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Abstract

One distinctive feature of Purkinje cells is that they have two types of discharge: in addition to simple spikes they fire
complex spikes in response to input from the climbing fibers. These complex spikes have an initial rapid burst of spikes and
spikelets followed by a sustained depolarization; in some models of cerebellar function this climbing fiber input supervises
learning in Purkinje cells. On the other hand, synaptic plasticity is often thought to rely on the timing of pre-synaptic and
post-synaptic spikes. It is suggested here that the period of depolarization following a complex spike, combined with a
simple spike-timing-dependent plasticity rule, gives a mechanism for the climbing fiber to supervise learning in the Purkinje
cell. This proposal is illustrated using a simple simulation in which it is seen that the climbing fiber succeeds in supervising
the learning.
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Introduction

In addition to weak inputs from parallel fibers and local

inhibitory cells, a Purkinje cell receives a strong input from a single

climbing fibre [1,2]. The Purkinje cell has two distinct types of

spike; simple spikes, in response to the aggregated signal from

many weak inputs from the parallel fibers, and complex spikes, in

response to an input from the climbing fiber. The simple spikes are

similar to the spikes found throughout the nervous system whereas

complex spikes have a distinctive structure with a leading spike

followed by a series of partial spikes called spikelets and a sustained

period of depolarization during which the cell is refractory [2–6].

It has been known for nearly two hundred year that the

cerebellum is important for motor coordination [7,8] and, while

there are non-motor symptoms [9,10], damage to the cerebellum

is most closely associated with motor problems: intentional tremor,

a want of harmony in movement, a loss of kinetic melody, a

distinctive wide stance and an unsteady ataxic gait [11–14].

However, the precise role of the cerebellum in movement is still

debated; it is proposed, for example, that the cerebellum is a

computational engine for deciding precise levels of muscle

activation [17–20], or an organ of prediction, predicting the

sensory consequence of movement [21–24] or that its has a role in

proprioception [25,26]. Of course, these putative functions may

co-exist, or may be co-dependent, but there is no definitive

description of what the function of the cerebellum is and there

certainly no theory of cerebellar function which would predict its

distinctive structure.

There are also many compelling ideas as to what the role of

complex spikes may be. Some ideas relate to signalling: it has been

proposed, for example, that complex spikes may provide a timing

signal for motor control, [15,16]. Other ideas relate to learning; in

the Marr-Albus-Ito model of the cerebellar cortex, climbing fiber

spikes are a supervisory error signal [17–19,27]. Similarly, in

models where the cerebellum is seen as predicting sensory

outcomes, the climbing fiber input communicates significant

deviations from the sensory prediction, a deviation which is

incorporated into future predictions, if it is repeated with sufficient

frequency. As with the overall function of the cerebellum, the

complex spike is likely to subserve multiple functions. However,

there is evidence that acting as learning signal is one these

function: an increase in the frequency of complex spiking is

associated with depression in the synapses connecting the parallel

fibers to the Purkinje cells and a decrease is associated with

potentiation of those synapses [28–30]. This paper proposes a

mechanism for this plasticity. Long term plastic changes to these

synapses are likely to be mediated by rather complex mechanisms.

Here, however, a very simple mechanism is proposed, it is

suggested that the refractory pause caused by a complex spike

plays a crucial role in plasticity.

This proposal is made in the context of spike-timing-dependent

plasticity (STDP). STDP describes models of long term plasticity in

which the changes to synaptic strengths depend on millisecond-

scale differences in spike times. In STDP models changes to

synapse strengths depend on the timing difference between pre-

synaptic and post-synaptic spikes. Frequently for excitatory

synapses, this dependence is anti-symmetric, so, if a pre-synaptic

spike precedes a post-synaptic one the synapse is potentiated, but if

the order is reversed, the synapse is depressed. In other words,

long term depression (LTD) and potentiation (LTP) depend on the

timing of pre and post-synaptic spikes as well as the coincident

activity of the pre and post-synaptic neurons.

A causal structure was implicit in the original formulation of

Hebbian plasticity [31], a remarkable piece of prescience: in the
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nineties a series of papers pointed to experimental evidence for

timing effects in plasticity [32–36] including a definitive demon-

stration of a spike-order dependent plastic changes in vitro in [33],

the observation of asymmetric STDP in vivo in developing

Xenopus in [37] and a clear graph of the time dependence of

plastic changes in vitro in [38]. STDP has also been observed in vivo

in mammal in, for example, [39–43] and, in fact, STDP has now

been observed across animal models, brain regions and cell types.

