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TP53 is the most frequently mutated tumor suppressor gene in human cancer. The
majority of mutations of p53 are missense mutations, leading to the expression of the full
length p53 mutant proteins. Mutant p53 (Mutp53) proteins not only lose wild-type p53-
dependent tumor suppressive functions, but also frequently acquire oncogenic gain-of-
functions (GOF) that promote tumorigenesis. In this review, we summarize the recent
advances in our understanding of the oncogenic GOF of mutp53 and the potential
therapies targeting mutp53 in human cancers. In particular, we discuss the promising
drugs that are currently under clinical trials as well as the emerging therapeutic strategies,
including CRISPR/Cas9 based genome edition of mutant TP53 allele, small peptide
mediated restoration of wild-type p53 function, and immunotherapies that directly
eliminate mutp53 expressing tumor cells.
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INTRODUCTION

Tumor suppressor p53 is the principal cellular responder to various stress signals such as oncogene
activation, DNA damage, hypoxia, reactive oxygen species (ROS), etc. Upon activation, p53 induces
numerous cellular responses including cell cycle arrest to restore genetic integrity, or apoptosis,
senescence, or ferroptosis to eliminate unrecoverable cells. Therefore, p53 is considered the
“Guardian of the genome” to prevent accumulation of oncogenic mutations that lead to
malignant tumor (1, 2).

Mutations in TP53 are found in over half of human cancers, thus is known as the most
commonly mutated gene in human cancers (3, 4). Different from many other tumor suppressor
genes which generally undergo deletion or truncation in cancer cells, mutations in TP53 allele are
predominantly missense mutations which give rise to a single amino acid substitution in the full-
length mutant protein (5). p53 protein is composed of three functional domains including a
transactivation and proline rich domain, a central DNA-binding domain (DBD), and an
oligomerization domain (6). While mutations can occur spontaneously throughout the p53 gene,
the majority of p53 missense mutations are located in the central DBD region of the p53 gene, which
binds to its consensus DNA binding sites to regulate its target gene expression. These missense
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mutations are divided into two categories: DNA contact
mutations such as R248Q and R273H that directly occur at
the amino acids mediating p53-DNA interaction, and
conformational mutations that indirectly disrupt p53-DNA
interaction by inducing local (R249S and G245S) or global
(R175H and R282W) conformational changes due to the
reduced thermostability caused by these mutations (5). Nearly
one third of all p53 mutations occur at these six “hotspot”
mutational residues (3).

Mutations in the p53 gene can appear at either the initial-
stage or the late-stage during tumorigenesis depending on
the origin of cancer types, and strongly facilitate the onset
or progression of cancers (7). Functionally, p53 mutants
(mutp53) not only lead to the loss of wild-type p53 functions,
but can also result in a dominant negative effect by forming
hetero-tetramers with the remaining wild-type p53 expressed
from the other wild-type allele. p53 mutations are usually
followed by the loss of heterozygosity (LOH) at the remaining
wild-type TP53 allele, leading to the complete loss of wild-type
p53 in late-stage tumors, and further confer these cancer cells a
selective advantage during cancer development (8, 9). Most p53
missense mutants acquire oncogenic gain-of-function (GOF)
activities. For example, conformational changes of mutp53
enable them to interact with many transcription factors such
as p63, p73, NF-Y, Sp1, ETS1/2, NF-kB, ATM, and SMADs,
altering the transcription, cell cycle, apoptosis and metabolism of
cancer cells. This changes lead to increased genetic instability,
cellular proliferation, metastasis and chemo-/radio-resistance
(10). In addition, the new transcriptional targets acquired by
mutp53 is another well established GOF mechanism for mutp53
to promote cancer progression (5). Therefore, to compete for
survival in a nutrient-deprived and hypoxic environment, the
human tumor cells are under stringent selection for the loss of
wild-type p53 function and acquirement of p53 mutants that
possess GOF to promote the survival of tumor cells.

