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Abstract

Neurons of the ventrolateral periaqueductal gray (vlPAG) and adjacent deep mesencephalic reticular nucleus (DpMe)
are implicated in the control of sleep-wake state and are hypothesized components of a flip-flop circuit that main-
tains sleep bistability by preventing the overexpression of non-rapid eye movement (NREM)/REM sleep intermediary
states (NRt). To determine the contribution of vlPAG/DpMe neurons in maintaining sleep bistability we combined
computer simulations of flip-flop circuitry with focal inactivation of vlPAG/DpMe neurons by microdialysis delivery of
the GABAA receptor agonist muscimol in freely behaving male rats (n=25) instrumented for electroencephalographic
and electromyographic recording. REM sleep was enhanced by muscimol at the vlPAG/DpMe, consistent with previ-
ous studies; however, our analyses of NRt dynamics in vivo and those produced by flop-flop circuit simulations
show that current thinking is too narrowly focused on the contribution of REM sleep-inactive populations toward
vlPAG/DpMe involvement in REM sleep control. We found that much of the muscimol-mediated increase in REM
sleep was more appropriately classified as NRt. This loss of sleep bistability was accompanied by fragmentation of
REM sleep, as evidenced by an increased number of short REM sleep bouts. REM sleep fragmentation stemmed
from an increased number and duration of NRt bouts originating in REM sleep. By contrast, NREM sleep bouts were
not likewise fragmented by vlPAG/DpMe inactivation. In flip-flop circuit simulations, these changes could not be repli-
cated through inhibition of the REM sleep-inactive population alone. Instead, combined suppression of REM sleep
active and inactive vlPAG/DpMe subpopulations was required to replicate the changes in NRt dynamics.
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Significance Statement

Sleep separates into two distinct states: rapid eye movement (REM) and non-REM (NREM) sleep. The circuit
mechanisms underlying this bistability have not been defined. Neurons in the ventrolateral periaqueductal
gray and adjacent deep mesencephalic reticular nucleus (vlPAG/DpMe), namely those with REM sleep-inac-
tive discharge profiles, are hypothesized to be negative-regulators of NREM-to-REM sleep transitions. We
show that the main effect of vlPAG/DpMe inactivation is a loss of sleep bistability that originates mainly in
REM sleep, which suggests the important added involvement of the vlPAG/DpMe REM sleep-active cell
population. Simulations of flip-flop circuitry support the participation of REM sleep-active and sleep-inactive
vlPAG/DpMe cell groups in a noisy, asymmetric flip-flop switch that contributes to the bistability and robust-
ness of sleep switching.
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Introduction
Mammalian sleep separates into two distinct states:

rapid eye movement (REM) sleep and non-REM (NREM)
sleep. One of the fundamental characteristics of REM
sleep is that depriving an animal of this state will result in
a postdeprivation rebound, i.e., the propensity of future
REM sleep sates depends on the occurrence of past REM
states (at least over long time scales; Benington and
Heller, 1994a,b; Franken, 2002). This rule of the REM
sleep control system has important implications. First, it
implies that some component(s) of the system must track
the inter-REM sleep bout interval (i.e., the nervous system
stores a history of REM sleep). Second, the switching cir-
cuitry responsible for transitioning between NREM and
REM sleep must be sensitive to changes in this history.
Nevertheless, sleep is normally bistable, implying that
NREM-REM sleep switching circuitry is configured so as
to avoid generating intermediary states. If switching cir-
cuitry responded continuously to the build-up of REM
sleep drive over the inter-REM sleep interval, intermediate
sleep states would dominate. Therefore, to minimize the
occurrence of intermediate states, the NREM-to-REM
sleep switching circuitry should contain a bistability main-
tenance mechanism. While many neuronal populations
have been implicated in the control of NREM and REM
sleep, the circuit logic underlying the bistability of sleep is
poorly understood. It has been suggested that sharp tran-
sitioning between sleep-states is the product of a flip-flop
circuit arrangement, a mutual inhibitory interaction be-
tween NREM-active and REM sleep-active cell popula-
tions (Lu et al., 2006a; Sapin et al., 2009).
Neuronal populations of the ventrolateral periaqueduc-

