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Abstract

Relating a protein's sequence to its conformation is a central challenge for both

structure prediction and sequence design. Statistical contact potentials, as well

as their more descriptive versions that account for side-chain orientation and

other geometric descriptors, have served as simplistic but useful means of rep-

resenting second-order contributions in sequence–structure relationships. Here

we ask what happens when a pairwise potential is conditioned on the fully

defined geometry of interacting backbones fragments. We show that the

resulting structure-conditioned coupling energies more accurately reflect pair

preferences as a function of structural contexts. These structure-conditioned

energies more reliably encode native sequence information and more highly

correlate with experimentally determined coupling energies. Clustering a data-

base of interaction motifs by structure results in ensembles of similar energies

and clustering them by energy results in ensembles of similar structures. By

comparing many pairs of interaction motifs and showing that structural simi-

larity and energetic similarity go hand-in-hand, we provide a tangible link

between modular sequence and structure elements. This link is applicable to

structural modeling, and we show that scoring CASP models with structured-

conditioned energies results in substantially higher correlation with structural

quality than scoring the same models with a contact potential. We conclude

that structure-conditioned coupling energies are a good way to model the

impact of interaction geometry on second-order sequence preferences.
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1 | INTRODUCTION

For many decades now, the wealth of structural infor-
mation in the Protein Data Bank (PDB) has enabled
protein scientists to infer relationships between the

amino-acid sequence of a protein and its native struc-
ture based on statistical patterns. A classic example of
how even simple structural statistics can provide useful
information is the contact potential, which encodes the
relative interaction preferences for each amino-acid pair
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based on simple log-odds ratios of observed versus
expected occurrences in a large set of contacts, some-
times partitioning the set of contacts into bins according
to distance or other geometric parameters.1–11 Contact
potentials in varying forms have provided insight into
sequence–structure relationships since the 1970s and
have been incorporated into numerous effective predic-
tive models over the years (e.g., Rosetta,12,13 RaptorX,14

PoPMuSiC,15,16 and many others17–21). The continued
efficacy of contact potentials, despite their apparent sim-
plicity, suggests that elaborations or extensions to the
core concept may also serve as useful bridges between
native sequence and structure elements. Multiple exten-
sions have already been proposed, seeking to condition
amino-acid pair preferences on more detailed structural
circumstances.8,9,22 For example, there are potentials
that incorporate the relative orientation between residue
pairs,23–28 condition on residue depth to capture the
effects of polarity and hydrophobicity,29,30 include addi-
tional terms from pseudo-physical force fields,31 alter
the definition of contact,32,33 and optimize parameters
by contrasting the statistics of native structures and
decoys.25,34

Given the complex geometry of an inter-residue
contact and its surrounding structural context (e.g., a
pair of contacting residues and their flanking residues
comprises 24 backbone atoms and thus 72 spatial
coordinates), there is a potentially large and high
dimensional interaction space throughout which
amino-acid pair preferences might vary. In order to
explore how pairwise sequence preferences might
depend on interaction geometry, a more general for-
mulation of structure conditioning is required. Such a
formulation should be able to quantify the pairwise
sequence preferences of any type of interaction. Just
as a contact potential quantifies which amino-acid
pairs prefer to interact over a set of contacts in gen-
eral, a structure-conditioned potential (SCP) could
quantify which amino-acid pairs prefer to interact
over a particular set of structurally similar contacts.
Here, we define such a potential as one that takes an
additional argument, an input fragment centered
around a pair of contacting residues, which deter-
mines the contact geometry that the resulting statis-
tics are conditioned on. In particular, a given input
fragment is used as the query motif of a structural
search which returns an ensemble of structurally simi-
lar motifs whose amino-acid pair statistics are then
used to compute the statistical energies. By condition-
ing on an ensemble of similar interaction motifs,
there is no need to determine which geometric param-
eters (distances, orientations, etc.) are best suited for

capturing interaction preferences, instead letting the
statistics of the PDB inform the preferences via an
ensemble of motifs. This process is made feasible not
just by the growing size of the PDB but by the recent
availability of structural search tools,35 which enable
us to specify a query motif (i.e., a structural fragment)
and efficiently search for all structurally similar frag-
ments in a database of structures.

The primary purpose of this work is to establish a
framework for understanding modular sequence–
structure relationships on a pairwise level. First, we
show that structure-conditioned coupling energies
(SCEs, 20 � 20 per motif) converge to similar energies
as those encoded in a traditional contact potential
when many interaction instances are averaged. Having
established this link, we then show that SCE matrices
encode more information linking the structures of pair
motifs to their associated amino-acid pairs and better
reflect experimentally determined inter-residue cou-
pling values. Looking more deeply into the link these
SCE matrices provide between structure and sequence,
we show that structurally similar pair motifs are more
likely to be energetically similar and the reverse, that
energetically similar pair motifs are also more likely to
be structurally similar. This link reveals the modular
and context sensitive link between sequence and struc-
ture elements and we demonstrate a general relation-
ship between the two. Turning to structure modeling,
we compare how well SCEs can evaluate the structural
quality of CASP models to how well contact potentials
do so, highlighting how much additional information is
encoded by conditioning on structure. As simple, inter-
pretable objects that still offer valuable information on
second-order contributions to sequence–structure rela-
tionships, we find the SCP to be a convenient tool for
dissecting the sequential and energetic effects of inter-
action geometry.

Recent breakthrough successes in structure predic-
tion, with end-to-end deep learning models now able
to give accurate predictions of a sequence's native con-
tacts36 and structure,37,38 suggest that the PDB con-
tains many generalizable patterns that relate sequence
and structure. The SCP is an example of a PDB-
derived generalization, being simple to describe and
understand while capturing important aspects of
pairwise contributions to sequence–structure relation-
ships in a context-sensitive way. Better understanding
these and other generalizations will be helpful for
guiding novel prediction and design methods, espe-
cially in areas where improved performance is much
needed, such as the prediction of protein–protein
interfaces.39
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2 | RESULTS

2.1 | Definitions of the contact potential
and structure-conditioned potential

A contact potential infers pseudo-energies associated
with amino-acid pair interactions from observations of
amino-acid contacts in a structural database. In its sim-
plest form, a contact potential measures the extent each
amino-acid pair is over- or under-observed relative to the
number of observations expected if there were no pair
preferences3 (e.g., the number expected based on the
product of the marginal distributions of both amino acids
comprising the pair). If the database from which the
amino-acid pair statistics arise includes a large diversity
of contacts, the resulting pseudo-energies reflect how dis-
proportionately each amino-acid pair interacts in native
structural contexts. For example, cysteine-cysteine con-
tacts are observed much more frequently than expected
based on the low background frequency of cysteine resi-
dues in native structures and therefore cysteine-cysteine
contacts have a strongly negative (favorable) energy
according to a traditionally derived contact potential.
There are alternative formulations of the reference
state—the framework for computing the expected num-
ber of observations7,9,25—but most assume an indepen-
dence between sequence and structure elements and
therefore estimate cysteine-cysteine interactions favor-
ably. Equation (1) describes the traditional formulation
of a contact potential, where Nobs(a) is the number of
observations in the database of pairs of amino-acid type
a, Nobs(a, b) is the number of observations of amino-acid
types a and b in contact in either order, and N is the total
number of amino acids in the database of pairs. The term
H(a, b) adjusts the expectation for heterotypic pairs
(i.e., amino-acid pairs for which a is not b) as the poten-
tial is directionless. The pseudocount ε ensures sparse
statistics do not result in a division of or by zero. Taking
the negative log of the ratio transforms the values into
additive pseudo-energies. See Section 4.4 for details.

