
Babarinde and Hutchins ﻿BMC Genomics          (2022) 23:487  
https://doi.org/10.1186/s12864-022-08717-z

RESEARCH

The effects of sequencing depth 
on the assembly of coding and noncoding 
transcripts in the human genome
Isaac Adeyemi Babarinde* and Andrew Paul Hutchins* 

Abstract 

Investigating the functions and activities of genes requires proper annotation of the transcribed units. However, 
transcript assembly efforts have produced a surprisingly large variation in the number of transcripts, and especially so 
for noncoding transcripts. This heterogeneity in assembled transcript sets might be partially explained by sequenc-
ing depth. Here, we used real and simulated short-read sequencing data as well as long-read data to systematically 
investigate the impact of sequencing depths on the accuracy of assembled transcripts. We assembled and analyzed 
transcripts from 671 human short-read data sets and four long-read data sets. At the first level, there is a positive cor-
relation between the number of reads and the number of recovered transcripts. However, the effect of the sequenc-
ing depth varied based on cell or tissue type, the type of read and the nature and expression levels of the transcripts. 
The detection of coding transcripts saturated rapidly with both short and long-reads, however, there was no sign of 
early saturation for noncoding transcripts at any sequencing depth. Increasing long-read sequencing depth specifi-
cally benefited transcripts containing transposable elements. Finally, we show how single-cell RNA-seq can be guided 
by transcripts assembled from bulk long-read samples, and demonstrate that noncoding transcripts are expressed 
at similar levels to coding transcripts but are expressed in fewer cells. This study highlights the impact of sequencing 
depth on transcript assembly.
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Introduction
The genomic era has brought about a deep understand-
ing of genomes [1]. The  sequencing of human [1], mouse 
[2] and multiple other genomes has led to an increased 
understanding of genome structures [3, 4]. In addition, 
technological advancements have led to the genome-
wide annotation and assessment of functional genomic 
elements. Of particular importance has been the identi-
fication of transcribed units, which have been described 

in multiple species [5–7], making it possible to investi-
gate transcript functions. However, despite decades of 
research, there remains considerable ambiguity on the 
full transcriptome [8–13].

Transcripts can be generally divided into two classes 
based on protein-coding ability [14–16]. While coding 
transcripts code for proteins, noncoding transcripts do 
not code for viable proteins [11, 16]. A class of noncoding 
transcripts at least 200 nucleotides long, termed long non-
coding RNA (lncRNA), has attracted a lot of attention. In 
addition to coding potential there are other critical dif-
ferences between the behavior of coding and noncod-
ing transcripts: Coding transcripts tend to have higher 
expression levels, be longer, less likely to be localized to 
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the nucleus, more stable, less tissue-specific, more evolu-
tionarily conserved and contain fewer transposable ele-
ment (TE)-derived sequences. Noncoding transcripts are 
the reverse for all of these properties [15, 17]. This sug-
gests that coding and noncoding transcripts may have dif-
ferent levels of complexity for transcript assembly. Indeed, 
the overlap between noncoding transcript databases is 
low [18], and, the majority of novel transcripts have been 
reported to be noncoding transcripts [12, 17].

The low expression, poor concordance between data-
bases and abundance of TE-derived sequences in noncod-
ing RNAs suggest that noncoding transcript assembly is 
more complicated. Therefore, it is likely that more reads 
are required to assemble noncoding transcripts, however 
the full influence of sequencing depth for short and long-
reads has not been previously described. In this study, we 
retrieved 671 publicly available short-read bulk RNAs-seq 
datasets from a panel of cell types and tissues with various 
numbers of reads to investigate the impact of sequencing 
depth on the assembly of coding and noncoding tran-
scripts. We further focused on 150 human pluripotent 
stem cell (hPSC) samples for which extensive bulk short-
read and matching long-read and single cell-RNA-seq 
(scRNA-seq) data are available. We report that the rela-
tionship between the number of reads and the number of 
recovered transcripts varied based on cell or tissue type, 
the type of read considered and the nature and expression 
levels of the transcripts, with the noncoding transcripts 
consistently benefiting more from deeper sequencing. 
Overall, we find that sequencing read depth has a relatively 
minor impact on the detection of coding transcripts, but a 
major effect on the recovery of noncoding transcripts.

Materials and methods
Data analyzed
The short-read data used in this study were from an in-
house collection of publicly available data (Supplemen-
tary Table  1). A total of 671 cells and tissue types were 
used for analysis. This collection included 150 human 
pluripotent cell samples that were previously analyzed 
in Babarinde et  al. (2021). In addition to the short-
read samples, four publicly available long-read samples 
(ENCFF688QGB, ENCFF272VSN, ENCFF954UFG and 
ENCFF251CBB) sequenced on the PacBio sequenc-
ing platform were also retrieved from the ENCODE 
project [19]. Single-cell data of c11/S0730 cell line 
(PRJNA631808) was previously described [17].

Transcript assembly and coding potential Single‑cell 
RNA‑seq
The transcript assembly pipeline employed in this study 
is similar to the one used in Babarinde et  al. For short-
reads, the reads were first aligned to the hg38 version of 

the human genome using HISAT2 [20]. Transcripts were 
assembled from the short-read alignment using String-
Tie [21, 22]. For long-read data, the fastq files were first 
converted to fasta format and aligned with Minimap2 
[23]. Alignments were sorted with SAMtools [24] and 
transcripts were assembled using StringTie. Transcripts 
with no inferred strand or those shorter than 200 nucleo-
tides were discarded [17]. Transcript coding potential 
for each assembly was measured using FEELnc trained 
using version 34 of human GENCODE [25]. The FASTQ 
data from c11/S0730 iPSCs (PRJNA631808) was aligned 
as described in He et al., 2021, using the top 3000 cells. 
Expression quantification was estimated using StringTie 
[22]. The expression matrix of the raw counts was nor-
malized using DESeq2 [26].