tal gray and the adjacent deep mesencephalic reticular
nucleus (vlPAG/DpMe) have been suggested to partici-
pate in a flip-flop circuit for REM sleep generation (Luppi
et al., 2006; Saper et al., 2010; Fraigne et al., 2015).
Based on measures of c-fos expression following REM
sleep deprivation and recovery, the vlPAG/DpMe region

contains some of the largest populations of both REM
sleep-inactive and REM sleep-active neurons in the brain-
stem (Sapin et al., 2009). Extracellular single-unit record-
ing and single-cell calcium imaging studies have also
profiled these opposing subpopulations (Crochet et al.,
2006; Weber et al., 2018), with particular focus on
GABAergic neurons.
Inactivation of vlPAG/DpMe neurons reliably increases

REM sleep amounts in rats (Lu et al., 2006a; Sapin et al.,
2009), mice (Hayashi, 2015; Weber et al., 2015), cats
(Petitjean et al., 1975; Sastre et al., 1996; Crochet et al.,
2006), and guinea pigs (Vanini et al., 2007) by means of
lesioning, focal muscimol delivery, chemogenetic inhibi-
tion, and optogenetic stimulation of ventral medullary
GABAergic axons in the vlPAG/DpMe. Reported in-
creases in REM sleep time range from 130% to 380% of
baseline and, in most cases, result from increases in
both the duration and frequency of episodes. A smaller
increase in REM sleep (;20% increase from baseline)
was reported following virally-mediated ablation of
vlPAG GABAergic neurons (Weber et al., 2018). Based on
these findings, current hypotheses of vlPAG/DpMe involve-
ment in REM sleep control focus on the role of REM sleep-
inactive GABAergic neurons in gating NREM-to-REM sleep
transitioning (Lu et al., 2006a; Sapin et al., 2009; Saper et al.,
2010). Notably, optrode recording of GABAergic vlPAG neu-
rons has revealed that some vlPAG cells are inhibited by
laser stimulation, suggesting that they receive inhibitory in-
puts from channelrhodopsin-expressing vlPAG GABAergic
neurons. Of those cells, half were identified as having a
REM sleep-active activity profile (Weber et al., 2018). This
raises the possibility that inhibitory signaling between
vlPAG/DpMe REM sleep-active and sleep-inactive subpo-
pulations, potentially in the form of a mutually inhibitory flip-
flop switch, are important for the control of sleep state
switching.
However, there is little direct evidence that neurons

within the vlPAG/DpMe participate in a bistability mecha-
nism. In order to measure changes in sleep stability,
NREM-REM sleep intermediate states (NRt) should be
quantified. Such states develop naturally during normal
transitioning from NREM-to-REM sleep (Benington et al.,
1994; Boucetta et al., 2014). Here, we compare changes
in NRt dynamics resulting from inactivating vlPAG/DpMe
neurons in vivo to those resulting from simulated inactiva-
tions of flip-flop switching circuitry. Our data are not con-
sistent with the inhibition of a REM sleep-inactive
population per se. In vivo, we observed increased
amounts of NRt, which primarily fragmented REM sleep.
This and other findings were best accounted for by simu-
lated inhibition of both REM sleep-active and REM sleep-
inactive cell groups participating in a noisy, asymmetric
flip-flop switch that contributes to the bistabilty and ro-
bustness of sleep switching.

Materials and Methods
Animal care
All animal experimentation is in accordance with the
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in Neuroscience Research. All animal procedures were
performed in accordance with the University of Toronto’s
animal care committee’s regulations. Experiments were
performed on a total of 25 male Wistar rats [Charles River;
mean body weight = 285.2 6 1.6 g (6SEM), range 276–
300 g]. Rats were housed in groups before surgery. Rats
were maintained on a 12/12 h light/dark cycle [lights on at
7 A.M. (Zeitgeber Time (ZT) 0)], and had free access to
food and water.