E a,bð Þ¼E b,að Þ¼�log
Nobs a,bð Þþ ε

Nexp a,bð Þþ ε

¼�log
Nobs a,bð Þþ ε

Nobs að Þ �Nobs bð Þ �H a,bð Þ=Nþ ε
: ð1Þ

The SCP computes a contact potential for a given
interaction motif (i.e., a specific pair of residues together
with their surrounding backbone fragments). The
resulting interaction matrix encodes the pseudo-energetic
preferences for each amino-acid pair in this given struc-
tural context. Like a contact potential, these pseudo-
energetic preferences are calculated from amino-acid pair

statistics, encoding to what extent each amino-acid pair
is over- or under-observed relative to the number
expected if the two positions in question did not influ-
ence each other. Unlike a contact potential, the amino-
acid statistics do not come from a generic database of
contacts, but instead from a structural ensemble of frag-
ments that share a similar geometry with the interaction
motif in question (i.e., constrained by a maximum RMSD
over backbone atoms to the input motif). The resulting
SCEs reflect the extent to which each amino-acid pair
disproportionately interacts in the specific structural con-
text of the interaction motif. The formulation of SCEs is
therefore similar to Equation 1 but computed over a con-
strained set of statistics:

SCE a,bð Þ¼�log
Nobs a,bð Þþ ε

Nexp a,bð Þþ ε
: ð2Þ

Here, (a, b) is the amino-acid pair, Nobs(a, b) is the num-
ber of occurrences of pair (a, b) in the interaction motif's
ensemble of matching fragments, Nexp(a, b) is the num-
ber of occurrences of pair (a, b) that would be expected if
there were no pair preferences, and ε is a pseudocount.
See Section 4.3 for details.

In order to measure the impact of incorporating addi-
tional structural context, here we consider three types of
interaction motifs that incorporate an increasing number
of flanking residues around a pair of interacting posi-
tions. Specifically, 1 � 1, 3 � 3, and 5 � 5 motifs com-
prise a pair of contacting residues with no flanking
residues, one flanking residue on each side, or two
flanking residues on each side, respectively (Figure 1).
Larger motifs may carry important contextual informa-
tion, which can offer certain advantages, but may also be
associated with decreased statistics in a limited database.
Comparing the results with these different motif types
measures the impact of increased structural context and
potentially decreased database statistics.

2.2 | Averaging SCEs over many
structural contexts converges to a
traditional contact potential

If each SCE matrix encodes the amino-acid pair energies
in a particular context, then the average of each energy
over many contexts should encode similar information to
a generic contact potential. To test this, a database of
200,000 contacts from a nonredundant subset of the PDB
(DB200K, see Section 4.2) was used to compute a contact
potential and, for each of their corresponding 3 � 3 inter-
action motifs, a 20 � 20 matrix of SCEs. For each amino-
acid pair, the average SCE over all contacts involving the
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pair in the database was computed. Figure 2 plots contact
potential energies (CEs) against corresponding mean
SCEs, showing a linear correlation coefficient of
R = 0.88. In contrast, SCEs at a particular pair of sites
generally correlate quite poorly with contact potential

energies (R = 0.20 on average, see Figure S1A). This sug-
gests that while SCEs and CEs capture similar effects,
and converge on average, SCEs are much more context
sensitive and thus have the potential to capture many
details that CEs may miss.

FIGURE 1 Visualization of an interaction motif. (a–c) The same pair of interacting residues is shown with increasing structural context:

1 � 1 (a), 3 � 3 (b), and 5 � 5 (c). In each case, the pair of interacting residues is colored in cyan. The pair of interacting residues is (A108,

A188) from the structure with PDB ID 4G1Q and was visualized in PyMOL40

FIGURE 2 Correlation between

each SCE from 3 � 3 motifs, averaged

over many contexts, and the

corresponding energy according to a

contact potential. (a) Mean SCEs plotted

against corresponding contact-potential

energies. Pair Cys-Cys is not shown as it

occupies a point far to the bottom-left

(contact potential of �1.78 and mean

SCE of �1.10), though its inclusion

increases the correlation to R = 0.88.

The dotted line indicates the best linear

fit of the data. (b) Heatmap of the mean

SCEs. (c) Heatmap of contact-potential

energies. For (b) and (c), the energy

scale was capped at the most favorable

energy except for Cys-Cys for easier

visualization
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Interestingly, the strong correlation between mean
SCEs and CEs also holds for 1 � 1 and 5 � 5 motifs but
does show a decline with increased context length
(i.e., R = 0.91 and R = 0.84 for 1 � 1 and 5 � 5, respec-
tively; Figure S1B,C). This decline is expected as more
averaging would be needed to integrate out the influence
of more detailed structural context. Overall, these results
show that this SCP can be thought of as a more elaborate
and context-sensitive counterpart of the traditional con-
tact potential.

2.3 | Conditioning on structure encodes
more accurate sequence information

A simple test of the information gained by conditioning
on structural context is to measure how reliably the SCP
favors the native amino-acid pair of an interaction motif
it corresponds to, compared to how reliably the contact
potential favors it. Note that one may not expect very
high performance in such a test, as the native choice of
amino-acid pairs is guided not only by second-order
effects, but also (and perhaps more importantly) by first-
order effects. Nevertheless, as a vehicle for discerning the
effects of structure conditioning and context, the test is
still fair—that is, a more accurate second-order potential
should more frequently pick out the native pair.

With the same set of contacts used to create the sta-
tistical potential and averaged energies in Figure 2, the

SCP of each contact's interaction motif was used to pre-
dict the residue type pair of that contact. Success was
measured both by identification (whether the amino-
acid pair with the most favorable pair energy is the
native residue pair) and score (by how much the energy
of the native residue pair differs from the energy of the
most favorable pair, as measured by a modified z-score;
see Equation (3) in Section 4.5), both of which are
shown in Figure 3. For comparison, CEs, as encoded in
the aforementioned contact potential, were used to
compute the same metrics. To further understand the
role that structural context plays in encoding sequence
preferences, the predictive performance of SCEs was
computed for 1 � 1, 3 � 3, and 5 � 5 interaction
motifs.