Short‑read data simulation and long‑read subsampling
Two high-depth hPSC samples with over 200 million 
reads each (SRR597895 and SRR597912) [27], were used 
for short-read simulation. First, transcript assembly was 
done using the two samples. The resulting transcripts 
were then used to build a reference for RSEM [28]. The 
counts, model and theta were estimated using rsem-cal-
culate-expression with bowtie2 [29] alignment options. 
Finally, read simulations were generated using rsem-sim-
ulate-reads. For long-reads, H9 hESC data (PRJNA63104) 
was subsampled using SAMtools [24]. Independent tran-
script alignments were then carried out for each of the 
sub-sampled alignments.

Results
Relationship between sequencing depth and transcript 
assembly across cell types and tissues
To understand the relationship between sequencing 
depth and transcript assembly, we assembled tran-
scripts from 671 human samples with sequencing depths 
ranging from 165,322 to 236,275,714 reads (mean of 
38,132,992 and median of 25,717,722 reads) (Table S1). 
The analyzed samples were all paired-end short-reads of 
which at least 70% aligned to the hg38 genome. We inves-
tigated the read depth at three levels: The first level is the 
total number of reads. The second level is the number of 
reads that mapped to the genome. The third level is the 
number of reads that were assigned to a transcript, rep-
resenting the number of reads that contribute to tran-
script assembly. The assembled transcript sets included 
both GENCODE-annotated and non-GENCODE tran-
scripts. Our analyses showed that the number of tran-
scripts retrieved is proportional to the sequencing depth, 
although the relationship is not linear (Fig.  1A). Over-
all, Spearman’s correlation coefficient (rho) was 0.861. 
The transcript set from the assembly of each sample 
was then divided into coding (Fig.  1B) and noncoding 
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(Fig. 1C) transcripts based on the FEELnc score [25]. In 
almost all samples, more coding transcripts were found 
than noncoding transcripts. The correlation between the 
number of transcripts and sequencing depth for coding 

and noncoding transcripts were 0.822 (Fig. 1B) and 0.840 
(Fig. 1C), respectively, reflecting a slightly higher correla-
tion for noncoding transcripts. Because the samples were 
not evenly distributed across the depths, we grouped the 

Fig. 1  Relationship between the number of reads and assembled transcript count across multiple cells and tissues. Transcript assembly and coding 
potential evaluation were done for each of the 671 short-read samples from multiple cells and tissues. The relationships between the number 
of reads and the transcript count for all transcripts (A), coding transcripts (B) and noncoding transcripts (C). For panels A- C and F–H, each point 
represents a sample while the line represents the loess fit with standard error band shown. Rho is the Spearman rank correlation coefficient. The 
distributions of the samples are shown on the axes. D. Number of reads versus coding to noncoding ratio. E. Increment in the number of transcripts 
per additional 10 million reads. The numbers of transcripts from 0 to 240 million reads with 10 million increments were predicted from loess fits in 
panels A-C. The number of transcripts due to additional 10 million read increment in read depth is shown on the vertical axis. Numbers of reads 
versus the number of transcripts for all GENCODE-annotated transcripts (F), GENCODE-annotated coding transcripts (G) and GENCODE-annotated 
noncoding transcripts (H). Assembled transcripts that were not found in GENCODE annotation were not included I. Increment in the number 
of transcripts inferred from loess prediction per additional 10 million reads for GENCODE-annotated transcripts. J. The difference between the 
observed and the predicted numbers of transcripts based on the loess prediction of all the 671 samples. Cells or tissues with at least 8 biological or 
technical replicates in the dataset are presented. K. The coding to noncoding ratio varied across cells and tissue types. Only cells or tissues with at 
least 8 biological or technical replicates are shown
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samples into 10 million read bins. The boxplots of the 
binned samples revealed that the positive relationships 
between the transcript count and read depth still held 
(Fig. 1SA). The analyses involving the number of mapped 
reads (Figure S1B) and the number of reads assigned to 
transcripts (Figure S1C) produced similar correlations. In 
fact, there was a high correlation between the total num-
ber of reads, number of mapped reads and number of 
reads assigned to transcripts (Spearman rank correlation 
coefficient for all reads versus mapped reads = 0.996; all 
reads versus transcript-assigned reads = 0.959; mapped 
reads versus transcript-assigned reads = 0.971).

The slightly higher correlations between noncoding 
transcripts and the sequencing depth suggest that the 
proportion of coding transcripts might be different across 
sequencing depths. Indeed, samples with relatively shal-
lower depths tended to have higher coding to noncoding 
ratios (Fig. 1D). This indicates that coding sequence tran-
scripts saturate at relatively shallow sequencing depths. 
The loess fit shows that the ratio slightly increases ini-
tially, and starts dropping at around 50 million reads and 
was lower than 3 for the highest depth samples. This sug-
gests that deeper sequencing leads to an increased num-
ber of noncoding transcripts.