Surgery
Rats were implanted with electrodes for chronic record-

ing sleep-wake state: electroencephalogram (EEG) and
electromyogram (EMG) of the trapezius muscle. Sterile
surgery was performed under general anesthesia induced
with isoflurane (3.5%). Rats were intraperitoneally injected
with buprenorphine (0.03mg kg�1) to minimize postoper-
ative pain, atropine sulfate (1mg kg�1) to minimize airway
secretions, and saline (3 ml, 0.9%) for fluid loading. A sur-
gical plane of anesthesia, as judged by abolition of the
pedal withdrawal and corneal blink reflexes, was main-
tained with isoflurane (2–2.5%) administered with an an-
esthesia mask placed over the snout.
Microdialysis guides (CXG-6; Eicom) were targeted to a

position 0.8 mm anterior to lambda (as defined by
Paxinos and Watson (1998), as the midpoint of the curve
of best fit along the lambdoidal suture), 0.6 mm lateral to
the midline, and 3.7 mm ventral to lambda. These coordi-
nates correspond to a position 2.5 mm above the targeted
region of drug delivery in the vlPAG/DpMe (Paxinos and
Watson, 1998). Dummy cannulas were placed inside the
microdialysis guides to keep them free of debris until the
day of the experiment. Microdialysis probes projected an
additional 2.5 mm from the guide and so targeted the
vlPAG/DpMe. Following surgery, rats were housed indi-
vidually in separate cages while maintaining visual, olfac-
tory, and auditory contact with other rats. Rats recovered
for at least 6 d before experiments were conducted. Sleep
time, particularly REM sleep, is sensitive to housing con-
ditions (Febinger et al., 2014). REM sleep bouts in rodents
are more fragmented when animals are housed in groups.
The sleep recordings performed in this study require teth-
ering and individual housing. Housing rats individually in
the postoperative period was intended to promote stable
sleep conditions in the days leading up to the sleep re-
cordings and to allow for accommodation to the social
isolation.

Microdialysis perfusion
The evening before the first study day, rats were placed

in the recording environment and connected to a light-
weight counterbalanced recording cable for habituation
purposes. The recording environment consisted of a large
open-topped bowl (Rodent Bowl, MD-1514, BAS Inc)
mounted on a turntable (Rat Turn, MD-1404, BAS Inc),
housed within an electrically-shielded and soundproofed
cubicle (EPC-010, BRS/LVE Inc.). A video camera located
within the cubicle allowed for continuous visual monitor-
ing without disturbing the animal. At the time of recording

cable attachment, the internal cannula was removed from
the guide, and the microdialysis probe was inserted (CX-I-
8-005; 19-nl tip volume; 220 mm in diameter, 500-mm-long
membrane; 50,000-Da cutoff; Eicom). The probes were
connected to FEP Teflon tubing (inside diameter, 0.12
mm) with this tubing connected to 1.0 ml syringes via a
zero dead space switch (Uniswitch, BAS). The probes
were perfused with freshly-made artificial CSF (ACSF) at a
flow rate of 2.1 ml/min. It is important to note that, when
using microdialysis for drug delivery, drug is introduced
into the extracellular space by passive diffusion across
the semi-permeable membrane of the probe. This is in
contrast to pressure microinjection, which forces a vol-
ume of drug solution into the extracellular space and the
initial spread of the drug occurs by bulk flow. In the case
of microdialysis, drug administration does not entail any
physical distortion of brain tissue in the target region, as
there is no fluid volume ejected. Moreover, it is also impor-
tant to keep in mind that with microinjection, drug concen-
tration peaks at the target site immediately after the
injection and then rapidly decays, whereas with microdialy-
sis, drug suffuses and accumulates within the target region
more slowly and asymptotically approaches a concentra-
tion plateau that is ;20% of the drug concentration inter-
nal to the probe (Grace et al., 2014a). This plateau arises
because of an equilibrium between the drug diffusion gra-
dient and the tortuosity of the diffusion volume (i.e., the av-
erage impediment to free diffusion because of the physical
complexity of the extracellular space)