As shown in Figure 3, conditioning energies on
structural context substantially improves the informa-
tion they contain about native sequence preferences,
with energies from 3 � 3 interaction motifs about four
times as likely to identify the native residue pair as by
chance (1/400), compared to the below-chance perfor-
mance of general amino-acid pair preferences (contact
potential). The poor sequence-identification perfor-
mance of the contact potential occurs because it pre-
dicts every native pair to be the most favorable one,
cysteine-cysteine (Cys-Cys), while in actuality Cys-Cys
pairs make up less than 1/400th of the total pairs
(�0.17%). Cystines are rare but very frequently occur
in pairs (as either disulfide bonds or in functional

FIGURE 3 Sequence information contained in SCEs. (a) Enrichment over random choice of native amino-acid pair identification for

DB200K comparing energies for each native residue pair using a contact potential (CP), a series of contact-degree-dependent contact

potentials (CDP), and SCEs from three types of interaction motifs, 1 � 1, 3 � 3, and 5 � 5. (b) Negative modified z-score of the energies used

in (a). Modified z-scores were computed using medians and median absolute deviations rather than means and standard deviations. Error

bars indicate the standard error of the mean
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sites), and for this reason the Cys-Cys pair gets an
anomalously favorable contact potential as the most
over-represented pair over expectation. In so far as sta-
tistical potentials represent interaction strength, this is
not entirely wrong—Cys-Cys pairs can form covalent
bonds, which are much stronger than non-covalent
interactions of other amino-acid pairs. However, it is
not the case that disulfide bonds can be made across
any proximal residue pair, and in fact strict geometric
requirements have been identified for Cys-Cys bond
formation.40 The traditional contact potential has no
choice but average out the effect of Cys-Cys contacts
across all geometric circumstances, yielding still a very
strong effective contact energy. On the other hand, the
SCP is able to discern where disulfides are likely and
better apportion the high favorability of Cys-Cys pairs
to just the relevant geometric contexts. In fact, for
1 � 1, 3 � 3, and 5 � 5 motifs, Cys-Cys is predicted as
the most favorable contact in 36.9%, 4.3%, and 2.6% of
pairs, respectively, a progressive narrowing of the
geometries considered permissible for Cys-Cys as addi-
tional structural context is incorporated.

Given that the contact potential always predicts the
same amino-acid pair to be the most favorable, the same
identification and scoring tasks were tested using a series
of contact-strength-dependent potentials so that each
residue type pair was predicted based on a one-
dimensional projection of its contact geometry, termed
“contact degree” (see Section 4.1). The same set of con-
tacts used to construct the original potential was divided
into 11 bins based on contact degree and a contact poten-
tial was then constructed for the set of contacts in each
bin (the binning scheme used was the same as the one
used to sample contacts for DB200K; see Section 4.2). To
predict the amino-acid identities of each pair, its contact
degree was mapped to the corresponding bin and the
contact potential for that bin was used to predict the
most favorable amino-acid pair. This serves as a better
reference for the performance of the SCP, as it tests a
potential that incorporates some information about con-
tact geometry without encoding all of it as the SCP does.
However, as can be seen in Figure 3, the performance
(labeled “CDP”) is only marginally better than that of
the contact potential, suggesting that the full structural
context provides information that is difficult to encode
in a single metric.

The contrast in performance between 1 � 1 and 3 � 3
motifs (Figure 3) highlights the effect of incorporating
structural context further. Because 1 � 1 motifs lack
flanking residues, the structural similarity of the ensem-
bles used to calculate their energies lacks information
about and therefore conflates a variety of structural con-
texts; a 1 � 1 ensemble implicitly constrains simple

features like overall inter-residue and relative orientation
but not how the surrounding structure frames the con-
tact. In contrast, the extensive context of 5 � 5 motifs
leads to a distribution of native energies that is reliably
more favorable than the median energy for each pair,
likely because the choice of amino acid types in such spe-
cific contexts is even more constrained than for 3 � 3
motifs.

2.4 | Energies conditioned on structure
better correlate with experimental
coupling energies

Another way to test the SCP is to evaluate how well its
pair energies correspond to experimentally determined
preferences. Experimental measurements that focus on
pair interaction strength (i.e., the second-order effect)
would be most useful. Detailed thermodynamic measure-
ments or high-throughput deep mutational scans usually
focus on point mutations.41 For instance, while
ProThermDB42 contains measurements of how point or
double mutations change the stability of their structure,
there are no position pairs with measurements for more
than a few residue pair combinations. However, some
systems have been well studied using the double-mutant
coupling energy approach,43 which attempts to isolate
solely the second-order effect on stability. For example,
Vinson and co-workers have produced high-quality cou-
pling energy measurements for �100 amino-acid pairs at
two inter-chain site pairs for the dimeric parallel coiled
coil system (a set of 81 for a–a0 core interactions44 and
16 for interfacial g–e0 interactions45). These coupling
energies measure the change in the free energy of folding
when a pair of interacting residues is simultaneously
mutated to alanine, relative to when each is individually
mutated to alanine.45 Because folding and dimerization
are concomitant in this system, these coupling energies
cleanly isolate just the contribution of the residues inter-
acting in the folded state (as these interactions are absent
in the unfolded/dissociated state). This an ideal scenario
for comparing to SCEs, which report on the relative
second-order preferences for different amino-acid pairs in
a specific structural context.

The advantage of SCEs for capturing coupling ener-
gies is that their underlying statistics come from an
ensemble of similar interaction motifs. In fact, the spe-
cific ensemble represented by the native structure would
be most appropriate to use when trying to estimate true
coupling energies. Of course, we do not know the native
ensemble or even what RMSD neighborhood around the
native interaction motif would be most appropriate to
represent it. For this reason, we chose to consider
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multiple ensemble sizes (corresponding to a range of
RMSD cutoffs) to investigate the impact on the corre-
spondence between SCEs and experimentally determined
coupling energies. Results are shown in Figure 4a,b for
a–a0 and g–e0 interactions, respectively, with the perfor-
mance of CEs shown with a dashed line. Interestingly,

the correlation for both the a–a0 and g–e0 interactions is
maximized when the ensemble is very tight (maximum
RMSDs of 0.24 and 0.38, respectively), suggesting that the
coiled-coil system used to measure these coupling ener-
gies may occupy a relatively narrow native ensemble at
equilibrium. But while the maximum correlations occur

