,
2019), there is still a gap in the development of methods
to quantify nodules in legume crops. Limited attempts have
been made to quantify nodule size and numbers through field
environments due to the exorbitant requirements for labor
and work to phenotype nodules in a reasonable scale and
time. Recent and continuous advancements in deep learning
and computer vision for plant features and organ detection
(Akintayo et al., 2018; A. K. Singh et al., 2018; A. Singh
et al., 2016; D. P. Singh et al., 2021; Falk et al., 2020a)
enable further work in phenomics to ask more detailed and
unique questions (Bucksch et al., 2014; Falk et al., 2020a;
Riera et al., 2021; Seethepalli et al., 2020; A. Singh et al.,
2021; Smith et al., 2020). The use of machine learning also
makes trait acquisition more consistent and feasible (Jiang &
Li, 2020; Riera et al., 2021) for complex traits such as disease
detection (Ghosal et al., 2018; Nagasubramanian et al., 2018),
small object detection for soybean cyst nematode (SNC) eggs
(Akintayo et al., 2018), and abiotic stress (Naik et al., 2017;
J. Zhang et al., 2017). Advances in image- and machine
learning-based methods provide exciting solutions for root
trait and nodule related studies.

The number of nodules can vary on soybean roots from
a few to several hundred per plant, depending on the geno-

Core Ideas
∙ Soybean nodules on the taproot and non-taproots

have unique growth and development patterns.
∙ In general, taproot nodules increase in area, while

non-taproot nodules increase in count and area.
∙ Nodulation should be defined by the total nod-

ule area as a function of both nodule count and
individual nodule size.

∙ Genotypes adjust their nodulation through either
increasing nodule count or nodule size to increase
the total nodule area per root between each growth
stage.

∙ There is a strong correlation between early growth
stage taproot nodules and final seed nitrogen
content.

type, growth stage, and root system architecture (Harris &
Dickstein, 2010; Huault et al., 2014; Yang et al., 2017). Yet,
super nodulating plants are not the most efficient in N use
(Kohl et al., 1980; Weber, 1966; Wu & Harper, 1991). Manual
measurements and counts are inefficient due to the complex-
ity of the number, size, and placement of nodules on roots.
Therefore, automated methods, including computer vision
and machine learning-based models, are valuable avenues to
solve these challenges (Kar et al., 2022; Mochida et al., 2019;
Nagasubramanian et al., 2022; A. Singh et al., 2021). While
some computer vision techniques have been used to identify
nodule patterns in semi-controlled environments (Barbedo,
2012; Han et al., 2015; Remmler et al., 2014), only recently
have attempts been made to accurately field phenotype and
quantify nodulation responses using machine learning (Chung
et al., 2020; Jubery et al., 2021). The development of the Soy-
bean Nodule Acquisition Pipeline (SNAP; Jubery et al., 2021)
has enabled the accurate quantification of nodule location and
size on roots at the early vegetative growth stages. Exploring
the relationships between nodule development, size, and root
location will be useful for breeding approaches and can fur-
ther explore the balance and contribution of nodulation to N
use efficiency across diverse soybean lines.

There have been numerous links between genetic controls
for root system architecture (RSA) and nodulation. Within
Medicago truncatula, a model plant for legume species, there
is evidence that nodulation rates can be linked with RSA
as the ACA2 gene negatively regulates lateral root forma-
tion while positively controlling symbiotic nodulation (Huault
et al., 2014), and the LATD/NIP gene is essential for nodule
meristems as well as the development of lateral and primary
roots (Harris & Dickstein, 2010). Further work in soybeans
has shown that a micro-RNA, miR2111, is a component of
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root-to-shoot signaling that positively regulates root nodule
development and shapes lateral root emergence RSA (M.
Zhang et al., 2021). While work has been done to evaluate
the changes and controls of RSA traits and their impacts on
overall nodulation, little has been done to assess the differ-
ences in nodulation across the component parts of RSA, such
as nodulation distinctions between the primary taproot and
lateral secondary non-taproots.

There are several reasons that a time series investiga-
tion of nodules, their size, and placement is needed. Since
nodules are dynamic organs growing on roots that both
develop and senesce, there are numerous hormones, redox sig-
nals, and environmental triggers that can control or impact
their growth and development (Kazmierczak et al., 2020;
Marquez-Garcia et al., 2015; Puppo et al., 2005). The
lifecycle and development of these nodules are also depen-
dent on the type of bacterium that develop within the
nodule, which can be dependent on local bacterium avail-
ability, soil type, and soil pH (Han et al., 2020). The N
fixed through soybean nodulation has been shown to have
a vast range based on available nitrates, mineralized N,
weather, and soil type and can range from 0 to 337 kg ha−1

(0−300 lbs ac−1), which has been shown to be up to
98% of the total N demands of the plant (Ciampitti &
Salvagiotti, 2018; Córdova et al., 2019; Herridge, 1982;
Weber, 1966). The fixation of this N has dramatic energy
needs as 33% of the root translocated photosynthate carbon
(C) can be utilized by early developing nodules alone and
up to 50% during optimal N fixation in later growth stages
(Warembourg et al., 1982). Being able to adapt and optimize
the nodulation relationships between C consumed and N fixed
could dramatically impact the yield–protein quality breed-
ing strategies of soybeans as it has been calculated with the
Kjeldahl conversation method that seed protein is 5.66- to-
5.79-times the total N concentration of mature seed (Morr,
1982), which on average requires 2 to 2.25 kg N per 27.2 kg
of soybeans (4.5–5 lbs. of N bu−1) to produce. As extensive
amounts of N are required for vegetative growth and seed fill
(Basal & Szabó, 2020), exploring the relationship between
nodulation and N content within the plant enables a deeper
understanding of soybean N use efficiency (Hao et al., 2011).

With these motivations, we performed temporal field evalu-
ations of six diverse soybean lines chosen for their root system
architecture differences (Falk et al., 2020b, 2019). The objec-
tives of this study are to: (a) explore and identify the trends
and relationships between soybean nodules and early growth
stage developments; (b) quantify the nodule counts, individual
nodule area, and total nodule area between two unique spatial
locations of the taproot and non-taproot growth zones; and (c)
identify relationships between the traits mentioned above and
the amount of N in the seeds of mature plants. We report the
variability of nodule development in these early growth stages
between the non-taproots and taproots and the nodule rela-

tionship with above- and belowground biomass and seed N
content. Our results indicate that while non-taproot root nod-
ules increase in count between each early growth stage for all
tested genotypes, overall, the taproot nodules do not signifi-
cantly increase in count after the V1 growth stage. Further, we
found that taproot nodules increase in volume between each
growth stage and that some genotypes increase nodule area at
greater rates than others. We also report a significant positive
correlation specifically between taproot total nodule area and
total N content in mature seed.

2 MATERIALS AND METHODS

2.1 Plant materials

The data collected for nodule growth stage analysis was
generated from growing six unique soybean genotypes:
CL0J095-4-6, PI 80831, PI 437462A, PI 438103, PI 438133B,
and PI 471899 (USDA, 2022). The six lines evaluated in this
study were selected due to their unique phenotypic charac-
teristics. They were chosen to represent a broad diversity of
country of origin, genotype, and historic yield phenotypes.
These genotypes were selected from the USDA mini core
collection based on similar developmental time stages using
historical data to align early vegetative growth stages, flow-
ering, and physiological maturity. From the lines with similar
developmental stages, an identical-by-state VanRaden kinship
matrix (VanRaden, 2008) was calculated to select lines that
were genetically dissimilar to each other. Seven genetically
similar clusters were observed among the soybean collection,
and visual observations were made of the root phenotypes in
each cluster to identify the most phenotypically diverse lines
for selection (Falk et al., 2020b). CL0J095-4-6 was found to
have a considerably robust quantity of lateral roots and a con-
sistently large taproot with average nodulation. PI 437462A
had large lateral roots near the top of the taproot but fewer
lateral roots lower in the profile with low nodule counts. PI
438103 had an average root mass but with large nodules. PI
438133B had an average number of lateral roots, but they
were consistently long and had higher visual nodule counts.
PI 471899 had few lateral roots and few nodules with more
nodules on the taproot. PI 80831 had large nodules and very
steep root angles from the tap root. The yield phenotypes
used were the observed means from data collected in 2017
across four environments in Iowa (Parmley et al., 2019). PI
437462A originating from Russia, had a relatively low calcu-
lated yield at 1,143 kg ha−1 (17 bu ac−1), while three lines,
PI 438103, PI 438133B, and PI 80831, originate from China
and represent an intermediary calculated seed yield of 1,749,
2,286, 1,749 kg ha−1 (26, 34, and 26 bu ac−1), respectively. PI
471899 was selected as a high yielding PI line from Indone-
sia with a calculated yield of 3,766 kg ha−1 (56 bu ac−1),
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and CL0J095-4-6 was chosen as a high yielding line from the
United States with a calculated yield of 3,160 kg ha−1 (47 bu
ac−1). CL0J095-4-6 is also one of the parental strains of the
soybean nested association mapping set (Diers et al., 2018).
Visual representation of the selected roots can be found in
Supplemental Figure S1.