Experimental design
The study consisted of separate time-control (n=13)

and drug groups (n=12). Experiments took place be-
tween ZT3 and ZT7.5 and signals were recorded continu-
ously during this time. Between ZT3 and ZT5, ACSF was
microperfused in all animals. Between ZT5 and ZT7.5,
ACSF microperfusion was maintained in the time-control
group, while the drug-group received microperfusion of
the GABAA receptor agonist muscimol (Tocris Bioscience;
85 mM in ACSF; microdialyzed solution). A previous
vlPAG/DpMe inactivation study, performed in cats, used
muscimol concentrations of 100, 500, and 1 mM, adminis-
tered by reverse microdialysis (Eicom, probe model: A-L-
50-01; 2-h microperfusion; Crochet et al., 2006). In that
study, muscimol inactivation of the vlPAG/DpMe had a
REM sleep enhancing effect stemming from an increase
in the duration and frequency of REM sleep episodes. In
the present study, data collected between ZT5 and ZT5.5
were excluded from analysis to allow microperfused mus-
cimol to suffuse the vlPAG/DpMe region and approach its
plateau concentration.
Following completion of the experiments, the rats were

killed and their brains were removed to determine the po-
sition of the microperfusion sites. The locations of these
sites were recorded on standard coronal drawings from
the stereotaxic atlas of the rat brain prepared by Paxinos
and Watson (1998). We estimated the approximate tissue
volumes where muscimol-mediated suppression of neu-
ronal activity is likely to have occurred in our animals. To
generate these estimates, we used computer simulations
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(MATLAB; R2017a) of muscimol diffusion based on avail-
able muscimol pharmacology and diffusion data in vivo
(further details are provided in Results, Estimating the spread
of muscimol using microdialysis delivery). Simulations were
run using custom MATLAB code. This code is freely
available online at https://github.com/KPGrace/Grace_
Horner_Eneuro2020. The code is also available as
Extended Data 1.

Signal analyses
Electrical signals were amplified and filtered (Super-Z

head-stage amplifiers and BMA-400 amplifiers/filters,
CWE). The EEG was filtered between 1 and 100Hz,
whereas the neck EMG was filtered between 100 and
1000Hz. All signals were digitized at 2000 Hz (Spike 2
software, 1401 interface, CED).
The data were analyzed in consecutive 5-s time bins.

The EEG signal was subjected to a fast-Fourier transform
for each 5-s time bin. The power in frequency bands (2Hz
in width) spanning the 1- to 33-Hz range was calculated.
Sleep-wake states were initially identified by visual in-

spection, and classified into wakefulness, NREM, and
REM sleep according to standard criteria. Subsequent to
visual scoring we used the method described in the fol-
lowing section, NREM-to-REM sleep transition dynamics,
to perform additional scoring of NREM/REM intermediary
sleep (NRt) epochs.

NREM-to-REM sleep transition dynamics
The algorithm for defining NRt dynamics is depicted in

Extended Data Figure 2-1. The procedure used here has
been described elsewhere (Grace et al., 2014b). First, the
EEG was subjected to state-space analysis (Gervasoni et
al., 2004; Diniz Behn et al., 2010). The objective of a state-
space approach is to create a two-dimensional plot
bounded by electroencephalographic variables that can
be used to distinguish sleep-wake states from one anoth-
er, in which the position of a single point represents the
electroencephalographic state of the forebrain during a
single recording epoch. (Extended Data Fig. 2-1A–C). The
log10 transform of spectral power in the 1- to 19-Hz fre-
quency range and the log10 transform of the ratio of spec-
tral power in the 7- to 9-Hz and the 1- to 9-Hz frequency
ranges were used to create state-space plots. Data were
smoothed before plotting using a 5-epoch wide moving
average (MATLAB; function: smooth). Extended Data
Figure 2-1B shows example data from NREM and REM
sleep. Following this procedure and plotting the resulting
data yields two visible clusters of points, one for each
sleep state. However, to analyze transitions between
NREM and REM sleep states, standardized boundaries of
the NREM and REM sleep state-space clusters need to
be defined.
The method used to define state boundaries is a prod-

uct of our basic assumptions regarding the mechanisms
underlying sleep state generation. The occurrence of dis-
tinct states of NREM and REM sleep is the result of dis-
tinct generating circuits imposing distinct boundary
conditions on brain state over time (Gervasoni et al.,