The asymmetric causal window is the most common STDP rule,

but there is considerable variability, sometimes even within the

same neuron, for a review see [45]; [44] gives an historical

account.

Interest in putative functional roles for STDP preceded

biological evidence for it [46] and a wide range of possible roles

are reviewed in [47]. One particular strength of STDP rules is that

they are capable of doing unsupervized learning of spike-spike

correlations in the input [48–50]. Roughly speaking, if spikes from

a group of pre-synaptic neurons tend to arrive at roughly the same

time, they are more likely to cause a post-synaptic spike, resulting

in potentiation.

It is proposed here that the learning role of complex spikes is to

give a pause during which there is no post-synaptic spike. This will

mean any pre-synaptic spikes will be in an anti-causal relationship

with the initial spike of the complex spike. According to the

standard STDP rule, this will cause long-term depression. In short,

it is proposed that a standard STDP rule governs plasticity in

synapses from the parallel fibres and local inhibitory neurons and

the combination of this rule and the refractory pause caused by the

complex spike results in supervize learning. This is broadly in line

with the models of cerebellar function in which climbing fiber

supervises learning by depressing synapses: this model incorporates

supervized learning in response to an error signal carried by the

climbing fibre. In fact, the proposal described here can be thought

of as a putative mechanism for implementing this aspect of

cerebellar models. Figure 1 gives a schematic of this proposal and

a simple simulation is introduced below to examine the proposal.

Methods

The simple model used here is based directly on the one used in

[50] to demonstrate the learning of spike-spike correlation

structure in STDP. In that paper, two network models of the

sensory system are considered. In each of these there is an input

layer, which will be referred to as the retinal layer, feeding forward to

a processing layer. In one model the processing layer has only one

neuron, in the other the processing layer is itself a recurrent

network. The simpler model, with a single processing layer

neuron, is considered here. The single neuron is referred to as the

V1 neuron. This model is illustrated in Fig. 2A.

There are 1000 retinal layer neurons which are modelled using

Poisson spiking. As in the figure, Fig. 2, these all feed forward to

the single V1 neuron. Each neuron in the retinal layer has a firing

rate; this firing rate is step-wise constant: each neuron has a fixed

constant value for an interval, but this value changes from interval

to interval. The firing rates are chosen so that there are two groups

of retinal layer neurons, indicated by the dotted boxes in the

figure. The firing rates inside each group are correlated with each

other, but not with neurons in the other group. This is described in

more detail below.

The V1 neuron is modelled as an integrate and fire neuron with

no refractory period. Its voltage V satisfies

tm
dV

dt
~V0{Vzg(E{V ) ð1Þ

where tm~20 ms is the membrane time constant, V0~{74 mV

is the resting potential and E~0 mV is the reversal potential for

the synaptic current. If V reaches the threshold value Vt~{54
mV the neuron spikes and V is reset to Vr~{60 mV. g is the

total synaptic conductance calculated by summing over the

individual conductances of the synapses from the retinal neurons

g~
X

i

gi ð2Þ

where each synapse connecting a retinal neuron to the V1 neuron

has a conductance gi which satisfies

ts

dgi

dt
~{gi ð3Þ

with ts~5 ms. Whenever there is a pre-synaptic spike the

conductance increases instantaneously by an amount wi:

gi?gizwi: ð4Þ

This wi can be thought of as the synapse strength which may be

changed by synaptic plasticity.

To implement the STDP rule each synapse has two potentials

[47]. One potential, xi, increases in response to pre-synaptic spikes

and satisfies

tz

dxi

dt
~{xiz

X

f

d(t{t
f
i ) ð5Þ

where i labels the spike time and the pre-synaptic spike times are

labelled t
f
i . The other potential, y, increases in response to post-

synaptic spikes and satisfies

t{

dy

dt
~{yz

X

f

d(t{tn) ð6Þ

where the postsynaptic spike times are tn. The evolution of the

synapse strength is now

dwi

dt
~gzxi(t)

X

n

d(t{tn){g{y(t)
X

f

d(t{tf ) ð7Þ

with hard lower and upper bounds on wi:

0ƒwiƒwmax ð8Þ

where wmax~0:015.