2.2 Root excavation and experimental
design

This experiment was conducted in three environments (In
2018 and 2019: Muscatine Island Research Station, Fruitland,
IA, soil type: Fruitland Coarse Sand; In 2018: Horticulture
Research Station, Gilbert, IA, soil type: Clarion Loam). For
ease, we refer to 2018 Horticulture farm as S1, 2018 Musca-
tine as S2, and 2019 Muscatine as S3. At three early growth
stages, V1, V3, and V5, images were collected of each plant
root. The SNAP pipeline is currently developed for 2D image
and root analysis as the roots typically become too rigid by
R1. The design at each environment is a split-plot experiment
with a whole-plot factor (growth stages nested within envi-
ronments) and a split-plot factor (genotypes). The design at
the whole plot level is completely randomized, and the design
at the split-plot level is a randomized complete block design
with ten to twelve replications of each block. There are two
types of experimental units in a split-plot experiment: whole-
plots and split-plots. The split-plots are “plots” (with a single
plant per plot) planted 100 by 100 cm apart. Three seeds per
plot were initially planted, but after emergence, two were cut
using a sharp blade to leave one standing plant per plot. At the
appropriate growth stage, plants were tagged with a barcode
and labeled with identification strips. The roots were extracted
using trenching spades (120-cm steel round drain spade, wood
handle) from a 50-cm diameter and 30-cm-deep area. The
plant roots were dug with extreme caution not to break roots
or dislodge the nodules during extraction. This was followed
by gently removing the roots from the soil by hand, ensur-
ing little to no damage to roots and nodules. When initially
evaluating the removal methods, a thorough search of the soil
after root removal was conducted and found insignificant nod-
ule loss (less than 5% of total nodules on the roots regardless
of size), suggesting that any incidental loss incurred would
have minimal influences on the study. Furthermore, none of
the six genotypes showed any proclivity for losing more or
fewer nodules than the other.

2.3 Imaging protocols

Details on imaging protocols are provided in (Jubery et al.,
2021). In brief, 5-gal (∼18.9 L) buckets half full of water were
used to transport and rinse the remaining soil from the roots

after extraction (See Section 2.2). Next, the roots were placed
on trays that had been painted blue for a consistent back-
ground measuring 35 by 50 cm with a 2-cm lip. The imaging
trays were filled halfway with water, and the roots were gen-
tly separated to prevent increased occlusion or clumping of
the roots in each image. To obtain a precise 2D image of each
plant root, a glass plate fitted to the size of the tray was then
placed on top of the root in the water to hold it in place, and
just enough water to cover the plate was added. The plate
was then slid into an imaging platform customized for this
process.

Aluminum T-slot extrusion frames (80/20 Inc.) were used
to build the platform with two softbox photography lights
(Neewer). A Canon T5i digital SLR camera (lens: EF-S 18–
55 mm f/3.5-5.6 IS II) was mounted 55-cm above the imaging
plane, and four 70-W CFL bulbs were used to provide con-
sistent illumination. It was found that placing a black sheet
over the top of the entire platform prevented undesired room
lights from reflecting into the images. It was tethered to a lap-
top operating Smart Shooter 4 (Hart, 2019) photo capturing
and camera control software to trigger capture and automati-
cally extract the barcodes placed at the top of each image from
the plant tags for image labeling and naming. For additional
details, see Falk et al. (2020b).

Following root imaging, the dry mass of the roots and
shoots was acquired by drying the roots in paper bags at 60 ˚C
for 2 d. The shoots were placed in separate bags for concurrent
root shoot drying. After the roots and shoots were dehydrated,
the roots were weighed for dry mass, including nodules. Nod-
ules from each root were removed by trained researchers and
counted for ground truth validation of the SNAP pipeline. The
total nodule weight per root was measured in grams along with
the total shoot biomass weight.

2.4 Image analysis with SNAP and data
cleaning

Each image was run through the SNAP as described and
explained in Jubery et al. (2021) to extract the quantified nod-
ule counts, individual nodule sizes, and locations on each root.
The extracted data was then visually assessed for any taproot
or nodule misclassifications. Any taproots that were misiden-
tified were hand-annotated, and a manual binary mask of the
taproot was created for these roots to generate accurate tap-
root nodule metrics. Additionally, any nodules calculated as
greater than 1 cm2 were visually assessed for misclassification
and removed from the data set if they were false positives. This
resulted in two out of 50,848 nodules being removed. Any
nodules less than .001 cm2 were removed from the dataset as
false positives. Under this criterion, four nodules out of 50,848
nodules were removed. By Subtracting the taproot nodule
data from the total nodule data, we imputed the non-taproot
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nodule information. Important traits that were collected
through SNAP for the taproot and non-taproot growth zones
include (a) individual nodule count, which is the physical
count of nodules from SNAP; (b) individual nodule area,
which is the average nodule size of each nodule on a given
root; and (c) total nodule area which is the sum of all nodule
areas on a given root.

2.5 Measuring percent N in mature seed

Seed was collected from mature plants (R8) in three replica-
tions from each environment to gather data on the amount of
N in the mature seed. The seed from each plant was bulked
and ground into a fine powder. This was done by weighing
5 g of soybeans to the nearest whole bean over 5 g. Then the
seeds were added to a Mr. Coffee IDS 57 grinder, grinding
them for 30 s, then pulse grinding the samples for 30 s while
tapping the grinder walls to ensure that the sample was fully
homogenized. A spoonula was then used to remove the milled
bean material from the grinder and was placed into a 15-ml
sterile centrifuge tube. Distilled water was then used to triple
rinse the grinder, the grinder was pulsed with water inside to
ensure blade cleanliness, and excess water was wiped from
the grinder with a clean paper towel. The grinder was then
rinsed with 80% (v/v) ethyl alcohol, and excess alcohol was
wiped out of the grinder and air-dried before the next sample.
The spoonula was triple rinsed with distilled water, sprayed
with alcohol, and excess alcohol was wiped off. A thorough
visual examination was conducted to ensure no excess soy-
bean material was left in the grinder or on the spoonula. The
samples were sent for elemental analysis to obtain data on the
amount of elemental N, C, hydrogen (H), and sulfur (S) in
each sample. Analysis was performed using a Thermo FlashS-
mart 2000 CHNS/O Combustion Elemental Analyzer in the
Chemical Instrumentation Facility at Iowa State University.