2004). State dynamics observed across transitions be-
tween NREM and REM sleep are assumed to be a con-
sequence of competition between NREM and REM
sleep generating circuits (i.e., a period without a domi-
nant set of boundary conditions). Based on these as-
sumptions, it is expected that NREM and REM sleep
regions of state space, in contrast to transitionary
space, contain bounded trajectories (Diniz Behn et al.,
2010). Where a trajectory is constrained by a boundary,
it is expected that the trajectory undergoes reversals in
direction resulting in trajectory intersections. Where a
trajectory is unbounded and has a directional prefer-
ence, intersections should occur less often (at least
over short time scales; Diniz Behn et al., 2010). These
trajectory characteristics are evident in Extended Data
Figure 2-1C,D, which show that state trajectories in the
intervening space between NREM and REM sleep clus-
ters exhibit a directionality or a dependency on past tra-
jectory (i.e., second or higher-order dependence) that is
seemingly absent within the clusters (i.e., first or zeroth
order dependence). For each 2-h ACSF control period,
we calculated the position of trajectory intersections,
if any, occurring within a 5-epoch wide moving window
using custom MATLAB code. This code is freely avail-
able online at https://github.com/KPGrace/Grace_Horner_
Eneuro2020. The code is available as Extended Data 1.
Each intersection is, by definition, bounded by four
epoch points. Examples of such trajectory intersections
and the surrounding points are depicted in Extended
Data Figure 2-1D. For the example data in Extended
Data Figure 2-1, all such points associated with all such
trajectory intersections are plotted in Extended Data
Figure 2-1E. Notice that following this procedure,
points in the intervening space between the NREM and
REM clusters are largely absent, confirming the sugges-
tion that, in this region of state space, the trajectories
have some directional preference and avoid looping. To
define the boundaries of the NREM and REM sleep
state space, convex envelopes were fit to each cluster
(MATLAB function: convhull). To avoid cluster bounda-
ries being disproportionately affected by extreme
points, the distance of each point from the cluster cent-
roid was calculated and points with distances greater
than five standard deviations of the mean centroid dis-
tance were excluded. Extended Data Figure 2-1E
shows examples of convex envelopes fitted to NREM
and REM sleep coordinate points.
After using this procedure to separate state space into

NREM, REM and transitionary regions, the onset and off-
set of NRt bouts can be determined. However, not all data
points located in transitionary space were classified as
belonging to an NRt bout. We adopted specific scoring
rules to prevent our analysis being overly influenced by
transient boundary crossings. To score epochs as transi-
tionary sleep we used the following criteria, adapted from
the American Sleep Disorders Association’s EEG scoring
rules for EEG arousals from sleep (American Sleep
Disorders Association, 1992): (1) NRts must be preceded
by two consecutive epochs of NREM or REM sleep (i.e.,
two consecutive points located within a sleep state

Research Article: New Research 4 of 23

November/December 2020, 7(6) ENEURO.0451-19.2020 eNeuro.org

https://github.com/KPGrace/Grace_Horner_Eneuro2020
https://github.com/KPGrace/Grace_Horner_Eneuro2020
https://doi.org/10.1523/ENEURO.0451-19.2020.ed1
https://doi.org/10.1523/ENEURO.0451-19.2020.f2-1
https://doi.org/10.1523/ENEURO.0451-19.2020.f2-1
https://doi.org/10.1523/ENEURO.0451-19.2020.f2-1
https://doi.org/10.1523/ENEURO.0451-19.2020.f2-1
https://github.com/KPGrace/Grace_Horner_Eneuro2020
https://github.com/KPGrace/Grace_Horner_Eneuro2020
https://doi.org/10.1523/ENEURO.0451-19.2020.ed1
https://doi.org/10.1523/ENEURO.0451-19.2020.f2-1
https://doi.org/10.1523/ENEURO.0451-19.2020.f2-1
https://doi.org/10.1523/ENEURO.0451-19.2020.f2-1
https://doi.org/10.1523/ENEURO.0451-19.2020.f2-1