The choice of tz and t{ effects the temporal extent of the

correlation that can be learned; here tz~t{~20 ms. The choice

of wmax sets a synaptic scale. gz~0:005wmax and g{ is set so that

B~
g{t{

gztz
~1:05 ð9Þ

which means g{~0:00525wmax and is larger than gz so if there is

no relationship between pre- and post-synaptic spikes at a synapse

its strength falls.

Thus, the STDP used here is additive with an exponentially

decaying plasticity window and, in a biologically appropriate way,

the individual spike-spike pairs are not tabulated, rather, a running
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account is maintained using potentials. The ability of this version

of the STDP to learn structure in the input data is demonstrated in

[50] by dividing the retinal neurons into two correlated groups.

The retinal neurons are divided into two equal sized groups

with the firing rates for each neuron chosen randomly, but in such

a way as to give correlated firing inside each group. Specifically,

for each group all the neurons are given a firing rate

ri~10(1zfzji) ð10Þ

where both ji and f are chosen from normal distributions with

mean zero and variance one. While the same f is used for all

neurons in the group, each ji is chosen separately. These firing

rates are held fixed for a time interval chosen randomly using an

exponential distribution with rate 50 Hz, this corresponds to an

average interval length of 20 ms, with the intervals determined

separately for each group. At the start of each new interval a new f
and new ji are chosen, giving the rates, ri, for the neurons in the

group.

One of the two groups of neurons wins out over the other group.

Small initial variations give one group a slightly greater tendency

to control the post-synaptic neuron. The synapses in this group get

stronger, reducing the proportion of post-synaptic spikes that are

in a causal relationship with the pre-synaptic spikes from the other

group. This means that the strength of these synapses will

diminish. This process is slow, but with time, one group has

synapses with strengths close to zero, the other, strengths close to

wmax.

This Song-Abbott model exhibits unsupervised learning; the

STDP rule allows the simple network to learn a correlation pattern

in the input, but it does not determine which pattern it learns.

Small initial differences decide which of the two groups wins out.

The idea here is to show how a neuron modelled on the climbing

fiber in the cerebellar cortex can act as a supervisor and determine

which group ends up with stronger synapses.

The goal here is to illustrate the proposed learning mechanism

using the network from [50] described above. To illustrate the

proposal a single extra neuron has been added to the existing

simulation. To make it easy to compare to the original model,

nothing else has been changed, however, the pre-synaptic layer

neurons are now interpreted as corresponding to parallel fibers

and the post-synaptic neuron is interpreted as being a Purkinje

cell. This is shown in Fig. 2B: the input later neurons are now

considered to model granule cells rather than retinal cells, the V1

neuron has been replaced by a Purkinje cell and there is now a

climbing fiber whose firing rate puts it in one of the two groups of

granule cells.

Thus there is now an extra input, the climbing fiber is

considered to belong to one of the two groups of neurons in the

pre-synaptic layer; its rate is set at 10(1zfzj) where f is the same

value chosen for the other neurons in its group and j is chosen

specifically for this neuron from the usual normal distribution. In

this way, this neuron resembles the other pre-synaptic neurons in

its own spiking, however, its effect on the post-synaptic neuron is

Figure 1. Complex spikes and STDP. A gives a sketch of a complex spike with its characteristic spikelets and extended refractory period. B gives
a cartoon introduction to the supervized learning scheme introduced in this paper. PC marks the Purkinje cell spike train, PF1 and PF2 mark two
parallel fiber spike trains and CF the climbing fiber spike train. As indicated by the dashed line, PF2 and CF are correlated and the only climbing fiber
spike in this period occurs during a burst of spikes from PF2. This causes a complex spike in PC, marked by a tall green line. The spikes in the dotted
box are anti-causal to the complex spike and close to it in time. As a consequence, will cause LTD in the corresponding synapses with a greater
amount of depression in the PF2 synapse, since it has more spikes in the dotted box.
doi:10.1371/journal.pone.0099635.g001
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very different: if the climbing fiber neuron fires so does the post-

synaptic neuron and, after it fires, the conductance in the post-

synaptic neuron is fixed at zero for the refractory period of

tr~20ms: This mimics a complex spike. Figure 3 shows an

example of spiking activity in the model.

Results

The climbing fiber succeeds in supervising the learning, in every

one of a 100 trials the group with the climbing fiber is the one that

ends up with very low synapse strengths. This shows that the

supervision completely lifts the ambiguity in which group ends up

with low synaptic strengths and which ends up with high.