We next checked for the increase in the number of 
transcripts for every 10 million additional reads using the 
loess fit. The result shows that the incremental number 
of transcripts was higher at shallow depths than at high 
depths (Fig. 1E). The coding transcripts reached the low-
est level of increase at 70 million reads, demonstrating 
that coding transcripts are assembled from a relatively 
small number of reads. After 100 million reads, the incre-
mental numbers of the transcripts remained relatively 
similar, possibly caused by the assembly of transcripts 
specific to each sample. We therefore focused only on 
GENCODE annotated transcripts. Interestingly, the 
result remained essentially the same, and noncoding 
transcripts had a higher correlation between the number 
of retrieved GENCODE transcripts and the numbers of 
reads for all GENCODE-annotated transcripts (Fig. 1F), 
coding transcripts (Fig.  1G) and noncoding transcripts 
(Fig.  1H). The incremental number of transcripts in the 
assembly of GENCODE-annotated transcripts with 
increasing numbers of reads (Fig.  1I) was also similar 
to what was observed in all transcripts, and most tran-
scripts were assembled with a relatively shallow num-
ber of reads. These results show that the relationship 
between the number of reads and the number of assem-
bled transcripts is not just due to the inclusion of more 
transcriptional noise, but reflects the ability to retrieve 
more (potentially) genuine transcripts.

The inclusion of samples from different cell and tis-
sue types assumes that transcript abundance and coding 

proportion are similar across cell types. However, the 
number of transcripts can vary across tissues [30]. To 
explore this, we selected the 12 cells or tissues that had 
at least eight biological replicates from our dataset. We 
checked the difference between the actual number of 
transcripts assembled and the number of transcripts pre-
dicted from the read depth using the model in Fig. 1A-
C. The results showed that some tissues have positive 
observed-predicted differences, indicating that the num-
ber of transcripts retrieved was more than the number 
predicted, while others have negative observed-predicted 
differences, indicating the opposite (Fig. 1J). Interestingly, 
this pattern was the same for both coding and noncod-
ing transcripts (Figure S1D, E). Intriguingly, there was a 
rough inverse relationship between the observed-pre-
dicted transcript counts between coding and noncod-
ing transcripts (Figure S1D, E). Furthermore, the ratio 
between coding and noncoding transcripts is heteroge-
nous (Fig. 1K). These results suggest that the relationship 
between read depth and the number of retrieved tran-
scripts varies across cells or tissues, and that the coding 
to noncoding ratio varies substantially across different 
cell types and tissues.

Impacts of sequencing depth on human pluripotent stem 
cell transcript assembly
We then analyzed a single cell type in depth. For this, 
we focused on human pluripotent stem cells (hPSCs). 
There are widespread problems in metadata annotations 
of sequencing samples [31–33], hence we used the tran-
scriptome assembly from a set of 150 RNA-seq samples 
that we previously computationally verified to be nor-
mal undifferentiated hPSCs [17]. The assembly from that 
study comes in two forms, an unfiltered set, containing 
272,209 lower confidence transcripts, and a more confi-
dent 101,492 filtered transcript set, including 7,261 novel 
and 19,575 variant transcripts. We defined novel tran-
scripts as transcripts that did not overlap any GENCODE 
exon, and variant transcripts that were different isoforms 
of a GENCODE gene [17].

We investigated the effect of read depth on the num-
ber of transcripts retrieved in hPSCs. We confirmed the 
positive relationships between the read counts and all 
transcript count (Figs. 2A, S2A), coding transcript count 
(Figs. 2B, S2A) and noncoding transcript count (Figs. 2C, 
S2A). The relationships between transcript count and the 
number of reads were generally stronger in hPSC sam-
ples than in the multi-sample analyses (Fig. 2A-C). Sim-
ilar results were also found in the relationship between 
transcript counts and the number of mapped reads or 
the number of reads assigned to transcripts (Figure S2B, 
C). Unsurprisingly, there is a high correlation between 
the number of reads, the number of mapped reads and 
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the number of reads assigned to transcripts (Spearman 
rank correlation coefficient for all reads versus mapped 
reads rho = 0.991; all reads versus transcript-assigned 
reads = 0.958; mapped reads versus transcript-assigned 

reads = 0.970). Interestingly, there was a significant nega-
tive relationship between the coding to noncoding ratio 
and read number, as deeper sequenced samples tended 
to have a higher proportion of noncoding transcripts 

Fig. 2  Sequencing depth is positively correlated with transcript count and sensitivity in human pluripotent stem cells. A-C. Number of reads versus 
the number of transcripts assembled from 150 computationally verified hPSC samples. The numbers of all hPSC transcripts (A), coding transcripts 
(B) and noncoding transcripts (C) are shown on the vertical axes. The lines indicate the loess fits with standard error bands shown. Rho is the 
Spearman rank correlation coefficient. The distributions of the samples are shown on the axes. D. Number of reads versus the coding to noncoding 
ratio. E. Increment in the number of transcripts per additional 10 million reads. The numbers of transcripts are predicted from the loess fits in 
panels A-C. F. Sensitivity versus the number of reads using unfiltered transcript set assembled from the merged alignment of all the 150 hPSCs. 
G. Sensitivity versus the number of reads using only GENCODE-annotated assembled transcript set. The hPSC transcripts that were not found in 
GENCODE annotation were excluded. H. Sensitivity versus the number of reads using hPSC assembly. The hPSC assembly, published in Babarinde 
et al. includes additional transcripts that were not found in GENCODE annotation but excludes GENCODE transcripts that are not expressed in 
hPSCs. I. The number of samples in which the transcripts are assembled. For each category of transcripts, the number of samples for which the 
transcripts were correctly assembled was computed



Page 6 of 14Babarinde and Hutchins ﻿BMC Genomics          (2022) 23:487 

(Fig.  2D). The incremental numbers of transcripts per 
increasing reads, predicted from the loess fit, was also 
different between coding and noncoding (Fig.  2E). At 
around 150 million reads, the incremental number 
of coding transcripts found was zero, suggesting that 
sequencing had reached full saturation for coding tran-
scripts. However, for noncoding transcripts, even at 230 
million reads (the largest single library in our data set), 
the incremental number of assembled transcripts did not 
reach zero, indicating that additional noncoding tran-
scripts continued to be detected from deeper sequencing.