boundary); (2) following NRts, two consecutive epochs lo-
cated within a sleep state boundary are required to score
NREM-to-REM sleep or REM-to-NREM sleep transitions;
(3) where an excursion into transitionary space is termi-
nated by an arousal or by reentry into the state of origin,
the excursion into transitionary space must be at least
two epochs in duration; (4) bouts of NRt interrupted by
visually scored arousals, lasting three epochs or less, are
not considered separate bouts; (5) for excursions from
NREM state space into transitionary space, only trajecto-
ries traversing transitionary space from right-to-left (i.e.,
toward REM sleep state space) were scored as NRt; and
(6) excursions into transitionary space are scored as tran-
sitionary epochs only when such trajectories pass through
the region of transitional space demarcated by the set of
NREM-to-REM sleep transition trajectories. This last scor-
ing rule is depicted in Extended Data Figure 2-1F,G.
Extended Data Figure 2-1F shows the trajectory, through
NRt space, of multiple complete transitions between
NREM and REM sleep. These trajectories demarcate the
NRt space depicted in Extended Data Figure 2-1G, which
is in turn used to define valid NRts that are not complete
transitions between NREM and REM sleep. Therefore,
NRt space is defined by the spectral characteristics of
complete transitions between NREM and REM sleep, i.e.,
NRt bouts, whether they originate in NREM or REM sleep,
are, by definition, consistent with the spectral characteris-
tics of bona fide transitionary sleep. The result of this
complete procedure is an edited/standardized version of
the original manual sleep scoring that additionally in-
cludes bouts of NRt (Extended Data Fig. 2-1H).

Design overview of the flip-flop circuit computer
simulations
This section provides a general overview of the design

of, and the rationale supporting, our flip-flop circuit simu-
lations. The proceeding sections provide the technical de-
tails of the simulations.
Reliably inferring higher order circuit logic from experi-

mentally induced changes to sleep-state dynamics is
often not possible without a computational approach, be-
cause the ways in which state dynamics are shaped and
constrained by circuit configuration are often not intuitive.
Consistent with prevailing hypotheses and previous mod-
eling studies (Kumar et al., 2012; Rempe et al., 2010;
Dunmyre et al., 2014), we assume that the switching ele-
ments of the REM sleep control circuitry receive a slowly
varying, graded REM sleep drive signal. We assume that
bistability (i.e., the relative absence of NRt) is created by
interaction between NREM sleep promoting and REM
sleep promoting neuronal pools. Previous modeling stud-
ies have aimed to account for the observed statistical
properties of sleep-wake state transitioning, over many
sleep-wake cycles, using systems of NREM and REM
sleep homeostatic drives interacting with flip-flop circuits
(Kumar et al., 2012; Rempe et al., 2010; Dunmyre et al.,
2014). These models do not strictly consider intermediary
states, which are of particular relevance to biological flip-
flops. The aim of our circuit simulations is to evaluate
whether the effects, on NRt dynamics in particular, of

vlPAG/DpMe inhibition are consistent with the predicted
changes in intermediary state dynamics resulting from in-
hibition of one or both pools of a simple flip-flop circuit.
Here, we use simulations of a simple system including a

flip-flop circuit with input from a monotonically increasing
linear drive signal. Unlike previous modeling work, we
purposefully do not include a negative feedback in the cir-
cuits to model homeostatic modulation of the REM pro-
moting drive. Homeostasis and bistability, while related,
are nevertheless separable features of the REM sleep
control circuitry. Our simulations focus on sleep bistabil-
ity, i.e., NRt dynamics and bout statistics within bouts of
NREM and REM sleep. The flip-flop circuits that we simu-
late are composed of two pools of leaky integrate-and-fire
(LIF) type neurons that mutually inhibit each other with
random connectivity. The output states of the switch are
determined by comparing average population spiking
activity. We assume that naturally occurring NRt EEG
states are a reflection of intermediary firing rates in the
underlying NREM and REM sleep promoting popula-
tions. Therefore, intermediate states produced by circuit
simulations are likewise defined as periods of intermedi-
ate firing in the opposing populations of the flip-flop
switch. Importantly, in these simulations, the occurrence
of intermediary states is not guaranteed and is instead
dependent on particular simulation features that are bio-
logically relevant. NRt occurrence requires inclusion of
sources of stochastic variation, random connectivity be-
tween the flip-flop pools, and variation in the synaptic
weighting between the flip-flop pools. Lastly, to reflect
the inherent asymmetry of sleep switching (i.e., NREM
sleep often gates REM sleep and is more abundant), we
made the inhibitory output of the NREM representative
pool stronger than the REM representative pool. To sum-
marize, we simulated a ramping input signal into a flip-
flop switch composed of two pools of noisy, tonically ac-
tive LIF-type neurons that are mutually inhibitory, ran-
domly connected, and asymmetrically weighted. The
technical details of the circuit simulations are described
in the following section.