2.6 Statistical analysis

Analysis was conducted using R statistical software (Ripley,
2001). A mixed linear model was used for analysis and fit
using the R package lme4 (Bates et al., 2015) with further
analysis using emmeans (Lenth, 2022). Upon initial review
of the raw data, heteroscedasticity was observed in the resid-
ual means of the nodule count and taproot nodules evaluated.
Therefore, a log transformation was conducted and chosen
to evaluate the data moving forward. Furthermore, due to
instances (<5 out of 542, prior to outlier removal) of taproot
and non-taproot nodule counts being zero, the log transfor-
mation of dependent variables (i.e., taproot nodules and non-
taproot nodules) was conducted as log (Nodule Count + 1)

to ensure all data were included in the analysis. For each
explored trait, a mixed linear model was fit with the form
using the log transformed data:

𝐘𝑖𝑗𝑘𝑙 = μ + 𝐺𝑖 + 𝐸𝑗 + 𝑇𝑘 + 𝐺 × 𝐸𝑖𝑗 + 𝐺 × 𝑇𝑖𝑘

+ 𝐸 × 𝑇𝑗𝑘 + 𝐺 × 𝐸 × 𝑇𝑖𝑗𝑘 +𝑅𝑙(𝑗𝑘) + 𝑆𝑘(𝑗)+ε𝑖𝑗𝑘𝑙 (1)

Where Y is a vector of observed phenotypes, μ is the grand
mean, Gi is the effect of the ith of six genotypes, Ej is the
effect of the jth of three environments, and Tk is the effect
of the kth of three growth stages. G × Eij is the interaction
between the ith genotype and the jth environment. G × Tik is
the interaction between the ith genotype and kth growth stage.
E × Tjk is the interaction between the jth environment and the
kth growth stage. G × E × Tijk is the interaction between the
ith genotype, jth environment, and the kth growth stage. Rl(jk)
is the random effect of the lth replicate nested within the jth
environment, and kth growth stage, Sk(j) is the random effect
of the kth growth stage nested within the jth environment, and
εijkl is the residual error, and is assumed to be normally and
independently distributed, with mean zero and variance σ

2.
The observed phenotypes of nodule counts, including taproot
and non-taproot counts along with root and shoot biomass,
were log-transformed for analysis using the natural log of yijkl
in Model 1.

Outliers were selected and removed after calculating the
studentized residuals using the ‘stats::rstudent’ function (Fox
& Weisberg, 2011), where outliers were excluded when they
had a standardized residual being greater than 3.23 as calcu-
lated in Lund (1975) with α = .1. This resulted in nine of the
original 542 roots being identified as outliers, including four
at V1, three at V3, and two at V5 roots. Of these nine roots,
after an in-depth manual observation, the outlier roots were
found to have architecture or image anomalies and provided
further evidence for the decision to remove these nine roots
for all analyses. Any outliers identified for the remaining bio-
logical biomass traits, that is, root and shoot biomass, were
excluded from further analyses. The following sample quan-
tities were excluded in each dataset category due to collection
errors or outlier status: root dry mass, 22 out of 542; shoot dry
mass, 11 out of 542.

To conduct a Type III analysis of variance in R, we used
lme4 (Bates et al., 2015) and lmerTest (Kuznetsova et al.,
2017) and calculated the denominator degrees of freedom for
F statistics with the Kenward and Roger method (Kenward &
Roger, 1997). Correlations were assessed using Pearson’s cor-
relations of the mean values at each environment and growth
stage for each trait against the other using the R “Hmisc” pack-
age and “rcorr” function (Harrell, 2021). For comparing traits
against the final seed N content, correlations with significance
greater than α = .1 were reported.
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T A B L E 1 Analysis of variance of non-taproot and taproot nodules with Kenward–Roger’s method

Taproot nodules Non-taproot nodules
Source of variation df F value P value F value P value
Genotype (G) 5 33.81 <2.2 × 10−16*** 26.94 <2.2 × 10−16***

Environment (E) 2 2.25 .10 12.85 2.67 × 10−6***

Growth stage (T) 2 0.29 .74 19.75 2.72 × 10−9***

G × E 10 7.49 5.72 × 10−11*** 4.59 3.45 × 10−6***

G × T 10 1.52 .13 1.62 .09

E × T 4 0.19 .95 2.38 .04*

G × E × T 20 1.21 .24 1.66 .03*

*Significant at the .05 probability level.
***Significant at the .001 probability level.

3 RESULTS

3.1 Diverse genotypes express variable root
phenotypes across environments and years

The analysis of variance of non-taproot nodule counts and
taproot nodule counts is presented in Table 1. Genotype,
environment, growth stage, and genotype × environment
interactions were significant in the non-taproot nodules. Addi-
tionally, the genotype × growth stage and environment ×
growth stage interactions were significant, showing that the
genotype and environment both have unique interactions with
the growth stage. Only the genotype and genotype × environ-
ment interactions were significant for taproot nodules. Similar
to the non-taproot nodules, these genotypes have varying
rates of nodule counts between them and showed significant
interactions with the environments they are grown in. The
magnitude of the effect of environment on taproot nodules
was less than non-taproot nodules suggesting that the tap-
root nodules are more stable across environments compared
to genotypes.

We observed differences in the nodule counts, nodule tap-
root counts, and root biomass at each growth stage across the
three environments (Figure 1). The traits from S2 were numer-
ically lower than S1 and S3, aside from the V3 root biomass.
We observed similar trends in the V5 stage (Figures 1a
and 1c), but compared to V5, a substantial increase in over-
all nodules and biomass in V5 at S1 was noted (Figure 1b).
In contrast, the taproot nodules were consistent with the other
two environments. It was also observed that at S2, all three
traits were lagging but caught up by V5. We also noted that
while biomass is consistently increasing, a lower nonpro-
portional increase is observed in total nodules and taproot
nodules. We also observe increases between growth stages in
total nodules but not in taproot nodules.

In Tables 2–5, we report the mean and standard error of the
collected nodule, biomass, and seed elemental content traits,
for each accession and across growth stages at each of the
three environments. Table 2 shows the mean count of total

nodules and taproot nodules. PI 438133B consistently had the
highest mean number of total and taproot nodules. In contrast,
PI 471899 generally had the lowest total nodule counts, along
with PI 438103, the lowest taproot nodule counts. Table 3
presents each genotype’s total nodule area for taproot and non-
taproots in each environment. PI 438133B had a substantially
larger total, taproot, and non-taproot nodule area across all
three environments. PI 471889 and PI 437462A had the low-
est total and non-taproot total nodule areas, and PI 471899
had some of the lowest taproot total nodule areas. PI 437462A
had an intermediate taproot total nodule area compared to the
other genotypes. Table 4 shows the mean and standard error
of the root and shoot dry mass at each growth stage and envi-
ronment for each genotype. PI 438133B had the highest root
and shoot biomasses, whereas PI 437462A had the smallest.
Table 5 shows the mean seed N, C, and 100-seed weight (Cwt)
in mature seed taken at the R8 growth stage for comparison
with the other traits. We observed that N and C tend to be more
consistent within genotypes while Cwt had more variation
between environments.

When assessing all genotypes together, we can see that
the taproot nodule counts are significantly influenced by
the genotype and somewhat by the environment but not
significantly influenced by the growth stage. However, the
non-taproot growth zone was significant between each growth
stage. This was confirmed by running a pairwise comparison
of the growth stages of all genotypes and locations, compar-
ing the count changes from stages V1 to V3, V3 to V5, and V1
to V5, all of which showed significance (p < .01). In contrast,
the non-taproot nodule counts showed no significant changes
between the growth stages in the taproot nodules (p > .1).

3.2 Differences in nodule count versus size
lead to total area increases and differences in
nodulation

The six genotypes evaluated across the three vegetative
growth stages in the three environments resulted in sim-
ilar observed trends in total nodule counts with differing
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F I G U R E 1 Each environment shows variability in the overall means of total nodule counts and biomass between the environments for each
trait in soybean, with data compiled from six diverse genotypes. (a) Boxplots showing the overall total nodules per root means of all genotypes at
each growth stage and environment on a y-axis log scale. (b) Boxplots showing the overall means of the nodules on the taproots in all genotypes at
each growth stage and environment on a y-axis log scale. (c) Boxplots showing the overall means of the dried root mass from all genotypes at each
growth stage and environment on a y-axis log scale

T A B L E 2 Mean and standard error of the total nodule counts, and taproot nodule counts in three vegetative stages for each genotype and across
environments

Mean of total nodules Mean of taproot nodules
Genotype Env V1 V3 V5 V1 V3 V5
CL0J095-4-6 S1 14.0 ± 2.98 29.1 ± 3.15 101.4 ± 14.63 4.3 ± 0.47 6.2 ± 0.74 9.6 ± 1.58