We then set out to explore the sensitivity of the tran-
script assembly. We defined false positives as a transcript 
that matched to the unfiltered superset of hPSC tran-
scripts (n = 272,209) [17]. We checked the sensitivity of 
each sample in terms of the percentage of the transcripts 
that were correctly assembled, relative to the hPSC unfil-
tered superset. Our result showed that the sensitivity 
of coding transcripts is consistently higher than that of 
noncoding transcripts (Fig. 2F). The sensitivity of coding 
transcripts seemed to reach a peak of about 50%, after 
70 million reads. For all the samples, the sensitivity of 
noncoding transcripts never exceeded 15%. As expected, 
deeper samples have higher sensitivity. This may be at 
least partly due to differences between the ratios of cod-
ing and noncoding transcripts in the transcript assem-
blies, as unfiltered transcripts had substantially more 
noncoding compared to the filtered and GENCODE (Fig-
ure S2D). This suggests that the filtering process dispro-
portionately affected noncoding transcripts.

Since the unfiltered transcript set likely contains 
many unreliable transcripts, we repeated the hPSC tran-
script assembly sensitivity analysis by focusing only on 
the unfiltered hPSC transcripts that are in GENCODE 
(Fig.  2G). The patterns were essentially the same: Non-
coding transcripts tended to have lower overall sensitiv-
ity, although the overall sensitivity is improved. Previous 
studies have reported that the GENCODE annotation 
is not definitive [11, 17, 34, 35]. Therefore, we repeated 
the analyses using the hPSC filtered transcript set which 
included transcripts with detectable expression in at least 
50 hPSC samples [17]. The results remain essentially the 
same, except that the sensitivity of coding transcripts 
goes up (Fig. 2H). One of the steps in filtering the hPSC 
transcripts is based on the number of samples in which a 
transcript is expressed [17], hence we checked the num-
ber of expressing samples and found that coding tran-
scripts tended to be more broadly expressed (Fig.  2I). 
For coding and noncoding transcripts, transcripts that 
are correctly assembled in more samples (Figure S2E) 
or detected in more samples (Figure S2F), tend to have 
higher expression levels. Finally, we decided to focus on 
transcripts that were correctly assembled in multiple 

samples. These transcripts are less likely to be transcrip-
tional noise as it is unlikely for the transcriptional noise 
to have the same splicing patterns across multiple sam-
ples. We therefore made assemblies of hPSC transcripts 
with the same assembly in at least 2, 5, 10, 20 and 50 
samples. The number of assembled transcripts reduced 
with the number of samples in which the transcripts 
were assembled. Importantly, the Spearman’s rank cor-
relation coefficients were consistently higher for noncod-
ing transcripts than coding transcripts (Table S1). Taken 
together, these results show that whilst coding transcripts 
saturate rapidly at relatively low numbers of reads, the 
number of noncoding transcripts continues to increase 
with sequencing depth.

We next checked if noncoding transcript assembly 
would reach a saturation at much deeper sequencing 
depth. However, the deepest hPSC sample in our dataset 
(SRR597895) had less than 240 million reads. Therefore, 
we checked the distribution of coding and noncoding 
transcripts in the unfiltered superset of hPSC transcripts 
obtained from the merging of all the 150 hPSC samples 
(with > 5.5 billion paired reads) and found that 47.14% 
were coding while 52.86% were noncoding. This sug-
gests that noncoding transcripts would continue to ben-
efit from higher depth but the benefit slowed down. We 
therefore merged the top two, four and six high-depth 
hPSC samples and assembled the transcripts from the 
merged samples. The results show that the numbers of 
coding transcripts were similar, but the noncoding tran-
scripts continue to benefit more (Figure S2G). However, 
the difference in the number of noncoding transcripts 
between the top 4 and top 6 assemblies suggest that 
noncoding transcripts benefit less from higher depths. 
It is important to note that combining multiple samples 
might introduce bias in the assembly. To mitigate this, we 
therefore subsampled 500, 1,000, 1,500 and 2,000 paired 
reads from the merged alignments of 150 hPSC samples. 
Interestingly, the increase in the number of assembled 
transcripts for both coding and noncoding transcripts 
across read depths were similar at much higher depths 
(Figure S2H). These results suggest that advantage that 
noncoding transcript assembly have over coding tran-
scripts eventually diminishes at extremely high sequenc-
ing depths.