FIGURE 4 SCEs versus experimentally determined coupling energies. (a and b) Correlation between experimentally determined

energies versus SCEs over a range of ensembles for a–a0 (a) and g–e0 (b) interactions. The dotted line in each plot indicates the correlation

achieved by contact potential energies. The right-most points of each plot, labeled with an asterisk (*), correspond to the energies using the

default parameters. The curve in between points was computed using the “pchip” function of MATLAB and is for visualization purposes

only. (c and d) Correlation between experimentally determined energies versus optimal SCEs for a–a0 (c) and g–e0 (d) interactions. The
dotted line indicates the best linear fit of the data
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at low RMSDs, the correlation remains high over a broad
range. For the a–a0 interactions, the correlation exceeds
that of the contact potential no matter the size of the
ensemble. For the g–e0 interactions, while the correlation
is about equal to the contact potential's for larger ensem-
bles, it is much higher for small ensembles except when
the statistics are sparse enough that the number of
matches from which SCEs are derived becomes consider-
ably lower than the number of amino-acid pairs (left-
most point in Figure 4b). Note that our “default” setting
for computing SCEs in this work is to require a minimum
ensemble of 1,000 matches to ensure that data sparsity
does not come into play (see Section 4.3). The correla-
tions for the energies computed with these default set-
tings are shown with asterisks in Figure 4a,b and in both
cases, the correlation using SCEs is higher than when
using CEs.

Figure 4c,d compare experimental coupling energies
to SCEs whose ensembles achieved maximal correlation
for the a–a0 and g–e0 interactions, respectively. This is a
striking contrast to the correlations produced by using
contact potential energies (R = 0.65 vs. R = 0.31 for a–a0
energies and R = 0.85 vs. R = 0.66 for g–e0 energies; see
Figure S2a,b for plots of CEs vs. experimental energies).
It is clear that amino-acid statistics from structural
ensembles resembling native interaction geometries give
better insights into the thermodynamic coupling between
positions than the more generic preferences of a contact
potential do.

2.5 | Similar SCE patterns correspond to
similar structural motifs and vice versa

Given that the amino-acid pair statistics the SCP uses to
compute its energies come from an ensemble of motifs
structurally similar to the input motif, we expect pairs of
structurally similar input motifs to generate similar ener-
gies. We next ask if the reverse is true, whether pairs of
motifs with similar SCE matrices are structurally similar
as well. The additional information about native
sequence preferences contained in these energies relative
to those of the contact potential (see Figure 3) suggests
this may be the case, as this information gain is likely
driven by the distinct amino-acid pair statistics imposed
by particular contact geometries. This potential
relationship—the mutual information between contact
geometry and SCEs—can be examined by clustering a
large set of interaction motifs by both their structures
and SCE matrices and examining the structural and ener-
getic similarities within the resulting clusters. Taking a
random subset of 50,000 motifs from DB200K, motifs
were clustered by both structure (via RMSD) and energy

(via rE, a function of the linear correlation of the energies
as 400-vectors; see Section 4.7). Clustering was done
greedily, with clusters defined by their radius (in RMSD
space for structures, and in correlation space for energies;
see Section 4.7).

Figure 5 shows a summary of these clustering results.
Figure 5a shows visualizations of the structures of three
representative clusters in each case, Figure 5b shows the
corresponding mean SCE matrices, and Figure 5d,e dis-
play the distributions of RMSDs and energetic distances
(rE) over each case's first 100 clusters. Remarkably, the
structural similarity of motifs clustered by energy is
nearly as high as when clustered by structure; similarly,
the energetic similarity of motifs clustered by structure is
nearly as high as when clustered by energy. More quanti-
tatively, the mean RMSD to the medoid (cluster represen-
tative) for the first 100 clusters is 0.36 Å when clustering
by structure and 0.55 Å when clustering by energy, com-
pared to 3.70 Å when clusters were assigned randomly
(with the sizes of the random clusters chosen to match
the sizes when clustering by structure). Moreover, the
mean energetic distance to the medoid for the first
100 clusters is 0.16 when clustering by structure and 0.18
when clustering by energy, compared to 0.93 when clus-
ters were assigned randomly (with the sizes of the ran-
dom clusters chosen to match the sizes when clustering
by energy), which is close to the rE = 1.0 value
corresponding to uncorrelated matrices. Note that in all
three cases, the number of motifs being clustered is
approximately the same in order to ensure the compari-
son is fair. As can be seen, SCE matrices contain suffi-
cient information about the structures they were derived
from that similar SCE matrices usually correspond to
similar structures. Even in the cases in which the struc-
tures of SCE-based clusters are not as mutually similar as
in structure-based clusters, the clusters are far more simi-
lar than expected by chance, with higher RMSDs usually
indicative of multiple sub clusters rather than unrelated
motifs, and consistent with the idea that distinct interac-
tion geometries can induce similar energetic preferences.
An example of this is shown in Figure 5c, which splits
the energy-based cluster marked by the asterisk into eight
subclusters (by visual analysis in PyMOL), revealing a set
of particular beta-sheet geometries which evidently all
share similar energetic preferences (see Figure S3 for
additional visualizations of clusters).

To look in more detail at how the similarity between
structure and energy behaves and where it diverges, we
considered a large number of pairs of interaction motifs
and computed both their structural similarity (via RMSD)
and energetic similarity (via rE). Specifically, the RMSD
and rE between each pair in a set of 20,000 motifs was
computed, the pairs were partitioned into bins based on

HOLLAND AND GRIGORYAN 907



RMSD, and the average rE for each bin was calculated
(Figure 6). While there is some noise in the relationship,
there is a clear pattern of structural similarity implying
energetic similarity, with pairs of 3 � 3 motifs with an
RMSD in the range [0, 0.2) having an average rE of 0.14,
in contrast to pairs with an RMSD in the range [1.8, 4)
having an average rE of 0.94, which is about what would
be expected for unrelated motifs. Furthermore, an inter-
motif RMSD value of �1.0 Å appears to be roughly where
structural and energetic similarity diverge. That is, motif
pairs that are closer to each other than 1.0 Å RMSD tend
to exhibit various degrees of similarity in their energetic
preferences in a way that strongly correlates with struc-
tural similarity, while beyond 1.0 Å energetic preferences

tend to be mostly unrelated and in a way that does not
strongly depend on the specific structural distance.