S2 53.2 ± 7.14 71.6 ± 6.27 164.7 ± 16.44 9.9 ± 1.01 11.0 ± 1.59 10.9 ± 1.59

S3 61.4 ± 4.89 80.1 ± 6.72 88.6 ± 9.61 13.5 ± 1.53 13.5 ± 1.08 17.7 ± 1.93

PI 437462A S1 12.2 ± 1.36 30.9 ± 3.76 55.5 ± 7.80 8.3 ± 0.68 8.4 ± 1.00 11.5 ± 1.40

S2 57.2 ± 7.20 68.7 ± 4.47 131.2 ± 10.72 14.1 ± 0.99 20.3 ± 2.40 12.7 ± 2.00

S3 36.0 ± 4.23 68.5 ± 6.16 78.8 ± 6.41 13.2 ± 1.80 15.5 ± 1.07 13.7 ± 0.85

PI 438103 S1 11.9 ± 2.81 32.7 ± 6.94 99.8 ± 9.44 4.9 ± 0.77 7.0 ± 1.00 11.2 ± 1.75

S2 57.6 ± 6.19 92.4 ± 5.89 157.1 ± 9.35 8.1 ± 1.20 8.7 ± 1.03 8.3 ± 0.73

S3 65.4 ± 7.74 83.3 ± 5.57 105.3 ± 9.62 11.8 ± 0.77 15.3 ± 0.92 13.0 ± 1.29

PI 438133B S1 26.0 ± 3.74 45.4 ± 5.20 131.0 ± 17.31 14.9 ± 1.69 15.4 ± 1.66 22.7 ± 2.75

S2 72.9 ± 8.44 119.9 ± 12.65 238.7 ± 11.90 21.0 ± 3.45 18.6 ± 1.44 18.2 ± 3.42

S3 67.5 ± 9.31 100.0 ± 11.70 143.8 ± 12.18 16.9 ± 2.61 17.5 ± 1.40 17.0 ± 1.75

PI 471899 S1 09.9 ± 1.96 25.3 ± 2.91 61.8 ± 8.88 5.8 ± 1.02 9.3 ± 0.80 6.9 ± 1.01

S2 29.3 ± 2.33 38.9 ± 3.74 123.1 ± 12.89 9.5 ± 0.80 8.2 ± 1.17 9.1 ± 1.46

S3 44.9 ± 5.01 77.2 ± 4.90 81.3 ± 9.41 11.7 ± 1.39 14.3 ± 1.75 11.7 ± 1.65

PI 80831 S1 19.6 ± 2.23 49.4 ± 6.04 100.0 ± 12.11 4.6 ± 0.56 6.2 ± 1.14 9.0 ± 1.09

S2 51.0 ± 6.02 79.2 ± 9.41 139.0 ± 6.73 9.6 ± 1.87 11.2 ± 1.09 11.2 ± 1.74

S3 67.3 ± 5.39 72.8 ± 4.99 100.7 ± 7.54 16.6 ± 1.19 14.5 ± 1.94 18.6 ± 1.59
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T A B L E 4 Mean and standard error of the root and shoot dry biomass in three vegetative stages for each genotype and across three environments

Mean of root dry mass Mean of shoot dry mass
Genotype Env V1 V3 V5 V1 V3 V5

g

CL0J095-4-6 S1 0.127 ± 0.0064 0.371 ± 0.0522 0.878 ± 0.1152 0.524 ± 0.0626 1.413 ± 0.0766 3.700 ± 0.4093

S2 0.205 ± 0.0149 0.458 ± 0.0473 1.367 ± 0.0972 0.724 ± 0.0534 1.625 ± 0.1398 4.867 ± 0.2672

S3 0.192 ± 0.0078 0.354 ± 0.0178 0.525 ± 0.0422 0.345 ± 0.0203 0.609 ± 0.0506 1.439 ± 0.0822

PI 437462A S1 0.083 ± 0.0122 0.150 ± 0.0500 0.600 ± 0.0463 0.372 ± 0.0415 1.238 ± 0.2129 3.925 ± 0.4769

S2 0.143 ± 0.0108 0.283 ± 0.0477 0.978 ± 0.1077 0.694 ± 0.0415 1.411 ± 0.1317 4.056 ± 0.4628

S3 0.165 ± 0.0090 0.373 ± 0.0232 0.516 ± 0.0410 0.282 ± 0.0206 0.525 ± 0.0534 1.082 ± 0.0890

PI 438103 S1 0.102 ± 0.0140 0.225 ± 0.0313 0.850 ± 0.1014 0.347 ± 0.0542 1.000 ± 0.2204 4.280 ± 0.6294

S2 0.193 ± 0.0136 0.367 ± 0.0289 1.220 ± 0.0512 0.717 ± 0.0371 1.750 ± 0.1003 5.430 ± 0.2785

S3 0.227 ± 0.0214 0.359 ± 0.0245 0.609 ± 0.0423 0.361 ± 0.0341 0.550 ± 0.0597 1.327 ± 0.0909

PI 438133B S1 0.148 ± 0.0204 0.501 ± 0.1442 1.243 ± 0.1494 0.492 ± 0.0661 1.950 ± 0.1793 6.014 ± 0.4896

S2 0.201 ± 0.0230 0.724 ± 0.0752 1.700 ± 0.0928 0.870 ± 0.0790 2.650 ± 0.2070 6.225 ± 0.3736

S3 0.277 ± 0.0139 0.483 ± 0.0479 0.796 ± 0.0684 0.462 ± 0.0390 0.756 ± 0.0705 1.766 ± 0.2041

PI 471899 S1 0.142 ± 0.0096 0.359 ± 0.0506 1.050 ± 0.1389 0.560 ± 0.0482 1.825 ± 0.1373 4.550 ± 0.4633

S2 0.180 ± 0.0115 0.400 ± 0.0333 1.110 ± 0.1080 0.775 ± 0.0703 1.889 ± 0.0920 4.150 ± 0.3027

S3 0.230 ± 0.0223 0.309 ± 0.0187 0.489 ± 0.0278 0.408 ± 0.0252 0.568 ± 0.0520 1.266 ± 0.0825

PI 80831 S1 0.133 ± 0.0144 0.333 ± 0.0373 1.000 ± 0.1174 0.482 ± 0.0418 1.520 ± 0.2086 5.630 ± 0.5604

S2 0.203 ± 0.0154 0.540 ± 0.0723 1.470 ± 0.1136 0.835 ± 0.0796 2.144 ± 0.2789 5.700 ± 0.4636

S3 0.312 ± 0.0141 0.441 ± 0.0209 0.743 ± 0.0577 0.502 ± 0.0170 0.698 ± 0.0462 1.716 ± 0.2299

T A B L E 5 Mean and standard error of nitrogen (N), 100-seed weight (Cwt), and carbon (C) from mature seeds of six soybean accessions

Mean seed N
Mean seed
Cwt Mean seed C

Genotype Env R8 R8 R8
% N g 100 seeds−1 % C

CL0J095-4-6 S1 5.43 ± 0.064 15.74 ± 0.449 48.68 ± 0.455

S2 5.68 ± 0.124 14.36 ± 0.140 48.90 ± 0.160

S3 5.47 ± 0.012 13.73 ± 0.305 49.08 ± 0.082

PI437462A S1 6.04 ± 0.049 13.45 ± 1.203 48.24 ± 0.328

S2 5.87 ± 0.082 13.32 ± 0.220 48.25 ± 0.140

S3 5.65 ± 0.059 13.63 ± 1.332 48.16 ± 0.292

PI438103 S1 5.66 ± 0.185 16.54 ± 1.045 49.95 ± 1.314

S2 5.84 ± 0.020 17.48 ± 0.386 49.58 ± 0.654

S3 5.84 ± 0.123 11.38 ± 4.070 48.05 ± 0.757

PI438133B S1 6.43 ± 0.154 22.35 ± 0.913 47.89 ± 0.472

S2 6.09 ± 0.084 23.91 ± 0.202 47.91 ± 0.205

S3 5.44 ± 0.136 15.66 ± 1.500 48.46 ± 0.234

PI471899 S1 5.46 ± 0.163 18.26 ± 0.893 49.20 ± 0.653

S2 5.17 ± 0.093 16.18 ± 1.049 49.24 ± 0.131

S3 5.25 ± 0.053 14.59 ± 0.171 49.19 ± 0.261

PI80831 S1 5.55 ± 0.154 18.95 ± 1.617 48.87 ± 0.406

S2 5.82 ± 0.098 20.52 ± 0.630 49.41 ± 0.655

S3 5.46 ± 0.065 16.92 ± 0.303 49.16 ± 0.210
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F I G U R E 2 Average nodule count in the entire root, taproot, and non-taproot for six soybean accessions evaluated at three vegetative growth
stages in three environments. All graphs show results for each genotype on a per plant basis at each growth stage. The number of replications per
environment was 10–12. (a) Total average nodule counts, (b) average individual nodule size, (c) total nodule volume, (d) total average taproot nodule
counts, (e) average nodule size of the nodules on the taproots, (f) total taproot nodule volume, (g) total average nodule counts of the non-taproot
nodules, (h) average individual nodule size of the non-taproot nodules, (i) average nodule size of the nodules on the non-taproots