Technical details of flip-flop circuit computer
simulations
Simulations were run using MATALB (SimLIFnet function).

This code is freely available online at https://www.mathworks.
com/matlabcentral/fileexchange/50339 (copyright 2015,
Zachary Danziger, all rights reserved). Simulations were
run using a Dell Optiplex 7050 with an Intel Core i7-7700
processor, 16GB RAM, and 64-bit Windows 10 operat-
ing system (total simulation time ;27 h). All model pa-
rameters are listed in Extended Data Table 8-1. We have
made the code for initializing “SimLIFnet” simulations
with the parameters/settings in Extended Data Table 8-1
and for running the experimental manipulations freely
available. This code is freely available online at https://github.
com/KPGrace/Grace_Horner_Eneuro2020. The code is avail-
able as Extended Data 1. Simulated networks were com-
posed of LIF type neurons (Stein, 1965; Knight, 1972; Burkitt,
2006; Brunel and van Rossum, 2007). The method of numeri-
cal integration is a fixed step size Euler method. As with all
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integrate-and-fire neuronal models, spikes are not explicitly
modelled but rather when membrane potential reaches a set
threshold a spike is registered andmembrane potential imme-
diately resets to the resting potential. All parameters have
been non-dimensionalized and scaled such that the spiking
threshold is one and resting potential is zero and time is re-
scaled by the ratio of the membrane time constant to
the conductance (Lewis and Rinzel, 2003). The derivative of
the membrane potential is given by Lewis and Rinzel (2003;
their Eq. 5):

dvi
dt

¼ �vi1 Iapplied 1Wji
X0

n¼�1
sijðt� tn;jÞ;

where:

sijðt� tn;iÞ ¼ a2ðt� tn;iÞe�a t�tn;ið Þ:
The expression describes the dynamics of current input
to neuron i based on the time history of spikes from neu-
ron j. Where tn,i represents the past spike times from neu-
ron j, t is the current time, a is a constant representing the
speed of the synapse, Wji is the weight of the connection
from the j-th neuron to the i-th neuron, and Iapplied consists
of the noisy excitatory bias current and the ramping input
signal.
Flip-flop circuits are composed of two mutually inhibi-

tory pools of 25 neurons (i.e., pools N and R, meant to
represent NREM and REM active pools, respectively). We
randomly generated 60 connectivity matrices that varied
the connectivity and synaptic weighting between neurons
in the N-pool and R-pool. For each connectivity matrix,
Nj!Ri and Rj!Ni connection probability was 0.5. All con-
nection weights were negative (i.e., inhibitory). All Nj!Ni

and Rj!Ri connection weights were set to zero (i.e., auto-
inhibition within N-pool and R-pool was removed). All
neurons in the N-pool and R-pool received a number of
“applied currents.” Each N and R neuron received: (1) a
positive bias current (and therefore tended to produce
tonic firing patterns) and (2) a zero-mean Gaussian noise
current (amplitude=1.5). Depending on the simulation, ei-
ther the N-pool or the R-pool received the ramping input
from a pool of input neurons, which will cause the switch
to change state from “N-high/R-low” to “R-high/N-low.”
The ramping current received by the input neurons was
held at zero for the first 2000 simulation iterations and in-
creased linearly at a rate of10.06/iteration for the remain-
ing 6000 iterations. The connection probability from input
neurons to N and R neurons was 1.0 and the connection
weight remained constant. We simulated two ramping
input scenarios. In the first scenario, the ramping R-
state drive input produces excitation of the R group of
neurons via excitatory input neurons and in the second
scenario the ramping input inhibits the N group of neu-
rons via inhibitory input neurons. The outputs of the
simulation were taken as the average spike rates for the
N-pool and R-pool, taken each 20 iterations (i.e., yield-
ing 400 total epochs). These data were smoothed using
the MATLAB function: smooth (smoothing window= 3
epochs). Following smoothing, the difference in population