Effects of read depth and biological replicates on transcript 
assembly
The results in Fig. 2A-H involved hPSC samples from dif-
ferent sources. The results might therefore reflect both the 
effects from the number of reads and factors independ-
ent of sequencing depth. To investigate the impact of the 
number of reads on transcript assembly from a homoge-
nous background, we assembled transcripts from different 
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numbers of simulated reads. Individual transcript assem-
bly confirmed that the number of transcripts increases 
with the number of reads, and the fraction of coding tran-
scripts tended to dominate the total number of transcripts 
(Fig. 3A). Similarly, the coding to noncoding ratio tended 

to decrease with sequencing depth, confirming that 
deeper sequenced samples can indeed retrieve more non-
coding transcripts (Fig. 3B). The sensitivity of the assem-
bly was also increased with sequencing depth, with the 
sensitivity in coding transcripts consistently higher than 

Fig. 3  Effect of sequencing depth on the numbers and correctness of transcripts assembled from simulated short-read data. 10 million (n = 20), 
20 million (n = 10), 50 million (n = 4), 100 million (n = 2) and 200 million (n = 1) hPSC reads were simulated using SRR597912 and SRR597895 reads. 
Transcript assembly and coding potential evaluation were done for each simulated read sample. The relationship between the number of reads 
and transcript counts (panel A), coding to noncoding ratio (panel B), sensitivity (panel C) and precision (panel D) are presented for each sample. 
The transcript assembly obtained from the merged SRR597912 and SRR597895 reads was used as the reference for the estimation of sensitivity 
and precision. E. Sensitivity is positively correlated with the number of reads for GENCODE-annotated and novel transcripts. Samples with the 
same read numbers produced similar numbers of transcripts. F. The numbers of samples for which different categories of transcripts were correctly 
assembled. The assemblies of 20 replicates of 10 million reads were investigated to highlight correctly assembled transcripts. G. The proportion of 
TE-containing transcripts was similar across various read depths. The sensitivity of assemblies of coding transcripts (H) and noncoding transcripts (I) 
showing the differences between TE-containing and TE-lacking transcripts. J. Cumulative expression of assembled transcripts. The transcripts were 
ranked based on expression level, and the cumulative expression is presented in percentages. K. Cumulative precision of transcripts based on the 
expression levels. Based on the expression levels and the cumulative precision in 200 and 10 million read assemblies (lower panel), the transcripts 
were grouped into three classes. The upper panel shows the percentages of GNCODE-annotated transcripts in the three classes of transcripts. L. 
Cumulative coding to noncoding ratio varied with expression levels and the numbers of reads
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the sensitivity in noncoding transcripts (Fig.  3C). Inter-
estingly, the precision of the coding and noncoding tran-
scripts for lower depths were similar (Fig. 3D), suggesting 
that the increase in sensitivity is not always accompanied 
by a decrease in precision.

To investigate the impact at much higher depths, we 
simulated up to 1 billion paired short reads. The result 
shows that up to 1 billion reads, the number of assembled 
coding transcripts was higher than the number of assem-
bled noncoding transcripts (Figure S3A). Importantly, the 
result shows that the number of assembled noncoding 
transcripts tended to flatten after 600 million reads. Con-
sistent with the transcript counts, the coding to noncod-
ing ratio continues to drop, but the difference becomes 
smaller at around 600 million reads (Figure S3B). The 
analyses of sensitivity further reveal that support for non-
coding assembly flattens after 600 million reads (Figure 
S3C). While the precision of coding transcripts remains 
more or less similar up to 1 billion read depths, the pre-
cision of noncoding transcript assembly decreases with 
decreasing depth, suggesting that the probability of 
assembling false noncoding transcripts increases with 
increasing read depth. These results suggest that noncod-
ing transcript assembly benefits from up to 600 million 
reads, however after that point the assembly of additional 
noncoding transcripts becomes less reliable.

The ‘correctness’ of a transcript assembly can also 
be assessed in terms of transcript completeness at the 
exon or splice level [17]. Transcript completeness was 
compared between assemblies from 10 million reads 
(low depth) and assembly from 200 million reads (high 
depth). Table 1 shows that the exons of each assembled 
transcript were mostly either found (100% exon com-
pleteness) or were completely missing (0% exon com-
pleteness), reflecting the integrity of the assembly. Partial 
exon overlaps were (surprisingly) not common. Consist-
ent with the results in Fig. 3C, the 200 million deep read 
assembly was more complete, and coding transcripts had 
higher exon completeness than noncoding transcripts. A 
valid transcript should have completely spliced introns, 
and when we computed splice completeness, we found 
a similar pattern to exon completeness (Table  1). These 
results highlight the importance of read depth and the 
difficulty in assembling noncoding transcripts.

The reference transcripts used for the simulation com-
prised the GENCODE annotated transcripts and the 
novel or variant transcripts defined in Babarinde et  al. 
(2021). The novel transcripts contained a higher per-
centage of noncoding transcripts (Figure S3D). Across 
both the GENCODE and novel transcript sets, coding 
transcripts tended to have higher expression levels (Fig-
ure S3E). Interestingly, the expression levels of novel 

Table 1  Exon and splice completeness of transcript assemblies

Splice or exon completeness was estimated as the percentage of the splice or exon of the reference transcript that is correctly assembled in the new assembly. 
Transcripts with partial splice or exon assembly are not shown in the table. For multiple samples, the average percentages were presented, with the standard 
deviations in parentheses
a For simulated short reads, read counts were in million paired read whereas for long read samples, read counts were in the percentage of total alignment
b Completeness was given as the average of the percentages of reference transcripts. The values in parentheses are the standard deviations computed from multiple 
samples

Read type Feature Read counta Number Coding transcripts (%)b Noncoding transcripts (%)b

Complete (100%) Missing (0%) Complete (100%) Missing (0%)

Simulated short read Exon 10 m 20 39.94 (0.1) 56.7 (0.09) 21.01 (0.06) 77.68 (0.07)

Exon 20 m 10 47.04 (0.07) 50.0 (0.08) 25.14 (0.15) 73.21 (0.15)

Exon 50 m 4 54.9 (0.11) 42.43 (0.12) 31.22 (0.1) 66.62 (0.1)