variations each year. While the total nodule count increased
with each advancement in the growth stage for all genotypes,
not all genotypes increased nodule counts at the same rate.
PI 438103 had the greatest increase of nodules between V1
to V3 with a rate of gain of 2.1x on average, whereas PI
438133B had the least rate of gain at 1.5x between growth
stages (Figure 2a). Cl0J095-4-6 had the greatest increase in
noodle count from the V3 to V5 stage relative to the other
genotypes, with a rate of gain of 2.3x. Genotypes PI 438133B
and PI 471899 also showed a substantial increase in nodules
from the V3 to V5 stage with average rates of gain at 2.2x,
compared to the nodule count rate of gain in other genotypes.
PI 473462A had the slowest rate of gain with 1.6x from V3
to V5. The total nodule count for the six genotypes at the V1
stage was similar (28–55 total nodules), while more appar-
ent and discernable groups were established by V5, wherein,
the six genotypes diverged into three groups, with two geno-
types in the lower nodule count group (∼88 nodules) and
three genotypes in the middle group (∼117 nodules). The third

group consisted of PI 438133B (∼166 nodules, Figure 2a).
In the non-taproot nodules, there were two groups of nodule
counts in the V1 stage (∼21 nodules and ∼37 nodules; Table 7,
V1), while non-taproot nodule counts of the genotypes shifted
toward less discernable groups by V5 (Table 7, V5).

When comparing the taproot nodule counts across each
growth stage, it was observed that each genotype did not have
consistent increases at each V stage. However, there were
different growth patterns between the genotypes (Table 6).
Two genotypes, PI 437462A and PI 471899, showed an
increase in taproot nodulation from V1 to V3 and a sig-
nificant drop in counts from V3 to V5 (Figure 2d). PI
80831 showed a minimal rise from V1 to V3, then increased
by V5. In contrast, PI 438103 had increased nodule count
from V1 to V3 and remained stable from V3 to V5. PI
438133B maintained nearly constant taproot nodule counts,
while CL0J095-4-6 showed a near-constant increase in tap-
root nodule counts between each growth stage. Through
changes and even some decreases in some genotype’s
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T A B L E 6 Pairwise comparisons of each soybean genotype taproot nodules (log-transformed) per growth stage showing Tukey adjusted p
values in the upper triangles (blue)

V1 Group CL0J095-4-6 PI 437462A PI 438103 PI 438133B PI 471899 PI 80831
CL0J095-4-6 A 2.20 .02 .96 <.001 1.00 .99

PI 437462A B −0.29 2.49 <.001 <.01 .03 .08

PI 438103 A 0.08 0.37 2.12 <.001 .95 .82

PI 438133B C −0.63 −0.34 −0.71 2.83 <.001 <.001
PI 471899 A −0.01 0.28 −0.09 0.62 2.21 .99

PI 80831 A B −0.04 0.25 −0.12 0.59 0.03 2.24

V3
CL0J095-4-6 A 2.34 .01 1.00 <.001 .99 1.00

PI 437462A B −0.32 2.66 <.01 .30 .03 <.01
PI 438103 A 0.00 0.33 2.33 <.001 .99 1.00

PI 438133B B −0.53 −0.21 −0.53 2.87 <.001 <.001
PI 471899 A −0.04 0.29 −0.04 0.49 2.37 .99

PI 80831 A 0.00 0.33 −0.00 0.53 0.04 2.33

V5
CL0J095-4-6 B 2.52 .99 .82 <.001 .03 1.00

PI 437462A B −0.04 2.55 .59 <.01 .01 .99

PI 438103 A B 0.11 0.15 2.40 <.001 .44 .73

PI 438133B C −0.41 −0.37 −0.52 2.93 <.001 <.001
PI 471899 A 0.29 0.32 0.17 0.70 2.23 .02
PI 80831 B −0.01 0.02 −0.13 0.39 −0.30 2.53

Note. The comparisons with significant differences at the .05 level are bolded. The table diagonals represent the mean estimates (gray). The lower triangles show the
estimate comparisons (orange) calculated using earlier minus later comparisons. Group shows the groups of means that are not shown to be different at α = .05.

taproot nodule counts (Figure 2d), the individual taproot nod-
ule volume compensated and continued to increase as the
plant growth stages continued developing (Figure 2e), result-
ing in the total taproot nodule volume in most of the genotypes
to increase (Figure 2f).

Environment was significant for nodule count on non-
taproots and taproots (see Section 3.1); however, the main
environmental effect was not significant for individual nod-
ule size in the non-taproot zone (p = .11) and not significant
for taproot individual nodule area (p = .13) (Supplemental
Table S1). For total nodule area, environment was significant
for both taproot (p = .01) and non-taproot (p = 1.02 × 10−3)
growth zones (Supplemental Table S2). Taproot and non-
taproot nodules varied in quantity between environments,
with the lowest values consistently in S1 (Figure 1).

When we examined the effect of growth stage related to
nodule count, this interaction was significant in the non-
taproot nodules (p = 2.2 × 10−16), but not in the taproot
nodules (p = .71). However, concerning the growth stage, we
see that it is again highly influential on the average individual
nodule size in the non-taproot growth zone (p = 1.68 × 10−4),
and the individual nodule area was significant (p = .02) in the
taproot zone as well. Significance of the growth stage effect
was observed in both taproot (p = .05) and non-taproot zones

(p = 3.21 × 10−6) for the average total nodule area (Figure
S2).

Broadly speaking, different growth patterns between nod-
ule taproot and non-taproot nodule quantities were observed
(Tables 6, 7). Even though there is variation within geno-
types, there is relatively low variation between genotypes in
most environments (Figure 2). With some exceptions, Geno-
type PI 438133B consistently has a higher total nodule area
than the other genotypes in all three growth stages (Figure 2c,
2f, and 2i). This genotype also has some of the largest within
genotype variations. PI 437462A had an exceedingly high
nodule count at the V3 stage relative to all other genotypes and
stages in S2 (Figure 3d). PI 471899 was consistently lower for
total nodule count than the rest of the genotypes, but over 2 yr,
it also showed an increase from V1 to V3 and then a decrease
in nodule counts from V3 to V5 (Figure 3d).

Figure 3 shows each genotype’s nodule count, individual
nodule area, and total nodule area by environment. While PI
438133B had the most taproot nodules, it was still compara-
ble with the remaining genotypes in individual taproot nodule
area (Figure 3d and 3e), resulting in a higher total nodule
area. We can also see the opposite effect where PI 471899 has
fewer taproot nodules on average while remaining similar to
the comparing genotypes in terms of total taproot nodule area
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F I G U R E 3 Nodule information on the entire root and taproot for six soybean accessions evaluated at three vegetative growth stages in three
environments. (a) Average nodule count, (b) average individual nodule area, (c) average total nodule area, (d) average taproot nodule count,
(e) average taproot individual nodule area, (f) average total taproot nodule area
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T A B L E 7 Pairwise comparisons of each soybean genotype non-taproot nodules (log-transformed) per growth stage showing Tukey adjusted p
values in the upper triangles (blue)