In this review, we focus on the gain-of-functions of mutp53 in
malignant tumor progression and the current strategies targeting
mutp53 for personalized therapeutic treatments, aiming to
provide insights into targeted treatment of human cancers with
p53 mutation.
MUTANT p53 FACILITATES CANCER
PROGRESSION

Induction of Genetic Instability
As the “Guardian of the genome”, the fundamental goal of WT
p53 is to maintain genetic stability by preventing the passage of
genetic mutations to daughter cells (1). While p53 null cells still
retain certain levels of checkpoint and DNA repair capacities,
cells harboring p53 mutant proteins showed a dramatic higher
level of genomic instability such as interchromosomal
translocations and aneuploidy, indicating the oncogenic GOF
activity of p53 mutants (8, 11, 12). These variations largely
contribute to genetic diversity that expedites malignant tumor
development. Mechanistically, the common p53 mutants can
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disrupt the earliest stage of DNA double-stranded break (DSB)
damage responses by interacting with the nuclease Mre11 to
suppress the recruitment of Mre11/Rad50/NBS1 (MRN)
complex to the site of DNA DSB damage, leading to
inactivation of ATM, the key DNA DSB damage sensor, and
the resultant G2/M checkpoint impairment (8). Mutp53 can also
induce genomic abnormality by inactivating DNA replication
process. For example, some mutp53 proteins activate cyclin A to
promote the formation of DNA replication origin and the intra-S
phase checkpoint kinase CHK1 to stabilize the replication forks,
facilitating the duplication of aberrant genomic DNAs (13).

Accelerating Proliferation
Accumulating evidence has revealed that mutp53 promotes the
limitless replicative potential and insensitivity to anti-growth
signals during the malignant transformation of a normal cell,
which are two of the key “hallmarks of cancer” (14, 15). Mutp53
was reported to physically interact with the major cell cycle
regulator nuclear transcription factor Y (NF-Y), and recruits
either acetyltransferase p300 or the main effector of Hippo
pathway, YAP, to activate NF-Y target genes including cyclin
A, cyclin B, cdk1 and cdc25C (16, 17). Mutant p53 and YAP have
also been found to form another trimeric transcriptional
complex with TEAD to induce the expression of circular RNA
circPVT1, which activates proliferative genes such as aurka and
mki67 (18). Mutp53 also regulates the expression of MicroRNA
miR-27a, which promotes a sustained EGF-induced ERK1/2
activation, thereby facilitating cellular proliferation and
tumorigenesis (19). In addition, p53 mutants also target key
chromatin regulators including methyltransferases MLL1 and
MLL2 and acetyltransferase MOZ, leading to genome-wide
increases of active histone modifications H3K4me3 and
H3K9ac to enhance proliferation (20). In addition, the TP53
R249S mutant, frequently detected in HBV positive human
hepatocellular carcinoma (HCC), has a unique GOF in
regulating proliferation and survival of HCC cells by
promoting c-Myc-dependent rDNA transcription essential for
ribosomal biogenesis (21).

Modulating Metabolism
Cellular metabolism of glucose, lipid, and nucleotide are the
fundamental basis for cell survival, which undergo dramatic
changes during malignant transformation. Emerging evidence
shows that mutp53 proteins contribute to various aspects of
these processes (22, 23). Rapidly dividing tumor cells rely mainly
on aerobic glycolysis to meet their high energy and biosynthetic
demand, a phenomenon known as Warburg effect (24). Mutp53
has been shown to activate the small GTPase RhoA and its
downstream effector ROCK, to promote GLUT1 translocation to
the plasma membrane and thus enhance glucose uptake and
glycolytic rate (25). Under conditions of energy stress, mutp53
preferentially binds to the AMPKa subunit and directly inhibits
the metabolic functions of AMPK signaling, leading to increased
aerobic glycolysis as well as lipid production (26). Notably, the
roles of mutp53 in promoting lipid metabolism are partly
mediated by the mevalonate pathway, which is responsible for
de novo cholesterol synthesis and generation of many important
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nonsterol isoprenoid derivatives. Mutp53 is recruited to the
promoters of several mevalonate pathway genes to induce their
expression through its interaction with the master transcription
factor SREBP1/SREBP2 (27). In addition, the mevalonate
pathway-DNAJA1 axis as well as the STAT3-mevalonate
pathway axis are both found to prevent mutp53 from being
degraded by CHIP ubiquitin ligase, forming a positive-feedback
loop to ensure rapid lipid synthesis (28, 29). Mutp53 proteins
were also reported to promote nucleotide synthesis through its
interaction with ETS2 to activate numerous nucleotide
metabolism genes (RRM2, dCK, TK1, GMPS, IMPDH1,
PAICS) involved in both the de novo and the salvage pathways
required for nucleotide synthesis, leading to elevated nucleotide
pools and the subsequent enhancement of GTP dependent
protein (GTPase) activity (30, 31). Collectively, these findings
highlighted the metabolic reprogramming roles of mutp53 in
cancer cells.