Exon 100 m 2 59.85 (0.03) 37.63 (0.01) 35.98 (0.02) 61.37 (0.05)

Exon 200 m 1 63.86 (0.0) 33.8 (0.0) 40.82 (0.0) 55.98 (0.0)

Splice 10 m 20 39.94 (0.1) 56.73 (0.09) 21.01 (0.06) 77.79 (0.08)

Splice 20 m 10 47.04 (0.07) 50.03 (0.08) 25.14 (0.16) 73.37 (0.16)

Splice 50 m 4 54.9 (0.11) 42.47 (0.12) 31.22 (0.1) 66.86 (0.1)

Splice 100 m 2 59.85 (0.03) 37.65 (0.01) 35.98 (0.02) 61.65 (0.07)

Splice 200 m 1 63.85 (0.0) 33.83 (0.0) 40.82 (0.0) 56.37 (0.0)

Long read Exon 25% 4 61.15 (0.15) 34.66 (0.17) 39.27 (0.13) 53.62 (0.18)

Exon 50% 2 76.28 (0.06) 20.0 (0.05) 58.78 (0.02) 33.27 (0.05)

Exon 75% 1 87.54 (0.0) 10.05 (0.0) 77.33 (0.0) 17.01 (0.0)

Splice 25% 4 61.0 (0.14) 34.68 (0.17) 39.35 (0.15) 53.79 (0.16)

Splice 50% 2 76.12 (0.04) 20.02 (0.05) 58.87 (0.04) 33.37 (0.08)

Splice 75% 1 87.35 (0.0) 10.06 (0.0) 77.34 (0.0) 17.08 (0.0)
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transcripts tended to be higher than that of GENCODE 
annotated transcripts. The results further highlight the 
fact that noncoding transcripts are more difficult to 
assemble and are depleted in GENCODE annotations.

We next checked if the sensitivity of the transcript 
assembly is similar between novel and GENCODE tran-
scripts. Across different read depths, the GENCODE 
annotated set consistently had higher sensitivity (Fig. 3E), 
suggesting that the novel transcripts are more difficult 
to assemble. One reason may be because of the higher 
proportion of transposable element (TE) fragment 
sequences in novel transcripts (Figure S3F). Specifically, 
the GENCODE coding transcript set with the highest 
assembly sensitivity had the lowest TE content while the 
novel noncoding transcript set with the lowest assembly 
sensitivity contained the highest proportion of TE-con-
taining transcripts. We next checked how the number of 
expressing samples is affected by TE presence and coding 
ability in GENCODE and novel transcript sets (Fig. 3F). 
This analysis was done using 20 replicates of 10 million 
reads. GENCODE annotated transcripts tended to be 
more broadly expressed than novel transcripts, and cod-
ing transcripts tended to have broader expression than 
noncoding transcripts (Fig.  3F). Also, transcripts with 
no TEs tended to be more broadly expressed, especially 
in GENCODE annotated noncoding transcripts. Inter-
estingly, increases in sequencing depth do not seem to 
substantially improve the proportion of TE-containing 
transcripts in the assembly (Fig. 3G). However, the sen-
sitivity of the assembly increases with depth for TE-
containing and TE-lacking transcripts in both coding 
(Fig.  3H) and noncoding transcripts (Fig.  3I). Interest-
ingly, the difference in sensitivity between TE-containing 
and TE-lacking transcript assembly tends to be higher in 
noncoding than in coding transcripts (Fig. 3H, I). These 
results suggest a complex impact of TE presence in tran-
script assembly from short-read data.

Next, we investigated the impact of sequencing depth 
on transcript steady-state (expression) levels. First, we 
investigated the cumulative RNA levels in shallow-depth 
samples (10 million reads) and a high-depth sample (200 
million reads). The assembly from 200 million reads 
reached saturation more quickly than the assemblies of 
10 million reads (Fig. 3J). For example, 95% of all detected 
RNAs from the high depth sample were found in the top 
17% of highly expressed transcripts. On the contrary, 
the top 30% of the expressed transcripts in the shallow 
samples contributed 95% of all expressed RNAs. The 
investigation of transcript precision showed that tran-
scripts can be classified into three groups based on the 
expression-ranked assembly precisions of shallow-depth 
(10 million read) and high-depth (200 million read) sam-
ples (Fig. 3K). Groups A (top 30 percentile) and C (lowest 

40 percentile) transcripts have higher precisions in the 
shallow-depth samples while group B (30–60 percen-
tile) transcripts have higher precision in the high-depth 
sample. Group B transcripts have the lowest percentage 
of GENCODE transcripts suggesting that a substantial 
proportion of the novel transcripts have intermediate 
expression levels. Interestingly, there are no major dif-
ferences in the percentages of GENCODE transcripts in 
groups A and B across low-depth and high-depth sam-
ples. However, group C transcripts have a higher GEN-
CODE percentage in low-depth than high-depth samples. 
Coding to noncoding ratio falls very rapidly with expres-
sion (Fig. 3L), highlighting that the expression level con-
sidered can affect the ratio observed. For example, if the 
top 10% of transcripts were considered, the set would 
have a similarly high coding to noncoding ratio in 200 
million reads as in the 10 million read assemblies. These 
results demonstrate the effect of read depth on transcript 
expression level.