2.6 | SCEs outperform traditional
contact energies in native structure
discrimination

If SCE matrices reflect how much each interaction motif
prefers each possible amino-acid pair, then scoring a
structural model by the SCEs of its interacting residues
should reflect how compatible the structure is with its
sequence. While additional terms would be needed to
fully measure sequence–structure compatibility (e.g., self-

FIGURE 5 Structurally similar motifs have similar SCEs and vice versa. (a) Fragment ensembles of the top three clusters by RMSD

when clustering by structure (top row), by energy (middle row), and randomly (bottom row). (b) Mean SCE matrices for the clusters shown

in (a). (c) The subclusters of the cluster marked by the asterisk (*). The subclusters are sorted by size, descending, starting with the top left

and going clockwise. (d and e) Distributions of RMSD and energetic similarity (rE) over the first 100 greedily obtained clusters when

clustering by structure, clustering by energy, and by random assignment. For each distribution shown, the vertical dotted line indicates the

mean value. Fragments were visualized with PyMOL
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energies as well as the pairwise SCEs), the pair energies
should be informative enough to identify native-like
interactions. To test this hypothesis, data from previous
Critical Assessment of protein Structure Prediction
(CASP) competitions, in particular from the refinement
challenges,46–51 were collected, resulting in a large set of
structures, both native and submitted models—134

targets and �2,500 structures. For each of the 134 refine-
ment targets from CASP9-14, the native structure and
20 models submitted under the refinement category were
scored by calculating the mean SCE of the native amino-
acid pair over all contacts (using 1 � 1, 3 � 3, and 5 � 5
motifs). As a control, each of these contacts was also
scored using CEs and averaged. Following the conven-
tion of CASP, GDT_TS52 was used to measure the quality
of each model, and this structure quality was compared
to the mean SCE or CE per structure, plotting ROC cur-
ves for several GDT_TS thresholds. These curves plot the
false positive rate versus the true positive rate and indi-
cate how well each scoring function can differentiate
between models higher versus lower quality models.
Figure 7 shows the curve for differentiating models with
a GDT_TS of at least 50 versus those with a GDT_TS less
than 50. Predictive success can be measured with the area
under the curve (AUC), which quantifies how likely a
scoring function is to correctly rank models and ranges
from 0.5 (the expected AUC for a random classifier) to
1.0 (achieved by perfectly ranking the models). The AUCs
when models are scored with the mean SCE using 1 � 1,
3 � 3, and 5 � 5 motifs is 0.64, 0.80, and 0.69, respec-
tively. In contrast, the AUC when models are scored with
the mean CE is 0.54, indicating the mean CE essentially
ranks models randomly with respect to GDT_TS. The
increased AUCs achieved by SCE-based scores holds
when using other thresholds of GDT_TS (60, 70, 80, 90;
see Figure S4).

The substantially larger AUCs achieved by the SCE-
based scores, in particular the 0.8 achieved using 3 � 3
motifs, is another piece of evidence for the SCP encoding
additional information about native sequence preferences
compared to the CP and shows this information can be
exploited to evaluate the structural quality of predicted
models. The improved predictions using the 3 � 3-based

FIGURE 6 Relationship between structural similarity and energetic similarity. (a–c) 1 � 1, 3 � 3, and 5 � 5 motifs, respectively. Circles

represent the mean, squares the median, and error bars the standard error

FIGURE 7 The performance of SCE-based and CE-based

scoring functions when differentiating between low- and high-

quality CASP models. Each scoring function's ROC curve plots the

false positive rate versus the true positive rate achieved when

predicting whether or not each structure in the set of CASP models

has a GDT_TS of at least 50. 1 � 1, 3 � 3, and 5 � 5 refer to the

SCE-based scoring functions using the respective motif sizes and

CP refers to the CE-based scoring function
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scores over the 1 � 1-based scores is expected, but it is
less clear why there is a lack of systematic improvement
by the 5 � 5-based scores. It may result from limitations
associated with the sparser and less robust statistics of
larger structural motifs. To see whether the relationship
between SCE-based scores and GDT_TS generalizes to
other measures of structural quality, the same experi-
ment was performed using TM-score53 (Figure S5),
another common measure of structure quality, and
RMSD (Figure S6). In both cases, the same pattern was
observed, with SCEs predicting structural quality more
effectively than CEs across all tested thresholds of TM-
score and RMSD.

3 | DISCUSSION

The long history and widespread use of contact potentials
suggests that extensions to the concept may also prove
fruitful. Here, we demonstrated such an extension and
showed that conditioning the contact potential's amino-
acid pair statistics on the backbone conformation of the
interacting fragment is a promising way to increase the
relevance of the resultant statistical energies. Moreover,
examining these structure-conditioned energies and the
fragment geometries they are conditioned on has rev-
ealed a general relationship between structural similarity
and energetic similarity.

The results summarized in Figure 3 provide a good
example of this increase in relevance, highlighting how
the energies of the SCP contain more native sequence
information than those of a traditional CP. Indeed, while
the CP effectively encodes common patterns of amino-
acid pair interactions—the most favorable energies after
Cys-Cys being Glu-Lys, Asp-Lys, Arg-Asp, and Arg-Glu
(all complementarily-charged amino-acid pairs which fre-
quently interact)—it has no mechanism to recognize any
detailed structural context in which these interactions
occur. This can be seen as a limitation of CPs that is
accepted in exchange for speed. Thus, a CP serves as a
fast but very approximate measure of a structure's inter-
residue interactions.

In contrast, the SCP described here performs much
better. Importantly, one would not expect a contact
potential of any kind, which inherently captures second-
order sequence preferences only, to have a high sequence
recovery. In fact, the most significant explanatory effect
of sequence is expected to reside in the first-order contri-
bution (e.g., preference for degree of burial, backbone
dihedral angles, etc.). Further, when it comes to second-
order effects, it is the sum of pair interactions involving a
given residue that most matters for amino-acid choice at
the position, while each pair contribution may play only

a minor role. Despite this, the SCP stills exhibits consid-
erable predictive performance in picking out native
amino-acid pairs, with a rate of four times over that
expected by chance. In terms of speed, the general rela-
tionship between structural similarity and energetic simi-
larity shown in Figure 6 implies that SCE matrices do not
need to be computed for every fragment of interest.
Instead, a database of energies can be pre-computed, and
the interaction motifs of interest can be evaluated on the
fly by looking up the energies of the most similar motifs
in the database. This would make the speed of SCPs com-
parable to that of CPs, while providing a considerably
more accurate sequence–structure linkage. A relevant
comparison is the residue-pair-transform (RPX) construct
in Rosetta.54 While this method scores residue pairs using
the Rosetta energy function, not structural statistics as
the SCP does, and uses spatial binning as the measure of
structural similarity, not RMSD, both models account for
how interaction geometry affects sequence compatibility
by examining sets of spatially similar contacts in order to
more accurately evaluate pairs of interacting residues.