Supervised learning is also much faster. In Fig. 4 the average

value of dg=wmax for the two groups is plotted against time. The

Figure 2. A summary of the model. A shows the network used in [50]; 1000 retinal layer neurons feed forward to a V1 neuron. The V1 neuron is
modelled as an integrate and fire neuron without refractory period. The retinal layer neurons are modelled as Poisson processes; they are divided into
two equal groups and the firing rates in each group are correlated with each other, but not with the firing rates for neurons in the other group. B
shows the same model adapted to the cerebellum, what was the retinal layer is now the granule layer so their feed forward projections are now
parallel fibers (PFs), the V1 neuron is now a Purkinje cell (PC). There is an extra neuron whose projection models the climbing fiber (CF); its firing rate
is correlated to the firing rates in one of the two groups of granule cells but the effect of spikes in the climbing fiber are different, it causes the
Purkinje cell to spike and then undergo a refractory period.
doi:10.1371/journal.pone.0099635.g002

Figure 3. An example of spiking activity in the model. This
shows the spiking activity in the Purkinje cell for one simulation trial;
the activity between 10 s and 10.5 s is given, in other words, it shows
the activity before plasticity has had any substantial effect on the
behavior of the cell. The simple spikes are marked with short black
vertical dashes, the complex spikes by tall green vertical dashes; the
horizontal dashes mark the refractory periods which follow each
complex spike. During these period 481 spikes arrive from the input
neurons correlated with the climbing fiber activity and 354 spikes from
the other group.
doi:10.1371/journal.pone.0099635.g003

Figure 4. The progress of supervised learning in the supervised
and unsupervised cases. The value of wi=wmax is averaged across
each group during the simulation; the simulation is repeated for 100
trials and averaged. The curves for the supervised learning are marked
a+ with a{ indicating the group correlated to the climbing fiber. In the
case of the unsupervised learning the group that wins out varies from
trial to trial, but the average is taken across matching groups: b+ mark
the unsupervized learning groups, with bz the average for the group
that ends up with the larger average value. The black lines trace the
average, the grey lines show the size of trial-to-trial variation, marking
+s.
doi:10.1371/journal.pone.0099635.g004
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supervised learning reaches an equilibrium after 2500 seconds but

the unsupervised learning only reaches it after 7500 seconds.

Averaged over 100 trials the group correlated with the climbing

fibre has Swi=wmaxT~0:063+0:006 after 7500 s; the other group

has final value Swi=wmaxT~0:918+0:005 where the plus-or-

minus gives the standard deviation. The same values for

unsupervized learning are Swi=wmaxT~0:097+0:055, averaged

over the group that ends up lower and Swi=wmaxT~0:932+0:043
for the other group. Thus, the averages are similar but the

variation greater; however, the most significant difference is that

supervision increases the speed of learning and determines which

group is which.

The success of supervision is robust, it does not rely on a precise

choice of climbing fiber parameters. The rate of learning does

become slower if the refractory component of the complex spike is

reduced, for example. Fig. 5 shows the effect of reducing the

refractory period to 5 ms, the learning remains reliable but is

slower to reach equilibrium. Increasing the refractory period to

40 ms has no discernible effect on learning.

To investigate robustness of the supervised learning another

simulation was performed with very different parameter values,

values chosen to mimic the behavior of cells in the cerebellum

which are based on the description given in [51–53]. In particular,

in this simulation the network topology is unchanged, but the

firing behavior of the input layer was chosen to make it bursty, in

imitation of the real behavior of granule cells.

The firing rates of the input neurons are determined by a more

complicated Cox process with two mean firing rates, a low rate

l0~1 Hz and a high rate l1~75 Hz: As before, the rate for each

of two groups of neurons is piece-wise constant. At the start of each

interval it is designated a high or low rate interval with equal

probability. The actual rate at each synapse is then set as

ri~lazsaji ð11Þ

where ji is drawn separately from a normal distribution for each

input neuron in the group. If the group is beginning a high rate

interval the high rate values l1 and s1 are used with probability

0:1, otherwise the low rate values l0 and s0 are used; for a low rate

interval the low rate values are always used. The value of sa is

different for low and high rate intervals chosen with s0~0:25 Hz

and s1~20 Hz: Finally, low and high rate intervals have different

average length, with the low rate intervals having an average

length of 75 ms and the high rate intervals an average length of

25 ms. The climbing fibre is given a firing rate using the same

formula as the corresponding group but it has a higher chance of

being set to the high rate: pc~0:25: The dynamics of the synapses

is the same as before. Background noise is also include as a Poisson

process with rate 750 Hz, synapse strength g~0:096 and time

constant ts~5 ms. An example of spiking activity in this model is

given in Fig. 6.