Group CL0J095-4-6 PI 437462A PI 438103 PI 438133B PI 471899 PI 80831
V1
CL0J095-4-6 B 3.19 <.01 .99 .99 <.001 .63

PI 437462A A 0.56 2.64 <.01 <.001 .99 <.001
PI 438103 B 0.08 −0.47 3.11 0.95 <.01 .26

PI 438133B B −0.03 −0.59 −0.12 3.23 <.001 .81

PI 471899 A 0.60 0.05 0.52 0.64 2.59 <.001
PI 80831 B −0.19 −0.75 −0.28 −0.16 −0.79 3.38

V3
CL0J095-4-6 BC 3.78 .77 .96 .17 .03 .67

PI 437462A AB 0.17 3.61 .26 <.01 .51 .05
PI 438103 BC −0.10 −0.27 3.88 .59 <.01 .98

PI 438133B C −0.31 −0.48 −0.21 4.09 <.001 .93

PI 471899 A 0.39 0.22 0.50 0.70 3.39 <.001
PI 80831 BC −0.19 −0.36 −0.08 0.12 −0.58 3.97

V5
CL0J095-4-6 ABC 4.53 .10 .94 .03 .19 .99

PI 437462A A 0.33 4.20 .01 <.001 .99 .05
PI 438103 CD −0.11 −0.44 4.64 .24 .01 .98

PI 438133B D −0.39 −0.72 −0.28 4.92 <.001 .05
PI 471899 AB 0.29 −0.04 0.41 0.68 4.23 .10
PI 80831 BC −0.03 −0.36 0.08 0.36 −0.32 4.55

Note. The comparisons with significant differences at the .05 level are bolded. The table diagonals represent the mean estimates (gray). The lower triangles show the
estimate comparisons (orange) calculated using earlier minus later comparisons. Group shows the groups of means that are not shown to be different at α = .05.

due to an increased individual taproot nodule area. Cl0J095-
4-6 and PI 80831 have greater variation in taproot nodule
counts between environments resulting in more considerable
variation in total taproot nodule area between environments.

On average, individual taproot nodule areas were larger at
each growth stage than non-taproot individual nodule areas
(Figure 3b and 3e). We can see the average range for V1 non-
taproot nodules ranges from 1.5 to 3.8 mm2, while average
taproot nodule areas range from 3.5 to 6.4 mm2. This range
is further widened by V5, where we see the non-taproot nod-
ule areas ranging from 3.5 to 6.1 mm2 and the taproot nodule
areas ranging from 6.1 to 8.4 mm2 (Figure 3b and 3e). While
taproot growth is one of the first regions of the root to grow
and set nodules, the nodules on the taproots increased in indi-
vidual nodule area at a greater rate. On the other hand, nodules
on the non-taproots are increasing in count and area.

3.3 Comparison of nodulation traits with
final seed N and plant biomass

There is a strong correlation between the total elemental N
content as measured by the total percent N in the seed and

T A B L E 8 Select nodule traits and their correlation with the
percent seed nitrogen (N)

S1 & S2 S1, S2, & S3
Trait %N P value %N P value
Taproot nodulation
V1 .42 .17 ns† −.11 .67 ns

V3 .52 .08* .16 .53 ns

V5 .82 >.001*** .50 .04*

Taproot nodule count
V1 .63 .40 ns .28 .26 ns

V3 .60 .03* .30 .23 ns

V5 .82 .04* .44 .07

Note. Pearson coefficient and associated p value are presented. Data comes from
six soybean genotypes grown in 10 to 12 replications in each of the three environ-
ments. S1 and S2 were two distinct environments in 2018, and S3 was grown in
2019.
*Significant at the .05 probability level.
***Significant at the .001 probability level.

taproot nodulation (Table 8). The average count of taproot
nodules had the most consistent high correlation with N% in
the final seed of the plants. For taproot nodules, no correlation
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F I G U R E 4 Spearman correlation of significant (α > .1) trait correlations for nodule traits. Data comes from six soybean genotypes grown in
10 to 12 replications in each of the three environments

was noted across all environments between individual nodule
area and total seed N% (Figure 4). For non-taproot nodules, a
low correlation was observed between individual nodule area
and total seed N% at all early growth stages in S1 and S2 but
not in S3 (data not presented).

In 2018, on taproot, a significant correlation was noted at
V3 and V5 for nodule area and count with seed N%; however,
at the V1 growth stage, no correlation was observed between
seed N% and nodule area or count (Table 8). When all three
environment’s data were pooled, significant associations were
only noted at the V5 growth stage between taproot nodule area
and count with seed N%.

We parse out trait relationships into four categories: (a)
nodule traits within taproots, (b) nodule traits across tap
root and non-tap root, (c) nodule traits with root and shoot
biomass, (d) shoot biomass and seed N% and 100 seed weight.

For taproots, the correlation between individual nodule
area and nodulation (i.e., total nodule area) diminished with
increasing growth stage (at V1: .91, p < .001; at V3: .82,
p < .001; and at V5: .55, p = .019; Supplemental Table S3).

A significant correlation was observed between nodule
count and nodulation, both on the taproot (.93, p < .001) and

non-taproot (.98, p < .001) at the V5 growth stage (Supple-
mental Table S3), indicating that as the quantity of nodules
increases, the total nodule area increases. We report that from
V1 to V5 growth stages, taproot nodule count does not dras-
tically change; however, an increase in individual taproot
nodule area was observed. Together this may be causing the
diminished or lack of correlation between nodule count and
individual nodule area by V5. On the other hand, in the non-
taproots, we noted a consistent correlation between nodule
count and individual nodule area, as both traits showed a con-
sistent relationship from V1 to V5 (Supplemental Table S3).

Root and shoot biomass become increasingly correlated
to each other with each growth stage (V1: .13, ns; V3: .53,
p = .023; V5: .86, p < .001). There is a strong correlation
between the root biomass in growth stage V5 and the non-
taproot nodule count in growth stage V5 (.81, p < .001),
suggesting that with increased non-taproot growth, the count
of non-taproot nodules increases as well. For taproots, the cor-
relation between nodule count and root biomass diminished
with increasing growth stage (at V1: .86, p < .001; at V3:
.51, p < .029; and at V5: .16, p = .519). Whereas, for non-
taproots the same correlation was strong through the growth
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stages (at V1: .84, p < .001; at V3: .69, p = 0.001; and at V5:
.79, p < .001). Since in the early growth stages, the taproot
is growing faster than the non-taproots, on average, nodules
form and do not significantly change the count from V1 to
V5. Whereas, in later growth stages, there is more non-taproot
growth resulting in more non-taproot nodulation.

Shoot biomass and seed N content were also correlated
across all environments at the V3 (.41, p = .09) and V5 (.50,
p = .03) growth stages. Additionally, the Cwt of seeds were
strongly correlated with root biomass at V5 (.76, p < .001)
and with shoot biomass at V3 (.77, p < .001) and V5 (.73,
p < .001).

4 DISCUSSION

4.1 Growth stage and environmental
impacts on nodulation

In this work, we show evidence that unique genotypes have
varying rates of nodule count in both the taproot and non-
taproot growth zones (taproot p < 2.2 × 10−16, non-taproot
p < 2.2 × 10−16) as each of these genotypes expresses
a unique root system architecture. There is also varying
response of nodule count in genotypes across environments
(non-taproot p = 2.67 × 10−6, taproot p = .10) which also
confirms prior understanding of environmental effects of
nodule counts (Adekanmbi, 2019; Keyser & Cregan, 1987;
Sadowsky et al., 1991; Sinclair et al., 1991; Wright, 1982).
We also confirm reports of change in nodule count between
growth stages of soybean root development, but these changes
were only significant in the non-taproot growth zone in our
data (taproot p = .74, non-taproot p = 2.72 × 10−9; Brewin,
1991; Lawn & Brun, 1974). Additionally, the minimal
evidence for interaction between genotype and growth stage
(taproot p = .13, non-taproot p = .09) also shows that most
genotypes have a consistent nodule growth trend across their
growth stages. The significant interaction between genotype
and environment for both root growth zone nodule counts
(taproot p = 5.72 × 10−11, non-taproot p = 3.45 × 10−6)
shows that there is variation within genotypes across various
environments. The observed lower nodule counts at envi-
ronment S2 are likely a result of the environment having
a loamy soil type with endogenously higher soil organic
matter (3.5% organic matter at S1, 2.0% organic matter at S2
and S3) and likely, available N as soil available N has been
shown to reduce symbiotic N fixation in soybean (Allos &
Bartholomew, 1955, 1959).