Additional evidence of the relevance of SCP-based
energies is shown in Figure 4, which demonstrates that
SCE matrices are more closely related to thermodynamic
coupling energies in coiled coils. While SCEs correlate
more highly with experimental coupling values than CEs
do using the “default” parameters, the highest correla-
tions occur when the ensemble of motifs used to condi-
tion the amino-acid pair statistics were constrained to
include only those fragments with very high structural
similarity to the query motifs (i.e., the motifs centered on
the a–a0 and g–e0 interaction pairs). This sensitivity to the
chosen ensemble reinforces the point that structural con-
text matters when estimating pairwise energies and sug-
gests that using statistical energies as proxies for coupling
energies requires knowledge of the native ensemble, not
just knowledge of the crystallized conformation. While
such knowledge would be rarely available, the SCP at
least provides a means of tuning the statistics based on
the predicted or assumed ensemble, which cannot be
done with a CP. Measurements such as B-factors might
provide insight into this, although the availability of addi-
tional experimental coupling measurements would be
required to determine the relationship between them.
Moreover, in some cases such as sequence design, it may
be useful to impose a desired ensemble, making this tun-
ing capability of the SCP convenient. Considering the
results in Figure 4 more broadly, it is interesting that the
statistics in the PDB, when conditioned on an appropri-
ate set of fragments, correspond even approximately with
coupling energies, which are derived from measurements
of thermodynamic equilibria in specific systems. This cor-
respondence suggests that thermodynamic preferences
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contribute to the distribution of amino-acid pair statistics
in the PDB.

Results in Figures 7 and S4–6 corroborate those in
Figures 3 and 4 by directly evaluating how effective each
energy function is at predicting the sequence–structure
compatibility in structural models. The increase in AUCs
(which quantify how well high-quality structures can be
differentiated from low-quality ones) achieved by SCEs
shows that incorporation of structural context helps in
the evaluation of pairwise interactions in structural
models. Importantly, the dataset involved in this analysis
is expansive, comprising thousands of structural models
submitted by CASP participants, and includes models
derived from a variety of techniques tried over many
years. The consistent increase in AUCs, whether using
GDT_TS, TM-score, or RMSD, and regardless of the
threshold chosen to split high-quality and low-quality
models, allows us to conclude that an SCP-based scoring
function is reliably better than an equivalent CP-based
one. This holds even when the SCEs are computed with
the minimally contextual 1 � 1 motifs, but the further
increase when using 3 � 3 motifs confirms that the
increase in performance is driven by incorporating addi-
tional structural context.

Perhaps the most striking observation about the
SCP is the bidirectional relationship it reveals between
contact geometry and pairwise sequence preferences,
which is shown via clustering in Figure 5 and more
generally in Figure 6. It may be expected that structur-
ally similar pairs of interaction motifs induce similar
SCE matrices. After all, these matrices are computed by
collecting ensembles of structurally similar fragments
and pooling their amino-acid pair statistics. However, it
is interesting that the relationship holds in the other
direction—that energetically similar pairs of motifs tend
to be structurally similar as well. It could have been
the case that most contact geometries would induce
similar SCE matrices, which would have precluded
using energetic similarity to predict structural similarity.
This is not the case, however, and Figure 5d makes it
clear that structurally unrelated motifs are very unlikely
to have similar SCE matrices. This coupling between
structural and energetic similarity, the limits of which
are quantified in Figure 6, implies that not only does a
particular contact geometry impose constraints on
sequence preferences, but that particular sequence pref-
erences impose constraints on the contact geometry. In
effect, there appears to (usually) be at most only one
way, in local structural space, to achieve a specific set
of pair amino-acid preferences.

At a high level, our results show that local geometry-
to-sequence mappings are inherently learnable, general-
izable, and with a tight coupling between local structure

and the pattern of amino-acid preferences. This fact may
well be a part of the reason behind recent results having
been able to achieve excellent generalization capabilities
in going from multiple-sequence alignments to accurately
predicted structures.37,38 These results once again suggest
that the amount of protein structural data amassed to
date is sufficient to establish robust generalizations about
sequence–structure relationships. Thus, continued exploi-
tation of these data is likely to produce additional
insights and generalizations and may enable novel tech-
niques for the design and modeling protein structure and
properties.

4 | MATERIALS AND METHODS

4.1 | Contact degree

Contacts in this study were defined using our previously
described contact degree (CD) metric.21,55,56 CD quan-
tifies the extent to which a pair of positions is poised to
host a contact by placing all possible rotamers (of all nat-
ural amino acids) at both positions and calculating the
probability-weighted fraction of mutually exclusive
rotamer pairs (i.e., those with clashing heavy atoms; see
Holland et al.56).

In more detail, the contact degree between two resi-
due positions pi and pj is defined as follows. The
Dunbrack backbone-dependent rotamer library57 is used
to determine the set “allowed” rotamers at each position
(i.e., rotamers with strong clashes with the main chain)
and their probabilities of occurrence. For each pair of
allowed rotamers ri and rj (at pi and pj, respectively) the
distance between each pair of heavy (non-hydrogen)
atoms is calculated. If any pair of heavy atoms between ri
and rj is within 3 Å, ri and rj are considered mutually
interfering. The contact degree between pi and pj is the
probability-weighted fraction of interfering rotamer pairs
out of all placeable ones:

CD pi,pj
� �

¼
X20
a¼1

X20
b¼1

X
ri � Ri að Þ

X
ri � Ri bð Þ

C ri,rj
� � �P að Þ

�P bð Þ �P rið Þ �P rj
� �

:

Above, Ri(a) is the set of rotamers of amino acid
a allowed at position pi, C(ri, rj) is 1 if ri and rj are inter-
fering and 0 otherwise, P(a) is the probability of amino
acid a, and P(ri) is the probability of rotamer ri according
to the backbone-dependent rotamer library. Note that a
CD of 0 indicates no pairs of placeable rotamers are
clashing (no contact) and a CD of 1 indicates all pairs are
(strongest contact).
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4.2 | Contact database creation

In order to sample a diverse distribution of native con-
tacts, a high quality, nonredundant subset of the PDB
was collected and around 200,000 contacts were sampled
from it. In more detail, the PISCES server58 was used to
collect a nonredundant subset of the PDB. Only struc-
tures solved by X-ray crystallography were included, with
the maximum resolution capped at 2.3 Å and the maxi-
mum R-value at 0.3. Structures were filtered by chain,
keeping only those with between 40 and 10,000 residues,
and with the maximum sequence identity of any pair
restricted to 25%. The list of chains meeting these criteria
was collected on January 1, 2020, and resulted in 12,148
entries. Contacts were computed between every pair of
residues in every chain. In order to sample inter-protein
contacts, contacts were also computed between every pair
of residues between each chain and every other chain in
its PDB file. This resulted in 61,510,642 contacts in total.
Contacts were then filtered to include only those for
which both contacting residues had canonical amino acid
names (with MSE being considered equivalent to MET),
and enough sequence separation (at least five residues in
between the two contacting ones) to ensure the largest
considered interaction motifs (5 � 5-mers) were com-
posed of two non-contiguous segments. Furthermore, a
contact was included only if each residue involved in the
5 � 5-mer motif had all four backbone atoms. Because
most contacts are weak, and we wanted to sample many
strong contacts in addition to weak ones, the contact
database was created by sampling an equal number of
contacts from 11 bins of contact degree: [0, 2�10), [2�10,
2�9), [2�9, 2�8), …, [2�1, 1]. DB200K was created by sam-
pling 18,182 contacts per bin, resulting in 200,002 con-
tacts spanning 10,837 structures/complexes. The set of
contacts comprising DB200K can be found in the
“DB200K.tar.gz” file hosted on Zenodo.59