Effect of sequencing depths on transcript assembly 
in long‑read data
Recent studies have demonstrated the advantages of 
long-read sequences over short-read sequences for 
genome and transcript assembly [36–39]. We therefore 
investigated the effect of sequencing depths on long-
read sequences from the PacBio platform. We retrieve 
the long-read data from H9 (~ 25 million reads) cells and 
iPSCs (~ 7 million reads) and assembled 94,205 (74,163 
coding) transcripts from H9 and 59,254 transcripts 
(47,902 coding) transcripts from iPSCs (Fig.  4A). These 
corresponded to a 3.7 and 4.2 coding to noncoding ratio 
in H9 and iPSCs, respectively.

Because of the limited number of iPSC-sequenced 
long-read samples, we focused on only the deeper 
sequenced H9 cell line for the subsequent analyses. To 
assess the impact of long-read depth, H9 reads were ran-
domly subsampled to 25% (four replicates), 50% (two 
replicates) and 75% (one replicate). Assemblies with a 
similar number of reads had similar numbers of tran-
scripts (Fig. 4B). We confirmed that the number of reads 
correlated with the number of assembled transcripts, and 
the coding to noncoding ratio is higher in samples with 
fewer reads (Fig. 4B, C). For sensitivity and precision, the 
transcript set assembled from the full H9 dataset reads 
was used as a reference. While the sensitivity was notice-
ably correlated with the number of reads (Fig.  4D), the 
precision was not substantially affected (Fig.  4E). This 
suggests that increasing read depth led to the assembly of 
more reliable transcripts. Additionally, comparison of the 
transcripts relative to the reference also shows two clear 
peaks in the exon and splice completeness (Table 1). The 
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results show that read depth affects the composition and 
integrity of the assembled transcripts.

To investigate how long read data perform with 
respect to TE presence, we checked the proportion 
of TE-containing transcripts across the read depths. 
While the proportion of TE-containing transcripts 
remain fairly stable for coding transcripts, the pro-
portion of TE-containing noncoding transcripts tend 
to increase across depths (Fig.  4F). Interestingly, the 
assembly sensitivity increases for both TE-containing 
and TE-lacking transcripts in both coding (Fig. 3G) and 
noncoding (Fig. 3H) sets. However, the difference in the 
sensitivity of TE-containing and TE-lacking assembly 
was higher in noncoding that coding transcript sets. 
The results highlight the advantage of long-read data in 

assembling TE-containing transcripts, which are pre-
dominantly noncoding.

We also investigated the impact of transcript expres-
sion level on transcript assembly from long-read data. 
We ranked the transcripts by expression in the 25% and 
75% samples. The analyses of cumulative expression show 
that the top 10% of the transcripts account for about 90% 
of RNAs in the 25% subsamples, and about 93% of the 
total RNAs in 75% subsamples (Fig.  4I). The precision 
of transcript assembly also varied by expression level 
(Fig. 4J). Mainly, the overall precision tended to be higher 
in the 25% samples, suggesting that fewer novel tran-
scripts are retrieved from 25% samples. The coding to 
noncoding ratio varied greatly across the expression pro-
files (Fig. 4K). The top 5% of the transcripts had a ratio 

Fig. 4  Effect of sequencing depth on the numbers and correctness of transcripts assembled from long-reads data. A. Transcript counts from iPSC 
and H9 human cell lines. 25% (n = 4), 50% (n = 2) and 75% of the H9 reads were independently sampled without replacements. B. Numbers of 
assembled transcripts from down-sampled H9 long-read data. Effects of down-sampling on coding to noncoding ratio (panel C), sensitivity (panel 
D) and precision (panel E). The transcript assembly from all the H9 long-read data was used as the reference for the computations of sensitivity 
and precision. F. The proportions of TE-containing transcripts across various depths. The sensitivity of the assemblies with or without TEs in coding 
(G) and noncoding (H) transcript sets. I. The cumulative expression of transcripts ranked by expression levels in H9 samples for 25% and 75% 
subsampled read assemblies. J. The cumulative precision of the expression-ranked transcripts for 25% and 75% subsampled read assemblies. K. The 
cumulative coding to noncoding ratio of the expression-ranked transcripts
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of ~ 80 while the ratio fell to < 10 when the top 40% of the 
transcripts are considered. These results reflect the effect 
of read depths and the composition of the transcripts 
greatly depends upon the expression thresholds set.

Heterogeneity of the assembled transcripts at single cell 
levels
Unlike bulk short and long-read samples, single cell 
RNA-seq (scRNA-seq) read coverage is typically too 
low for transcript assembly. In scRNA-seq reads tend to 
be heavily 3’ biased, the data is sparse and suffers from 
transcript dropout from individual cells, and analysis is 
generally gene-wise, rather than transcript-specific [40]. 
However, transcript assemblies from matching bulk sam-
ples can help guide transcript analysis [41]. We reana-
lyzed the single cell RNA-seq (scRNA-seq) data from 
the c11 iPSC cell line [17]. The alignments were split 
into barcodes representing cells from which the RNAs 
were sequenced. First, we used the short-read assem-
bly derived from the two largest short-read samples, 
SRR597912 and SRR597895 [27]. We checked the rela-
tionship between the barcode tag count and the number 
of transcripts with detectable expression in each cell. 
We found that the total sequence tag count was posi-
tively correlated with the number of coding (Figure S4A) 
and noncoding (Figure S4B) transcripts with detectable 
expression. Cells with more reads tended to have a larger 
number of detectable transcripts. As expected, the num-
ber of coding transcripts with detectable expression was 
more than the number of noncoding transcripts with 
detectable expression (Figure S4A, B). This suggests that 
the number of reads strongly affects single cell transcript 
quantification.