When looking further into the relationships between seed
weight and N in the seed, it was found that the two histori-
cally highest yielding lines, PI 471899 and CL0J095-4-6, had
some of the lowest amounts of N in the seed and per Cwt of
seed (Supplemental Figure S2 and S4). This supports previ-

ous findings in the literature as N is a primary component of
seed protein, and traditionally, protein is negatively correlated
with increased yield (Assefa et al., 2019; Mariotti et al., 2008).
These lines could also be seen as the most N use efficient,
resulting in the highest yield with some of the fewest nodules
on both the taproot and non-taproots. PI 438103 was able to
achieve moderate total N in the seed (Supplemental Figure S4)
while having a high level of taproot zone nodules and lower
non-taproot zone nodules (Figure 2d, 2g), suggesting that it
may have a higher conversion efficiency of N from the tap-
root for end seed N. However, one genotype, PI 438133B,
showed an interesting relationship as it had the highest nod-
ule counts on both the taproot and non-taproot zones along
with the highest average total N and seed Cwt and percent N
in the seed while still having a moderate yield compared to
the other lines of this study (Supplemental Figure S2, S3, and
S4). This line may indicate that breeding for N and protein
component traits such as nodule-related traits could improve
the protein yield relationship and bring qualities lost through
the founding effect of today’s modern germplasm back into
the breeding pipeline.

The observed trend across genotypes was that the rate
of nodule counts varies between different growth stages in
the non-taproot growth zone and that nodule count within the
taproot growth zone does not statistically differ between the
early growth stages. These trends fall into line with the notion
of host autoregulation of nodulation as controlling the quan-
tity of nodule formation and regulation of where nodules are
formed (Kosslak & Bohlool, 1984; Tanabata & Ohyam, 2014;
Wang et al., 2014). However, our findings challenge the notion
of many nodules being auto-regulated to form near the root
crown as we see genetic diversity of nodule regulation across
the growth zones (Reid et al., 2011). In modern production
practices, many soybeans have inoculum applied to the seed at
planting, leading to higher nodulation around the root crown
(Bhuvaneswari et al., 1981; Calvert et al., 1984). As our study
was dependent on soil available rhizobia, we found nodulation
spread across the entire root structure and variable between
growth zones.

4.2 Redefining nodulation

For all genotypes, the average individual nodule area in mm2

increased at each growth stage on both taproot and non-
taproots. However, apparent differences were observed in
individual nodule area growth rates among genotypes. PI
438103 and PI 80831 had a higher growth rate from V3 to
V5 than the other genotypes for individual nodule areas on
taproot and non-taproots (Figure 2e, 2h). Four of the six geno-
types have higher total nodule area growth rates in the taproot
growth zone from V3 to V5, and PI 437462A and PI 471899
have slower growth rates (Figure 2f). These results suggest
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the impact of variation in the total count and individual nod-
ule area on the total nodule area among these genotypes. It
has been shown that nodule count and biological N fixation
can have a strong relationship (Pitumpe Arachchige et al.,
2020), suggesting that the ability to screen genotypes for nod-
ule count can have a relational impact on N fixation. The size
of nodules is also directly related to biological N fixation, as
shown in Brun (Lawn & Brun, 1974).

Since the environment was most influential on nodule count
and not on individual nodule area, it could be considered that
one primary environmental influence could be the concentra-
tion of endogenous bacteria in each environment, as lower
bacteria concentrations could lead to lower nodule counts
from the requirement of bacterial root proximity for nod-
ule initiation (Caetano-Anollés & Gresshoff, 1991; Ferguson
et al., 2019). Future studies should also include quantifying
local rhizobia populations with methods such as 16S rRNA
analysis of the soil communities (Mayhood & Mirza, 2021;
Shiro et al., 2013).

Logically, the taproot is fixed in a location, only growing
deeper into the soil horizon where fewer nodules tend to form.
Since nodules tend to grow most in the first 0-to-30-cm of soil
(Hardarson et al., 1989; Voorhees et al., 1976), the increasing
number of non-taproots with each growth stage in this zone
will also lead to increased opportunity for nodule initiation.
Future studies can benefit from studying the significance of
the total nodule area being affected by the growth stage with
additional growth stages and genotypes to show the biological
relevance of nodule counts and the average individual nodule
area with its limitations across time.

By using diverse accessions and leveraging image and
machine learning-based nodule count, size, placement, and
growth, we were able to generate insights that were previously
not or less frequently attempted. Therefore, from a biolog-
ical perspective, we propose that nodulation is defined by
the total nodule area and is controlled as a function of both
the nodule count and the individual area of the nodules. We
also propose that different genotypes enable different rates
of nodulation through these two separate controls of nodule
growth and development, that is, through nodule count and
individual nodule area resulting in the growth of total nod-
ule area. This is particularly evident in the taproot growth
zone and its relation to the nodulation among genotypes. For
example, PI 80831 had average taproot nodule counts com-
pared to the other genotypes, but it had the largest average
individual taproot nodule size, which resulted in higher aver-
age nodulation than most genotypes. While we are proposing
this paradigm shift, we are also cognizant of the value of
assessing nodule health and its activity (Denison et al., 1991;
Oono & Denison, 2010). Therefore, this too will need to be
a future consideration in similar experiments and should also
be the focus of non-invasive techniques, perhaps using digital
phenotyping to ensure a higher throughput.

Logically, the success of nodulation to increase seed N
content will be dependent on the shoot biomass as shoot pho-
tosynthates will be transferred to the roots and nodules to be
utilized for nodule growth and development and returned as
amino acids, ureides, and additional forms of bioavailable N
(Carter & Tegeder, 2016; Kouchi & Higuchi, 1988; Thorpe
et al., 1998).

4.3 Relationships between nodulation
traits, end seed N content, and biomass

As we define nodulation (i.e., total nodule area) as a function
of the count and individual nodule area, it was interesting to
note that in the early vegetative growth stages V1, V3, and
V5, only nodulation and nodule count had significant cor-
relation with seed N% while individual nodule area did not.
Furthermore, in non-taproot, no correlation existed between
the three nodule traits and seed N% (data not presented,
see Figure 4). Together, these results with previous work
(Carciochi et al., 2019; Hwang et al., 2014; Oono & Denison,
2010; Purcell & King, 1996) show a promising avenue to
breed for higher total seed N% leveraging the nodule trait
information reported in this paper. Due to the nature of this
study and its focus on vegetative growth stage data collec-
tion, it is possible that this relationship of nodule traits in
taproots and end-of-season seed N% extends to reproductive
stages. From a practical viewpoint and existing imaging
technologies, early growth stages are still more accessible to
phenotype for RSA and nodule traits; therefore, the V stage
results are valuable for practical applications and predictions.
Additional work will need to be done to evaluate the optimum
taproot nodulation—size, count, and placement, selecting
cultivars with the best taproot nodulation, and possibly reduc-
ing non-taproot nodulation to minimize the nodule C sink
could potentially maximize N use efficiency relative to seed
N content. Future work should also include high-throughput
studies on the genetic frameworks that control taproot and
non-taproot zone-specific RSA, nodulation, and relationships
with C production (Montes et al., 2022), which could lead to
a greater understanding and managing of soybean nodulation
carbon to nitrogen production efficiency (NCNPE), which we
define as the maximum levels of N produced by nodulation
in relation to C consumed by nodulation. Some work has
been done showing that the total N content exported from
harvested seed was greater than the N produced through
biological N fixation, further leading to explore efforts on
increasing C while evaluating N availability (Córdova et al.,
2019). While this concept needs validation and testing, in
this paper, we will use this concept to describe the potential
efficiency of nodulation on legume plants. Additional work
should also explore the intricate effects of root system
architecture and various seed inoculations on biological N
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fixation and seed N content (Carciochi et al., 2019). The
nodulation–biomass correlations give further credence to the
earlier assertion that genotypes have varying responses to
nodulation. Some show an increase in the number of nodules,
and others show an increase in individual nodule area to
reach the amount of nodulation the plant requires.

4.4 Assessment of nodulation traits for crop
breeding

One of the longer-term goals of this research is to utilize
the results of this study for crop improvement using nodu-
lation traits in the breeding pipeline. Therefore, we were
interested in studying the stability of nodulation traits among
genotypes across environments, nodule health, and genetic
variation for taproot versus non-taproot nodulation and the
C–N relationship in the context of nodulation.