4.3 | Structure-conditioned potentials

An interaction motif is a structural fragment centered
around a pair of contacting residues. The fragment may
contain just the pair of interacting residues (1 � 1) or one
or more flanking residues on each side of the pair (3 � 3,
5 � 5, etc.). Corresponding to the pair component of the
dTERMen energy function, the structure-conditioned
energy (SCE) matrix for an interaction motif is a 20 � 20
matrix containing log-transformed ratios of amino-acid
pair observations over expectations, computed using the
amino-acid statistics from an ensemble of fragments
structurally similar to the interaction motif. Only the sta-
tistics of the two contacting residues are considered; the

flanking residues control how much structural context is
considered when collecting the ensemble of similar frag-
ments, but their amino-acid identities do not contribute
directly to the energies. The ensemble is collected by
using the interaction motif to query into a structural
database, finding all fragments (matches) of the same size
as the query in the order of their backbone-atom root-
mean-square deviation (RMSD) from the query motif (all
four backbone atoms, N, Cα, C, and O, are included in
this calculation). The search is limited by both the num-
ber of fragments returned (max count) and the maximal
RMSD to the query (RMSD cutoff). Except for the SCEs
used to compare with experimental coupling energies,
which were recomputed using a wide variety of match
counts (see Figure 4 and Section 4.6), the max count was
fixed at 50,000 for all SCEs computed here. The RMSD
cutoff was set in a size-based manner according to our
previously derived cutoff function (eqs. 25 and 26 in the
supplementary information of Zhou et al.21). This
resulted in cutoffs of 1.0, �0.79, and � 0.77 Å for 1 � 1,
3 � 3, and 5 � 5 motifs, respectively.

The equation below details how the 400 structure-
conditioned energies (SCEs) of an SCP are computed for
an interaction motif f centered around a pair of inter-
acting positions (i, j):

SCE ai,aj
� �¼�log

Nobs ai,aj
� �þ ε

Nexp ai,aj
� �þ ε

:

Here, (ai, aj) is the amino-acid pair whose SCE is being
computed at these positions (with ai being the amino acid
at position i and aj the amino acid at position j), Nobs(ai,
aj) is the number of occurrences of pair (ai, aj) in f's
ensemble of matching fragments, and Nexp(ai, aj) is the
number of occurrences of pair (ai, aj) that would be
expected if there were no pair preferences. The
pseudocount ε is set to 20=max Nobs ai,aj

� �
,Nexp ai,aj

� �
,1

� �
.

Note the above equation is equivalent to Equation (2) but
with a replaced by ai and b replaced by aj for clarity
about how i and j play a role. Nexp(ai, aj) is defined as
follows:

Nexp ai,aj
� �¼ X

m � AA

exp �E1 aijmið Þ�Δi ai,Mð Þð ÞP
a � AAexp �E1 ajmið Þ�Δi a,Mð Þð Þ

� exp �E1 ajjmj
� ��Δj aj,M

� �� �
P

a � AAexp �E1 ajmj
� ��Δj a,Mð Þ� � :

Here, m is a match in f's ensemble of matching fragments
M, E1(ai j mi) is the pseudo-energy associated with amino
acid ai at position i in match m, AA is the set of the
20 natural amino acids, and Δi(ai, M) is a residual energy
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associated with amino acid ai that is set (for each motif)
to ensure that the expected marginal counts of each
amino acid at each position coincide with observed
counts. The pseudo-energy in E1 is a first-order energy
model that considers the backbone dihedral angles φ, ψ ,
and ω and environment to estimate how favorable each
amino acid is at a given position. The first term under the
outer sum is thus a ratio between how likely (according
to E1) amino acid ai is to occur at position i and the sum
of the likelihoods over all possible amino acids at this
position. The second term under the outer sum computes
the same ratio but for aj at position j. Multiplied together,
these two terms capture the probability of observing pair
(ai, aj) in match m under a model that knows about first-
order amino-acid preferences but assumes no second-
order dependencies. This means the sum over each
match in the ensemble M is the expected number of
observations in M of the amino acid pair (ai, aj) if there
were no second-order (or other higher-order) dependen-
cies. Thus, the ratio between Nobs(ai, aj) and Nexp(ai, aj)
estimates to what extent true observations exhibit appar-
ent correlations.

In more detail, E1 is a hierarchical model estimating
how much each amino acid prefers occupying regions of
backbone dihedral angles and environment. First, φ/-
ψ-space is divided into uniformly sized bins of 10� � 10�

and the preference for each amino acid to occupy each
bin is estimated with a statistical potential. That is, the
number of observations of an amino acid are compared
to the number expected based on its frequency in the
database. Then, ω-space is divided into non-uniformly
sized bins (due to regions of sparse statistics) and the
preference for each amino acid to occupy each bin given
its φ/ψ preferences is estimated with a conditional poten-
tial. That is, the number of observations of an amino acid
are compared to the number expected given the φ/ψ pref-
erences of these observations. Finally, the preference for
each amino acid to occupy various levels of burial is esti-
mated with a potential conditioned on the previous two.
Together, these three potentials capture the self-
preferences of each amino-acid type. The residual energy
term, Δi(ai, M), is an adjustment energy that is included
to preserve the marginal amino-acid distributions at indi-
vidual coupled positions of the pair TERM. This is an
approximation that works well in practice, where we
assume that perturbations in the marginal distributions
at individual sites of a pair motif are caused by residual
first-order effects, rather than second-order ones. The
correction term is calculated as:

Δi ai,Mð Þ¼�ln
No aið Þ
Ne aið Þ

� �
,

where No aið Þ is the number of times amino acid ai is
observed in the corresponding position of matching pair
fragments and Ne aið Þ is the number of times this amino
acid was expected at this position, based on the E1 back-
ground potential:

Ne aið Þ¼
X
m �M

exp � E1 aijmið Þ½ �ð ÞP20
a¼1exp � E1 ajmið Þ½ �ð Þ :

See the “Pre-computed contributions” and “Pair contri-
butions” sections of the supplementary information of
Zhou et al.21 for more information about pseudo-energies
and residual energies, respectively.