Promoting Metastasis
Metastasis is another “hallmark of cancer” and contributes to over
90% of cancer-associated deaths (15, 32). Epithelial-to-
mesenchymal transition (EMT) is the first and the most essential
step of metastasis that allows the cells to change their morphology to
gain enhanced migration and invasion capacity. Mutp53 were
reported to promote the expression of several key EMT-related
transcription factors including ZEB1, SLUG, and TWIST1 through
transcriptional, post-translational and epigenetic modifications,
possibly in a cell type dependent manner (33–35). In endometrial
cancer tissues, mutp53 represses the expression ofmiR-130b, which
negatively regulates ZEB1 (33). In non-small-cell lung cancers
(NSCLCs), mutp53 inactivates MDM2 mediated SLUG
degradation and result in high SLUG and low E-cadherin
expression (34). While in prostate cells, mutp53 induces the
reduction of H3K27me3 repression mark on TWIST1 promoter
(35). Besides, several lines of evidence suggest that p63 is an effector
of mutant p53 mediated metastasis. Mutp53 forms a ternary
complex with p63 and phosphorylated Smad2 in the presence of
TGF-b signaling, which repressed the activation of p63 downstream
metastasis suppressor genes Cyclin G2 and Sharp-1 (36). Mutp53
also inhibits p63 mediated inactivation of Rab-coupling protein
(RCP), resulting in enhanceda5b1-integrin and EGFR trafficking to
the plasma membrane and the constitutive activation of EGFR/
integrin signaling and its downstream pro-metastatic Akt signaling
(37, 38). Besides, the activation of RCP by mutp53 also enhances
HSP90a secretion, which increases cell motility through interaction
with extracellular matrix (ECM) (39). Metabolism reprogramming
is also involved in mutp53 induced metastasis. Using a p53R172H/+

mice model (R175H in human), Xiong. et al. found that the
interaction between mutp53 and ETS2 also induces Pla2g16
expression, which encodes a phospholipase that catalyzes
phosphatidic acid into lysophosphatidic acid and free fatty acid,
and both of which have been implicated in promoting migration
and metastasis (40–42). Besides, the common polymorphism
Pro72Arg at mutp53 enhances migration and metastasis of
tumors through its ability to bind and regulate PGC-1a target
genes, which is a key regulator in mitochondrial biogenesis and
oxidative phosphorylation (43, 44).
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Inducing Chemo- and Radio-Resistance
Chemotherapy and radiotherapy are currently the most widely
used therapies for metastatic cancers. However, tumor cells
always develop ways to evolve radio- and chemo-resistance
capacity to survive these therapies, and mutation in the p53
gene is one of the crucial attempts (45). In this context, mutp53
proteins regulate the expression of several chemo- and radio-
resistant genes. MDR1 (multi-drug resistance 1) encodes an
energy-dependent efflux pump that mediates the resistance of
tumor cells to various hydrophobic cytotoxic drugs (46). Mutp53
proteins strongly upregulate MDR1 expression through ETS1
mediated promoter binding, while the restoration of WT p53
could abolish MDR1 activity by reducing its phosphorylation
(47–49). Mutp53 activates the expression of NRF2, which is
known to confer both chemo- and radio-resistance (50),
including chemo-resistance of cisplatin, apigenin, and radio-
resistance of tumor cells (51–53). In triple-negative breast
cancer cells, the cooperation between mutp53 and NRF2 was
reported to activate proteasome gene transcription, resulting in
resistance to proteasome inhibitor carfilzomib (54). Therefore,
targeting NRF2 pathway has the potential to increase the
curcumin compound induced cell death of mutp53-carrying
cancer cells (55). In addition, in cells with WT p53, DNA
damage caused by radiotherapy and most chemotherapeutic
agents would lead to p53 accumulation and apoptosis.
Whereas certain mutp53 has been reported to inhibit caspase-9
and p63/73-dependent induction of Bax and Noxa, contributing
to the anti-apoptotic effects of mutp53 and the insensitivity of
mutp53 harboring cells to radio- and chemo-therapies (56–58).