We noted that soybean genotypes have differences in nodu-
lation capabilities and variation in nodule presence and their
development, that is, individual nodule area and total nodule
area. Since we were interested in a preliminary examination
of nodule health, in a very small subset of plots at each envi-
ronment (5–10 in each environment), nodules were physically
cut with a sharp razor blade. We observed that even small
nodules on the roots (<3 mm2) had the typical red color of
active N fixation (Virtanen & Laine, 1946); the brightest red
colors were consistently observed in the nodules on the tap-
roots, and the most prominent nodules on the non-taproots.
While SNAP can count individual nodules and quantify their
sizes and root growth zones, it is currently unable to differenti-
ate which nodules are immature, actively fixing, or senescing
nodules. Another follow-up research area will be the utiliza-
tion of additional resources such as hyperspectral imaging to
identify specific bands correlated to active fixation, similar
to what researchers have shown to identify disease signatures
in soybean (Nagasubramanian et al., 2018, 2019) or for plant
component predictions (Chiozza et al., 2021).

An additive main effect and multiplicative interaction
(AMMI) type stability analysis was conducted to study the
stability of genotypes for important nodule traits (Supplemen-
tal Figure S5). CL0J095-4-6 was the most stable genotype
across all three environments and in all three growth stages for
nodulation in the non-taproot growth zone, individual nodule
area, and total nodulation in the taproot growth zone (Supple-
mental Figure S5). While trait stability is beneficial, it is not
generally useful without associated performance traits such as
seed yield (D. P. Singh et al., 2021). CL0J095-4-6 did not have
the highest nodulation trait values but compared to the other
five genotypes in this study, only PI 471899 is traditionally
higher yielding than CL0J095-4-6 (Parmley, 2019). Interest-
ingly, when evaluating the taproot nodulation, PI 471899 was
highly stable for nodule count and individual area (Supple-

mental Figure S5). As CL0J095-4-6 is the only genotype
that has been selectively bred in the United States, it can be
hypothesized that plant breeders have unintentionally selected
nodulation in tandem with yield and favorable aboveground
traits. However, follow-up research is needed to confirm the
role of indirect selection of nodulation traits when breeders
select for seed yield. Future studies can be done using yield
trial plot configuration to study nodulation traits with other
agronomic production system traits.

There is a wide range of relationships still available within
the soybean germplasm for nodulation traits. As shown ear-
lier, there is potential for genotypes to have low taproot nodule
counts with high non-taproot nodule counts (PI 437462A),
while the opposite is also observed (PI 438103). Some geno-
types appear to be more efficient at using the nodules to
produce higher yields (CL0J095-4-6, PI 471899; Parmley
et al., 2019). In contrast, others (PI 438133B) may have
higher nodule counts and moderate yield over lower histor-
ically yielding lines that still have moderate nodule counts
(PI 80831, PI 438103; Parmley et al., 2019), suggesting that
selecting for nodule traits is still a viable option for breeders
to implement in their programs. Due to the extreme value of
nodulation, a corpus of researchers in inter-disciplinary teams
needs to develop information and tools that enable breed-
ing for nodulation traits to improve crop production. From a
research viewpoint and scientific advances, nodulation traits
will be ideal for meta genome-wide association studies as they
will enable trait relationships leveraging published studies
(Shook et al., 2021c).

Previous literature has shown a correlation between nodula-
tion and drought tolerance (Du et al., 2009; Fenta et al., 2014;
Hwang et al., 2014; Kunert et al., 2016). With the continued
concern of climate extremes becoming ever-present across the
globe and these extremes creating more significant impacts
on league growth and production, it is essential to explore if
nodulation can contribute to or hinder plant resilience to these
extremes. Further work should be done to evaluate if nod-
ules are merely linked to drought-tolerant traits or if they are
contributing to drought tolerance themselves. While nodules
serve as a significant C sink (Parvin et al., 2020) and N source
(Libault, 2014), further evaluations of root system architec-
ture traits that provide additional environmental resilience
could enable selective breeding strategies that leverage N, C,
and water use efficiency in future cultivars.

With access to more automated nodule identification and
quantification methods, researchers can now investigate the
formation of nodules on roots in a time-series manner to com-
prehend the bacteria–plant symbiosis (Jubery et al., 2021).
This is the first step towards understanding and subsequently
optimizing nodule development and positions on roots to
enable us to produce usable N efficiently and, further, seed
protein. This is due to the result of a growing plant-based pro-
tein market (Sabaté & Soret, 2014; T. Zhang et al., 2021), and
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existing market demand for higher seed protein crops for feed
purposes (Kim et al., 2019) and leghemoglobin, which can be
derived from soybean nodules (Fraser et al., 2018). The poten-
tial to selectively breed for nodulation versus yield exists to
meet new and unique commercial product demands on nod-
ules. Understanding nodulation and its placement in roots
across a plant’s growth and development cycle could poten-
tially improve N use efficiency and protein resources in plants.
While this study explored the early vegetative growth stages,
soybeans continue to nodulate and fix N until and through the
seed fill stage of development (Yuan et al., 2017). However,
SNAP’s current high thruput abilities are hindered by its 2D
image limitations. As imaging technology improves and data
acquisition from 3D point clouds becomes higher throughput
(Chiranjeevi et al., 2021) and more informative (Cox et al.,
2022), additional information could be collected on the 3D
root nodule root relationships in later growth stages.

Continued development of high throughput phenotyping
capabilities of root traits and machine learning with explain-
ability (Gangopadhyay et al., 2019; A. K. Singh et al., 2021)
will enable the acquisition of formerly unknown relation-
ships, as shown in this work. Additional work is needed
to parse out the genetic controls between nodule count and
individual nodule size to unlock the selection potential for
breeders to maximize N and C use efficiency in soybeans
across diverse genotype × environment interactions and cli-
mates (Krause et al., 2022; Shook et al., 2021a). Combining
advances in phenotyping as presented here with improved
methods of genomic prediction will further enable breed-
ing advancements related to nodulation (de Azevedo Peixoto
et al., 2017; Shook et al., 2021b). Work could also be done
using a similar method to evaluate other pulse crops’ abil-
ity to nodulate differentially in taproot and non-taproot zones
(Nagasubramanian et al., 2021), potentially using less hands-
on annotation (Nagasubramanian et al., 2022). We also
foresee and recommend that farmers utilize imaging-based
tools such as SNAP, if they are packaged in a smartphone app,
allowing them to study nodulation and further work on root
health for system-wide analysis and farm-based applications.

5 CONCLUSIONS

This work proposes that nodulation is defined as total nodule
area, a function of both nodule count and individual nodule
area. We see phenotypic variation in the ability of some geno-
types to regulate the overall taproot nodule area by increasing
the nodule count and others by growing more in individual
nodule area to achieve the same objective of nodulation. We
found several significant trends in the relationships between
soybean root system architecture and nodulation. Broadly
speaking, nodule counts are fixed from a very early growth
stage on the taproot of the soybean plant. In contrast, the
non-taproot nodules continue to increase in the count and

individual nodule area through diverse genotypic and environ-
mentally dependent rates. We were also able to quantify the
changes in nodule sizes and count relative to their location
on taproots versus non-taproots finding that taproot nodules
are increasing primarily in the individual area while non-
taproot nodules are increasing in both area and count. Further,
we observed differences in genotype rates of nodulation on
both taproots and non-taproots. In early growth stages, taproot
nodulation and taproot nodule count correlate with mature
seed N content. Additionally, root and shoot biomass at V5
correlated to total seed N at maturity.

We noted genotypes that had a stable performance in nodu-
lation traits across environments, while other genotypes were
unstable. Taproot traits tended to be more stable than non-
taproot traits across environments. As we selected six diverse
genotypes and three environments for this initial exploration,
it is clear that additional work is needed to explore the soy-
bean collection with greater depth to more robustly classify
the nodule growth patterns in soybeans and across additional
environments to explore further the genotype × environment
interactions and plant responses to weather. Breeders could
leverage these genetic and environment interactions to build
more stable performing lines or find optimal nodulating lines
for specific environments in prescriptive breeding. Assessing
nodule health, quality, and the nodulation C to N production
efficiency, or NCNPE, are traits to be still considered. There-
fore, this too will need to be a future consideration in similar
experiments and should also be the focus of non-invasive
techniques, perhaps using digital phenotyping to ensure a
higher throughput. Our findings provide avenues to utilize
nodulation traits in crop improvement.
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