The climbing fibre successfully supervises the learning, this can

be seen in Fig. 7; the group that is correlated with the climbing

fibre has an average synaptic strength Swi=wmaxT~0:066+0:009,
the other group has Swi=wmaxT~0:956+0:005: Learning occurs

quickly, the low group has equilibriated after 1250 s, the other

group after 1000 s. Learning does not occur without supervision; if

there is no climbing fibre input the synapses in both groups

equilibriate at Swi=wmaxT~0:937+0:005 and if one group has a

larger value of Swi=wmaxT at a given time, the probability it

belongs to the same group 50 s later is 0:55: Fig. 8 shows how the

distribution of synapses strengths differ in the supervized and

unsupervized case.

The bursty input is very effective in driving the output; this is

why there is no learning without the climbing fiber input: all the

synapses approach the maximum value. In fact, the synapses that

are suppressed by the climbing fiber input recover if that input is

turned off. This is shown in Fig. 9 where the spike rate is also

plotted, it increases when the climbing fiber input is switched off.

This behavior is reminiscent of that observed in Purkinje cell when

the inferior olive is lesioned [30,54–56].

In these simulations the climbing fiber has a firing rate of about

2.5 Hz; this is comparable with the 1.5 Hz firing rate observed

experimentally in quiescent cat [57] or the observation of a 0.9 Hz

background rate in anaesthetised rat, with a high rate in response

to stimulation [60]. The spiking rate of the Purkinje cell is also

realistic [28,58,59], after learning it has an average firing rate of

62 Hz, this is the average of more and less active periods driven by

the bursty input in the parallel fibers, during the more active

periods it fires at 127 Hz. Changing the climbing fiber firing rate

and the refractory period, tr, that follows complex spikes does

effect learning, Fig. 10A and Fig. 10B, but learning is reasonably

robust. However, learning only occurs for a small window in b, the

ratio between depression and potentiation in the STDP rule,

Figure 5. The effect of shortening the refractory period
following a complex spike. The solid black line graphs the synapse
strengths for the two groups in a simulation where the refractory period
following climbing fiber input is reduced to 5 ms. As before, the result
has been average over 100 trials. Learning is still effective in the sense
that the same group always wins; learning is, however, slower. For
comparison, the same graph for the original refractory period of 20 ms
has been include in dashed grey and the graph for unsupervized
learning in solid grey.
doi:10.1371/journal.pone.0099635.g005

Figure 6. Example spike behavior. This shows the spiking activity in
the Purkinje cell for one simulation trial with the parameters chosen to
reflect the behavior of cells in the cerebellum. The activity between 10 s
and 10.5 s is given, before plasticity has had any substantial effect. The
simple spikes are marked with short black vertical dashes, the complex
spikes by tall green vertical dashes; the horizontal dashes below the
spikes mark the refractory periods which follow each complex spike.
The horizontal lines above the spikes mark the high firing periods for
the two groups, below the dotted line corresponds to the group
correlated with the climbing fiber activity, above to the other group.
doi:10.1371/journal.pone.0099635.g006
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Fig. 10C. This window is made broader if the climbing fiber firing

rate is increased, accounting for the strong depolarization

associated with the complex spike by using higher values of Az

and A{ for complex spiking has a similar effect. In short, the

amount of learning depends on the detail of the simulation and

any precise predictions would require a much more extensive

simulation. However, the increased depression observed with the

higher rate of climbing fibre input is broadly consistent with the

experimental observations noted in [61].

Discussion

The example model provided here is intended to illustrate the

possibility that STDP and complex spiking can result in supervized

learning in a natural way. A complete account of learning in

Purkinje cells will be complicated. The model presented here

ignores most of the complexity of the cerebellar cortex, there are

no inhibitory input cells for example. Furthermore, it ignores the

complexity of the complex spike itself. The complex spike, in vivo,

is generated by a broad dendritic depolarization mediated by the

climbing fiber input. It is associated with calcium spikes in the

dendrites which are activated by the climbing fiber input [3,64]

and these may be responsible for the sustained depolarization that

causes the pause in spiking after the initial spike of a complex spike

[63]. There is a very low density of sodium gates in the dendrites

and they are not thought to support active back-propagation of

axonal spikes, however the spikes do spread passively in the

dendritic tree [5,62,65,66]. The spikelets which follow the initial

spike of a complex spike are, in contrast, axonally generated and,

like the simple spikes, are initiated in the axonal hillock [63].