Emerging evidence suggests that the radio- and chemo-
resistance capacity are primarily achieved by cancer stem cells
(CSC) (59–61). Mutp53 proteins play vital roles in CSC
formation and maintenance (62). High prevalence of p53
mutations is reported in poorly differentiated carcinomas and
contributes to a stem cell-like transcriptome (63, 64). WT p53
has been reported to repress the expression of several CSC
markers including CD44, c-KIT, NANOG and OCT4, while
mutations in p53 would lead to loss of repression on these
CSC markers, subsequent CSC transformation and the resultant
enhanced radio- and chemo-resistance (65).
Facilitating a Pro-Oncogenic Tumor
Microenvironment
It is now accepted that tumor progression and response
to therapeutic treatments are not simply dependent on cell
autonomous characteristics. The tumor microenvironment
consisting mainly of ECM, stromal cells, immune cells, and blood
vessels plays a key role in the tumorigenesis and chemoresistance
capacity (15). Mutp53 can modulate tumor microenvironment by
inducing the secretion of pro-inflammatory cytokines and
angiogenesis (66, 67). The p53R248W and D281G mutants can
activate the activity of matrix metalloproteinases (MMPs) by
repressing the transcription of TIMP3 (68). Consistently,
colorectal carcinomas expressing p53R273H,V216M show significant
upregulation of MMP9 expression (69). The increased MMP
activity results in the degradation of ECM surrounding the tumor
November 2020 | Volume 10 | Article 595187
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cells, leading to enhanced metastasis and invasiveness (68, 70).
Mutp53 has also been reported to form complex with HIF1 to
upregulate ECM components Viia1 collagen and laminin-g2 to
promote tumor progression (71). In addition, the crosstalk between
Mutp53 and themaster inflammatory regulator NF-kB pathway has
been largely implicated in modulating tumor development and
migration (69, 72–74), through the upregulation of a cancer-related
gene signature including CXC-chemokines, interleukins (ILs) and
ECM-related genes (73–75). Finally, mutp53 was reported to
positively regulate the expression of pro-angiogenic factors
including IL-8, GRO-a, and VEGF to promote tumor neo-
angiogenesis, which is another “hallmark of cancer” (15, 76, 77).

Therapeutic Strategies for Cancer
Harboring p53 Mutations
The reliance of tumors on mutp53 makes it an ideal target for
cancer therapy. Therapeutic strategies targeting mutp53 can be
divided into three categories, restoring the WT conformation
and transcriptional activity of mutp53, targeting mutp53 for
degradation, and inducing synthetic lethality (78, 79). To achieve
these therapeutic goals, small molecular compounds, synthetic
small peptides, CRISPR/Cas9 mediated genome editing, small
interference RNAs (RNAi) as well as immunotherapies have
been explored (Figure 1).