The structural database used to search for matches
was created by compiling a nonredundant subset of the
PDB on a chain-by-chain basis. In particular, the first
chain in each cluster of BLASTclust,60 which clusters
structures in the PDB by chain, was considered. The
sequence identity between each pair of sequences was
limited to at most 30% and only structures solved by X-
ray crystallography with a resolution of at most 2.6 Å
were included in the database, resulting in 23,643 struc-
tures in total. BLASTclust clusters were downloaded on
January 22, 2019.

4.4 | Contact potential

The contact potential was computed for every canonical
amino-acid pair using Equation (1), with DB200K used as
the set of contacts. Since by construction, the energy is
invariant to the order of the amino-acid pairs, with E(a,
b) = E(b, a), the number of observed pairs Nobs(a, b) must
take this into account by summing (a, b) and (b, a) con-
tacts together:

Nobs a,bð Þ¼Nobs b,að Þ¼N a,bð Þþ 1� I a,bð Þð Þ �N b,að Þ:

Here, N(a, b) is the number of contacts in the database
between a and b in the order (a, b), and I(a, b) is 1 if
a = b and 0 otherwise, ensuring homotypic contacts are
not counted twice. To compute the number of expected
pairs Nexp(a, b), the expectation for heterotypic pairs
must be doubled so that, in accordance with the chosen
reference state, in the absence of amino-acid pair prefer-
ences between a and b, Nobs(a, b) = Nexp(a, b), thereby
making E(a, b) = 0:

Nexp a,bð Þ¼Nexp b,að Þ¼Nobs að Þ �Nobs bð Þ �H a,bð Þ=N
H a,bð Þ¼ 2� I a,bð Þ:
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The empirically derived amino acid-dependent
pseudocount ε was structured identically to the one
used for the SCP (see Section 4.3 and Zhou et al.21 for
details), although in the case of the contact potential,
the large set of contacts used to compute the statistics
ensured there was no data sparsity and thus the values
were negligible.

4.5 | AA pair identification

The modified z-score used in Figure 3b is computed by
analogy to a traditional z-score, but with the mean rep-
laced by the median and the standard deviation rep-
laced by the median absolute deviation (MAD). Below,
E is the set of 400 energies in an SCP and Ei is the one
of these energies whose modified z-score is being
computed:

Zmod Eið Þ¼Ei�median Eð Þ
MAD Eið Þ ¼ Ei�median Eð Þ

median Ei�median Eð Þj jð Þ :

ð3Þ

4.6 | Coupling energies

Experimentally determined coupling energies for the a–
a0 and g–e0 interhelical interactions were taken from table
4 and table III from Acharya et al.44 and Krylov et al.,45

respectively. Since experimentally solved structures for
the coiled coils were not available, they were modeled
using CCFold61 based on the sequences specified in the
papers, trimming off N- and C-terminal residues distal to
the interaction. In particular, for the system used for
measuring the a–a0 interactions, the sequences used were
RAAFLEKENTALRTRLAELRKRVGRCRNIVSKYETRYG
(chain A) and RAAFLEKENTALRTELAELEKEVGRC
ENIVSKYETRYG (chain B), with the residue pair (A16,
B16) used to compute the energies (note that these resi-
dues, both labeled as X in the sequence in Acharya
et al.,44 were replaced with leucine when modeled with
CCFold). For the system used for measuring the g–e0
interactions, the sequence used for both chains was
KVFVPDEQKDEKYWTRRKKNNVAAKRSRDARRLKE-
NQITIRAAFLEKENTALRTEVAELRKEVGRCKNIVSK-
YETRYGPL, with the residue pair (A41, B46) used to
compute the energies. The CCFold structural models of
both dimers are available as PDB files (see “cc-a-a.pdb”
and “cc-g-e.pdb” in the Supporting Information for the
structures used for the a–a0 and g–e0 systems,
respectively).

4.7 | Clustering

Each clustering was performed by randomly sampling
without replacement a set S of 50,000 motifs from
DB200K and running 100 rounds of an in-house greedy
clustering method which accepts two parameters, a dis-
tance cutoff d and a sampling count n, and returns one
cluster per round. In any round i, n motifs are ran-
domly sampled without replacement from S. The dis-
tance between each pair of n motifs is computed and
the motif with the largest number of distances of at
most d to the other sampled motifs is chosen as the
cluster representative r. The distance between r and
each motif in S is computed and every motif with a dis-
tance of at most d is included in the returned cluster C.
For round i + 1, S = S \ C (i.e., the elements assigned
to the ith cluster are not available for rounds i + 1, i
+ 2, …). When clustering by structure, the distance met-
ric used was best-fit RMSD and d was chosen to be 0.5.
When clustering by SCE, the distance metric used was
rE = 1 – r, where r is the linear correlation coefficient
between the pair of SCE matrices, and d was chosen to
be 0.3. Note that the chosen values of d, 0.5 when clus-
tering by structure and 0.3 when clustering by energy,
result in the top 100 clusters including a similar num-
ber of motifs, making the comparisons of distributions
in Figure 5d,e fair. To make the sets of random clusters
a similarly fair control, the clusters were chosen to have
the same number of motifs as the structure clusters
(in Figure 5d) and the energy clusters (in Figure 5e)
as well.

4.8 | CASP model evaluation

All publicly available refinement targets from CASP9-14
were considered, with the solved structure and up to
20 models included per target. To sample a set of struc-
tures with a wide range of structure quality, the
20 models included for each target were selected by
sorting the models best-to-worst (by GDT_TS) and alter-
nately adding the next-best and next-worst models
remaining until either 20 were added or no more
models were available. The set of targets and their
included models is listed in the “CASP-models.xlsx” file
hosted on Zenodo.59 Structures and GDT_TS scores
were taken from the CASP website (https://
predictioncenter.org/). TM-scores and RMSDs were
computed using the TM-score program53 with the
default settings. SCEs were computed over every con-
tact with a CD of at least 0.1.
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SUPPLEMENTARY MATERIAL
Supplementary figures can be found in the file “supple-
mentary.docx.” The structures used to compute the
structure-conditioned energies of the two coiled-coil sys-
tems are included as “cc-a-a.pdb” and “cc-g-e.pdb.” Addi-
tional supplementary material has been uploaded to
Zenodo.59 This additional material contains two files:
“CASP-models.xlsx,” which lists the identities and
GDT_TS scores of the CASP models described in
Section 4.8, and “DB200K.tar.gz,” which is an archived
directory containing the energy files comprising the
DB200K database described in Section 4.2.
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