These details have been ignored here but would need to be

incorporated in further development of the model. For example,

the passive back-propagation of axonal spiking is likely to filter the

post-synaptic spike timing. It is also likely that calcium dynamics

plays a role in modulating plasticity. Finally, the treatment here

ignores all but the first spike in the complex spike; it is easy to

check that naı̈vely including the spikelets as supplementary post-

synaptic spikes increases the strength of the supervisory effect since

it increases the number of post-synaptic spikes in an anti-causal

relationship with any pre-synaptic spikes which arrive during the

subsequent refractory period.

The model uses a particularly simple description of STDP,

ignoring the considerable progress that has been made in

exploring different STDP rules. For example [67] presents a

STDP rule which relates the plastic changes not to the post-

synaptic spiking behavior but to the local post-synaptic membrane

potential. This rule accounts for frequency-dependent [33,68,69]

and dendritic-location dependent [70–73] effects which are

observed experimentally but which are not accounted for by the

STDP rule used here, despite the likely importance of dendritic-

location dependent effects in the case of Purkinje cells.

It might be expected that the strong depolarization of the

Purkinje cell after a complex spike would increase the size of the

effect seen here. However, although STDP has been observed in

Purkinje-like cells [34], little is known about what form STDP in

Purkinje cells might take. Certainly, most STDP rules share an

association between causal spikes and potentiation and acausal

spikes and depression; the advantage of the simple rule used here is

that it abstracts this common feature. What the model described

here does illustrate is a potential mechanism for supervised

learning with complex spikes and STDP; it remains to be seen

whether this mechanism is part of learning in Purkinje cells. In

fact, STDP has been previously proposed for learning in Purkinje

cells: in [80] the synaptic weight distributions associated with a

typical, unsupervised, STDP rule is compared with the synapse

strengths for Purkinje cells and found to be in good agreement; this

is certainly a criterion that could be usefully applied to more

Figure 7. The progress of supervised learning for the granule-
cell-like simulation. As before, the value of wi=wmax is averaged
across each group during the simulation and this value is averaged over
100 trials. The black lines trace the average, the grey lines show the size
of trial-to-trial variation, marking +s:
doi:10.1371/journal.pone.0099635.g007

Figure 8. Synapse strength with and without supervision. The distribution of synapse strengths are plotted at the end of a t~1500 s
simulation; in A there is climbing fiber input, in B there is none. In each case the first 500 synapses belong to one group and the remainder to the
other.
doi:10.1371/journal.pone.0099635.g008
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realistic STDP modelled developed from the supervised learning

mechanism proposed here.

The cerebellum appears to have a role in classical conditioning

[74]. This appears to support a motor learning view of cerebellar

function [75] and the issue of timing, the lengthy delay between

the conditioned and unconditioned stimuli, is certainly a challenge

to other views of cerebellar function and for the sort of time

windows normally associated with STDP. The Golgi cells are

believed to act to create delays in cerebellar dynamics [76] but

there is experimental evidence for a long plasticity windows

directly at the parallel fiber synapses, with LTD occurring when

parallel fiber input proceeds climbing fiber input by 100 ms or

more [77]. The temporal ordering involved in this is the opposite

to the one required for the supervized learning described here. In

fact, the synaptic dynamics described in [77] are very complicated,

the LTD that occurs when parallel fiber input proceeds climbing

fiber input is associated with sparse parallel fiber activity; other

experiments find LTD when climbing fiber activity narrowly

proceeds parallel fiber activity [61,78].

The mechanism also raises a question about the dynamics of

other neurons where inhibitory input or complicated spiking

dynamics which cause variable periods of quiescence: is it possible

that the complex spike with its extended pause in spiking may be a

particularly direct example of a more widespread phenomenon

where learning is supervised through the modulation of pauses in

spiking? In other words, is it possible that the simple STDP rule is

a plasticity Swiss army knife, producing Hebbian and anti-

Hebbian learning in different neuronal systems through the

modulations of pauses? The answer seems to be no. There are

brain areas that resemble the cerebellum, such as the dorsal

cochlear nucleus in mammals and the electrosensory lateral line

lobe of mormyrid electric fish: they have an afferent structure that

is similar to the parallel fibers and they are believed to calculate a

‘negative images’, a predicted sensory background which is

removed from sensory input as part of processing [79]. However,

[34] indicates that the electrosensory lobe does not exploit the

mechanism described here and, in fact, has a reversed STDP rule

with causal spike pairs undergoing LTD. Thus, STDP appears to

be variable and complicated mechanism and it remains to be seen

whether the simple observation described here is useful in

analysing its operation.