Small-Molecule-Compounds-Based
Therapy Targeting Mutp53
Pharmaceutical targeting of mutp53 is more challenging than
targeting oncogenic kinases, which can be easily inactivated by
small molecule inhibitors (80). While intensively pursued, no
Frontiers in Oncology | www.frontiersin.org 4
mutp53 targeting regiment has yet been clinically approved.
Several promising small molecule drugs under clinical trials are
reviewed below (ClinicalTrials.gov). Some other drugs that have
achieved promising results in preclinical studies have been
extensively reviewed elsewhere (79, 80).

APR-246
APR-246 is a methylated analogue of PRIMA-1, which was
identified as a low-molecular-weight compound that restores
wildtype function of mutp53 (81, 82). While methylene
quinuclidinone (MQ) is the common bioactive decomposition
product of both APR-246 and PRIMA-1, the bioactivity of APR-
246 is much higher, possibly due to its higher lipophilicity and
cell permeability (80, 82). The covalent binding of MQ to p53
core domain, primarily via cysteines 124 and 277, enhances the
thermostability of mutp53 and contributes to the refolding of
mutp53 to WT conformation, thus enables the re-induction
of p53 target genes such as CDKN1A (83–85). Numerous
preclinical studies using rodent models have revealed the
tumor suppressive effect of APR-246 on mutp53-expressing
tumor cells of various origins (86–90). Furthermore, the phase
I study has verified that APR-246 is safe at predicted therapeutic
plasma levels with a favorable pharmacokinetic profile, and most
importantly, can induce considerable p53-dependent biological
effects in cancer patients with p53 mutations (91, 92). Therefore,
APR-246 is considered as a promising first-in-class mutp53-
targeting drug. Now, several phase II clinical trials of APR-246
are ongoing, including a systemic carboplatin combination
chemotherapy with APR-246 in patients with platinum
sensitive recurrent high grade serous ovarian cancer with
FIGURE 1 | Therapeutic strategies to target p53 mutants. On the DNA level, mutations in TP53 allele could be reversed back to wild-type ones using CRISPR/Cas9
mediated genome editing. One the mRNA levels, mutp53 mRNA could be silenced by RNAi. On the protein level, mutp53 could be reactivated or trageted for
degradation by both small molecule compounds and small peptides. The inability of mutp53 to activate its downstream target genes provides an opportunity for
synthetic lethality based therapy. The mutant peptides produced by degradation of mutp53 makes immunotherapies possible.
November 2020 | Volume 10 | Article 595187
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mutated p53 (NCT02098343), a combination of APR-246 with
azacytidine in p53 mutant myeloid neoplasms (NCT03072043)
and a combination of APR-246 with 5-FU and cisplatin in
oesophageal cancer (NCT02999893).

COTI-2
COTI-2 is a novel thiosemicarbazone derivative that is active
against multiple human cancers from different origins (93). The
anti-tumor activity of COTI-2 is at least partially achieved by
promoting the refolding and therefore the DNA binding capacity
of mutp53, leading to the reactivation of wildtype p53 target genes
including CDKN1A, PUMA, and NOXA. Besides, MAPK and
mTOR pathways are also involved in COTI-2 induced apoptosis
or senescence (80, 94, 95). COTI-2 is effective at nanomolar
concentrations in vitro, and is proved to be safe and well-
tolerated in xenograft mouse models (93). Following studies
revealed that COTI-2 was synergistic in combinations with
cytotoxic chemotherapeutics without exerting significant
toxicities in vivo. In addition, tumor cells resistant to
chemotherapeutic agents exhibit no or little cross-resistance to
COTI-2, highlighted the potential of COTI-2 in salvage treatment
after current first- and second-line treatment failures (96). Based
on these observations, a phase I trial of COTI-2 as monotherapy or
combination therapy in gynecological tumors and head and neck
squamous cell carcinoma (HNSCC) with confirmed p53
mutations is currently being performed (NCT02433626).