In short-read bulk samples, we established that coding 
transcripts tend to be expressed in more samples (Figs. 2I 
and 3F) and at higher levels (Figure S3D) than noncod-
ing transcripts. We therefore asked if there is a relation-
ship between the expression levels and the percentage of 
cells with detectable expression. As expected, transcripts 
with higher expression levels tended to be expressed in 
more cells for coding (Figure S4C) and noncoding (Fig-
ure S4D) transcripts. Using the short-read transcript set 
with detectable expression in scRNA-seq data, we also 
found that the expression level and the percentage of cells 
with detectable expression for the transcripts were higher 
in coding than in noncoding transcripts (Fig. 5A and B). 
Short-read transcript assembly likely contains more tran-
scriptional noise than long-read transcript assembly [17]. 
We therefore repeated the same analyses using the H9 
long-read transcript assembly.

We confirmed the positive correlations between the 
barcode tag counts and the numbers of transcripts with 
detectable expression for both coding (Figure S4E) and 

noncoding (Figure S4F) transcript sets. We also con-
firmed positive correlations between expression levels 
and the percentage of cells with detectable expression 
for both coding (Figure S4G) and noncoding transcripts 
(Figure S4H). However, for transcripts with detectable 
scRNA-Seq expression, the expression levels of long-
read assembled transcripts tended to be higher than the 
expression levels of short-read assembled transcripts 
(3.08 versus 2.7 for coding; 2.42 versus 1.93 for noncod-
ing transcripts). Similarly, the percentages of cells with 
detectable expression when using the long-read tran-
script assembly (Fig. 5C and D) were higher than the per-
centages for short-read transcript assembly (Fig. 5A and 
B). Further, the coefficient of variations of the expression 
levels were significantly higher for coding than noncod-
ing transcripts in both short-read and long-read assem-
blies (Figure S4I and J), reflecting higher expression 
heterogeneity in noncoding transcripts. These results 
show that a fewer number of expressing cells contribute 
more to the low expression levels of noncoding tran-
scripts observed in bulk RNA-seq samples.

Finally, we investigated the effect of sequencing depth 
of the assembly on the number of transcripts with 
detectable expression in scRNA-seq data. For the short-
read transcript assembly, we compared the transcript 
assemblies from 10 and 200 million reads. In both cod-
ing (Fig.  5E) and noncoding (Fig.  5F) transcript sets, 
the numbers of transcripts with detectable scRNA-seq 
expressions were higher in 200 million read assembly 
than in 10 million read assembly. We repeated the same 
analysis using shallow-depth (25%) and high-depth 
(75%) long-read data assemblies. The results show that 
the number of coding (Fig. 5G) and noncoding (Fig. 5H) 
transcripts from long-read assemblies with detect-
able scRNA-seq expressions were higher in high-depth 
assembly than in shallow-depth assembly. These results 
suggest that scRNA-seq analysis guided by long-read 
assembly data is more reliable than short-read-guided 
analysis.

Discussion
Previous studies have identified differences between cod-
ing and noncoding transcripts [16, 17, 42, 43]. Novel 
annotated transcripts tend to be dominated by non-
coding transcripts [11, 16, 17, 44], and even for coding 
transcripts that have been relatively well-annotated, the 
precise number of genes remains controversial [10–12, 
45, 46]. In this study, we systematically investigated the 
effect of sequencing depth on transcript assembly for 
the human genome and particularly for hPSCs. Using 
short-read data from 671 tissues and cell types, we found 
that the number of reads is positively correlated with 
the number of transcripts assembled. The correlation 
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between the sequencing depth and the number of assem-
bled transcripts was higher in noncoding transcripts. 
Additionally, we have established that the proportion of 
coding to noncoding transcripts decreases with increases 
in sequencing depth, indicating that noncoding tran-
scripts benefit from deeper sequencing. However, after 
600 million reads, the advantage of deeper sequencing in 
noncoding assembly tended to disappear as the sensitiv-
ity flattens and precision continues to drop. All the data 
showed a positive correlation between sensitivity and 
sequencing depth, supporting the benefits of increased 
sequencing depth for improved transcript assembly.

Several factors affect the number and accuracy of 
assembled transcripts. As stated above, noncoding tran-
scripts tend to benefit more from higher sequencing 
depths. A possible reason for the difficulty in assembling 
noncoding transcripts may be partially due to the pres-
ence of TEs or lower apparent expression levels in bulk 
RNA-seq samples [15, 17, 36]. Highly expressed tran-
scripts tend to be easily assembled, medium levels are 
more challenging to assemble, whilst low-expressed 

transcripts are assembled only if they have the support 
of reference transcripts. We also assessed the impact of 
long-read sequencing for transcript assembly, and com-
paring the results from the short-read and long-read 
assemblies, we demonstrated that long-read sequencing 
particularly benefits the assembly of TE-sequence con-
taining noncoding transcripts. In conclusion, this study 
highlights the effects of the sequencing depth on tran-
script assembly, and how these impact transcript discov-
ery and quantitation.
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in which the transcript expressions are detected in scRNA-seq data. The normalized counts of the coding (panel C) and noncoding (panel D) 
transcripts from long-read assembly are positively correlated to the percentages of cells with detectable expression in scRNA-seq data. The means 
of the expression levels and percentages of cells with detectable expressions are shown in red fonts in panels A-D. The numbers of detectable 
transcripts in scRNA-seq data were compared for transcripts assembled from different read numbers of short-read (panels E and F) and long-read 
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in scRNA-seq data than the transcripts assembled from 10 million reads. More coding (panel G) and noncoding (panel H) transcripts detectable 
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