Figure 9. Switching off the climbing fiber. In this simulation the climbing fiber input is switched off after 1000 s, the time marked with a vertical
line. A plots the synapse strength, the group that had been correlated with the climbing fiber input increases steadily towards the other group. The
spike rate also increases, this is shown in B. The results are averaged over 25 trials.
doi:10.1371/journal.pone.0099635.g009

Figure 10. Varying the simulation parameters. In each of these graphs the difference in Swi=wmaxT between the two groups after 1500 s is
plotted. Thus, if dSwi=wmaxT is near one the gap between the two groups is nearly as large as it could be, if it is near zero very little separates the two
groups. In A the refractory period following a complex spike is varied between tr~10 ms and tr~80 ms. For tr~10ms learning is reduced to
dSwi=wmaxT~0:78; in fact the group correlated with the complex spike has Swi=wmaxT~0:18 and the other group has Swi=wmaxT~0:96: For all
larger values of tr the gap dSwi=wmaxT is larger than 0:87: In B, pc, the probability that the climbing fiber is set to a high firing rate during the high
firing period is varied; this does have a considerable effect on learning, at 0:05 dSwi=wmaxT~0:18 with Swi=wmaxT~0:18 values of 0:74 and 0:92: The
overall firing rate of the climbing fiber changes with pc, for pc~0:05 is it 1:7 Hz, this rises to 3.3 Hz for pc~0:35: Finally, in C the value of b, the ratio
between the LTD and LTP in the STDP rule is varied. The black line plots dSwi=wmaxT with pc~0:25, the value used elsewhere, for the grey line
pc~0:5: If b is low Swi=wmaxT is near one for both groups, if b is high, it is near zero for both; learning occurs in a window between the two. In all
three plots there are ten trials for each value. Supervision was successful for all but one trial for b~0:85 and pc~0:25; that is, in all but one trial the
group correlated with the climbing fiber had a lower value of Swi=wmaxT at the end of the supervision.
doi:10.1371/journal.pone.0099635.g010
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52. Chadderton P, Margrie TW, Häusser M (2004) Integration of quanta in

cerebellar granule cells during sensory processing. Nature 428: 856–860.

53. Rancz EA, Ishikawa T, Duguid I, Chadderton P, Mahon S, et al. (2007) High-

fidelity transmission of sensory information by single cerebellar mossy fibre
boutons. Nature 450: 1245–1248.

54. Colin F, Manil J, Desclin JC (1980) The olivocerebellar system. I. Delayed and

slow inhibitory effects: an overlooked salient feature of cerebellar climbing fibers.
Brain Research 187: 3–27.

55. Montarolo P, Palestini M, Strata P (1982) The inhibitory effect of the

olivocerebellar input on the cerebellar Purkinje cells in the rat. The Journal of

Physiology 332: 187–202.

56. Benedetti F, Montarolo P, Rabacchi S (1984) Inferior olive lesion induces long-
lasting functional modification in the Purkinje cells. Experimental Brain

Research 55: 368–371.

57. Armstrong DM, Rawson JA (1979) Activity patterns of cerebellar cortical
neurones and climbing fibre afferents in the awake cat. The Journal of

Physiology 289: 425–448.

58. Bell CC, Grimm RJ (1969) Discharge properties of Purkinje cells recorded on

single and double microelectrodes. Journal of Neurophysiology 32: 1044–1055.

59. Gilbert PFC, Thach WT (1977) Purkinje cell activity during motor learning.
Brain Research 128: 309–328.

60. Brown IE, Bower JM (2001) Congruence of mossy fiber and climbing fiber

tactile projections in the lateral hemispheres of the rat cerebellum. Journal of
Comparative Neurology 429: 59–70.

61. Ekerot CF, Kano M (1989) Stimulation parameters influencing climbing fibre

induced long-term depression of parallel fibre synapses. Neuroscience Research

6: 264–268.
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