Ganetespib
In contrast to the relative low levels of wildtype p53 in unstressed
physiological conditions, mutp53 is in most cases highly
expressed in tumor cell, which is achieved by its cooperation
with HSP90 chaperone machinery that inhibit the activity of its
primary E3 ubiquitin ligase MDM2 and CHIP (97, 98). This
hyperstabilization of mutp53 largely contributes to its dominant-
negative and oncogenic GOF activities, and is the foundation of
anti-tumor therapies aimed to induce mutp53 degradation.
Ganetespib is a highly efficient HSP90 inhibitor (99), which is
50-fold more potent than the first-generation HSP90 inhibitor
17AAG in degrading mutp53 and killing mutp53 cancer cells
(100). In vivo studies suggested that ganetespib extended the
survival of tumor-bearing R172H (corresponding to R175H in
human) and R248Q Trp53 knock-in mice, while have no effect
on their corresponding Trp53-/- littermates (100). Meanwhile, in
Trp53R248Q/- mice bearing T-lymphomas, ganetespib synergizes
with cyclophosphamide to suppress tumor growth and extend
survival (101). However, it is worth noticing that mutp53 is not
the only target of HSP90, instead, HSP90 regulates the activation
and stability of a diverse array of oncogenic proteins including
HER2, mutant EGFR, and mutant BRAF (99). Even though
phase II clinical trials in metastatic breast cancer, malignant
peripheral nerve sheath tumors and advanced non-small cell
lung cancer all reported that the effect of ganetespib alone or in
combination with other anti-tumor drugs did not meet the
criteria for overall response rate, subgroups of these patients
showed positive responses, which might be attributed to their
specific genetic background (102–104). Therefore, more
extensive clinical trials with ganetespib are needed.
Frontiers in Oncology | www.frontiersin.org 5
SAHA
Histone deacetylase (HDAC) inhibitors are another group of
compounds that are widely reported to reduce the levels of
mutp53. SAHA (suberoylanilide hydroxamic acid) is a FDA-
approved HDAC inhibitor for the treatment of T cell lymphomas
(105). Recent studies found that SAHA exhibits preferential
cytotoxicity for mutp53, rather than WT and null p53 cancer cells
in certain kinds of human cancers, and also strongly sensitizes
mutp53 harboring cancer cells to chemotherapies (100, 106, 107).
Mechanistically, SAHA could destabilize mutp53 through inhibition
of the HDAC6-HSP90 chaperone axis, and at the same time, inhibit
the transcription of mutp53 through HDAC8 (106–109).

MK-1775
p53 is mainly responsible for the G1/S cell cycle arrest, while in
mutp53 harboring cancer cells, the abrogation of this checkpoint
results in direct S phase entry even in the presence of DNA damage,
making the cells more dependent on G2/M checkpoint to maintain
genomic stability (110). In this context, further inactivation of G2/S
checkpoint will lead to unscheduled mitotic entry of cells with
extensive DNA damage, resulting in mitotic catastrophe (111, 112).
This synthetic lethality provides an ideal opportunity for therapeutic
targeting of mutp53 harboring cancer cells. Wee-1 is a tyrosine
kinase that involved in DNA damage induced G2/M cell cycle arrest
by inhibiting CDK1 activity (113). Its specific inhibitor MK-1775,
therefore, was reported to show amplified anti-tumor activity
specifically in p53 mutant cancer cells. MK-1775 significantly
elevated the efficacy of cisplatin, vorinostat (HADC inhibitor), or
alisertib (aurora kinase A inhibitor) in HNSCC cells expressing
high-riskmutp53 both in vitro and in vivo, while tumor cells bearing
wildtype p53 displayed minimal response to MK-1775 (114–117).
Consistently, MK-1775 was also reported to sensitize p53 mutant
colon cancer cells to the DNA damage associated drug irinotecan
(118). Currently, a randomized phase II study evaluating MK-1775
in combination with paclitaxel and carboplatin in adult
patients with platinum sensitive p53 mutant ovarian cancer is
ongoing (NCT01357161).

Genetic Approach to Target Mutp53
CRISPR/Cas9 and RNAi
CRISPR/Cas9-based genome editing appears to be a straight-
forward therapeutic strategies for tumor cells expressing p53
mutants. By directly replacing the TP53 414delC frameshift
mutation locus with a functional copy, Batir et al. successfully
restored the wild-type TP53 genotype and phenotype in prostate
cancer cells (119). CRISPR/Cas9 has also also employed in a p53
genetic sensor system which specifically and efficiently killed p53-
deficient cancer cells (120). However, the high risk of genome
instabiliy induced by CRISPR/Cas9 should be rigorously considered
(121, 122). Small interference RNAs could specifically eliminate
mutant p53 mRNA without affecting the wild-type one, However,
the specificity and in vivo efficacy of such RNAi remains to
be elucidated.

Small Peptides
The goal of small peptide based therapies is to restore wild-type
p53 function, either by restabilization of mutp53 or inhibition of
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the aggregation of mutp53. The denaturation of mutp53 at
physiological temperature largely contributes to the inabilily of
mutp53 to activate downstream tumor suppressive genes.
Therefore, several mutp53 reactivating peptides, such as CDB3,
peptide-46 and pCAPs, have been identified to restore wildtype
p53 activities to cancer cells (123, 124). On the other hand, a
large portion of p53 mutants have been reported to form protein
aggregates, which contributes to the GOF properties that
promote tumor growth. In this context, ReACp53, a cell-
penetrating peptide inhibitor of mutp53’s aggregation, which
resembles the transactivation inhibitory domain of p63, showed
promising anti-cancer effect in both ovarain and prostate cancer
models in vivo (125–127).

Immunotherapy
While the accumulated mutp53 escapes from MDM2-mediated
degradation, it can still be degraded in a MDM2-independent
and proteasome-dependent pathway, generating peptides that
are eventually presentated on tumor cell surface by class I
molecules of the major histocompatibility comples (MHC).
Therefore, mutp53 and the p53-derived mutant peptide-MHCs
could serve as potental therapeutic targets for immunotherapies
(128, 129). Even though peptides containing mutp53 sequences
are rare due to MHC-binding restrictions, an engineered T cell
receptor-like (TCRL) antibody P1C1TM, which is specific for a
wild-type p53125-134 peptide presented by the HLA-A24:02
(HLA-24) MHC allele, was reported to be able to discriminate
between mutant and wild-type p53-expressing HLA-A24+ cells
based on antigen expression levels. This elegant interaction
between intracellular mutp53 and targetable cell surface
peptide-MHC complex enables efficient antibody dependent
cellular cytotoxicity of mutp53 expressing cells both in vitro
and in vivo (129). In the future, it is worthwhile to identify new
cell surface peptides specifically derived from mutp53.
CONCLUSION

The addiction of cancer cells to mutp53 makes it an attractive
target for cancer therapy. By elucidating the mechanisms of GOFs
Frontiers in Oncology | www.frontiersin.org 6
of mutp53, numerous strategies have been explored to specifically
target mutp53. One highly pursued strategy is to develop small
molecule compound and small peptide to restore the conformation
and transcriptional activity of wild-type p53 to the mutp53. This
strategy is challenging due to the relative undruggable nature of
mutp53 with various thermostability or conformational structures.
Therefore, high-resolution structural and functional analysis of the
full length WT and mutp53 will be required to design more
effective small molecule compounds and small peptides to target
mutp53. However, it is noteworthy that our group recently found
that hepatocellular carcinomas (HCCs) often retain the wild-type
p53 to suppress oxidative phosphorylation and increase glycolysis,
thereby promoting HCC progression (130). In this context,
strategies aiming to restore WT p53 activities of mutp53 might
instead promote tumorigenesis under certain circumstances,
therefore requires rigorous validation before clinical trials.
Synthetic lethality, gene editing, siRNA silencing, and
immunotherapy are promising strategies to target mutp53 to
treat mutp53-expressing tumors, however, these approaches all
have intrinsic problems that must be optimized before clinical
applications. In this context, future effort should be devoted to
improve the specificity, efficacy, and safety of these promising
strategies to target mutp53-expressing human cancers.
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