firing rate was calculated for each epoch (R-pool minus N-
pool firing). Using this difference over time, we scored the
output of each network into discrete states: N, R, and NRt.
The firing rate difference thresholds for the scoring of N, R,
and NRt states were calculated from baseline simulations
and are included in Extended Data Table 8-1. Differences in
input to the N-pool and R-pool, in experiment sets 1–4 ver-
sus sets 5–8 led to different dynamic ranges of spike rate.
To normalize the baseline switching behavior between ex-
periment sets 1–4 versus sets 5–8, we applied separate fir-
ing rate difference thresholds when scoring state transitions.
Switches were considered to be in the N-state for epochs
where the mean R-minus-N firing difference fell below the
N-state threshold and in the R-state for epochs where the
R-minus-N firing difference was above the R-state thresh-
old. All other epochs were scored as NRt. Transitions be-
tween states were only scored where state changes
persisted for at least two consecutive epochs.

Setting flip-flop synaptic weights and excitatory bias
currents
The behavior of the flip-flop circuits used in these simu-

lations is very sensitive to the weighting of the synaptic
connections between N-pool and R-pool and the level of
excitatory bias current applied to the neurons. Before sim-
ulating inhibition of N-pool and/or R-pool, we set the
baseline behavior of the flip-flop switch by appropriately
tuning the synaptic weights and applied bias currents.
For these simulations, the ramping R-state drive was
omitted. Nevertheless, spontaneous switching occurred
because of the effect of current noise. The steps that
were followed to select these parameter values are de-
picted in Extended Data Figure 8–2. Connection weight-
ing was tuned before setting the level of excitatory bias
current. Connection weights were initially set between (0)
and (�1). Initial connection weights were divided by a fac-
tor, d, ranging from 1.8 to 2.8 in 0.1-unit increments.
Nj!Ri weights were changed independent of Rj!Ni

weights. This makes for 121 combinations of Nj!Ri of
and Rj!Ni weighting (Extended Data Fig. 8-2A). To
control for the variability in switch behavior introduced
by the applied noise currents and connectivity randomiza-
tion, we performed 25 simulations per weighting combi-
nation (3025 total weighting simulations). Initial mem-
brane voltages for N-pool neurons were set such that all
simulations started in an N-state. For each weighting
combination, we calculated the difference in population
firing rate over time for each of the 25 simulations as de-
scribed in the preceding section. From these data, we
created histograms showing the frequencies of binned
R-minus-N firing rate differences. Examples of such histo-
grams for particular weighting combinations are shown in
Extended Data Figure 8-2B–D. Bimodal histograms indi-
cate flip-flops that spontaneously switch between N-state
and R-state. Where the distributions become more unim-
odal, the parameter values are causing the switches to: (1)
become trapped in either an N-state or R-state (Extended
Data Fig. 8-2D), or (2) lack bistability and mainly adopt in-
termediate firing rates (e.g., parameter combinations in
the bottom right corner of Extended Data Fig. 8-2E). We
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chose a combination of Rj!Ni and Nj!Ri connection
weights where Nj!Ri weights are slightly stronger (Nj!Ri

synaptic weight range=0 to �0.48; for d=2.1) than
Rj!Ni synaptic weights (range= 0 to �0.4; for d=2.5).
This results in dominance of the N-state while maintaining
the tendency of the circuit to periodically transition into
NRt and the R-state. After setting the flip-flop synaptic
weights, we followed a similar procedure to set the excita-
tory bias currents for the N-pool and R-pool neurons. Bias
currents were varied from 1.5 to 2.5 in 0.1-unit incre-
ments. This resulted in a simulation space with 121 bias
current combinations, which were simulated 25 times
each. We chose to set the initial bias currents to 2.0 for
both the N-pool and R-pool (Extended Data Fig. 8-2F).
This combination preserved the switching behavior se-
lected for in the preceding weighting simulations.

Design of flip-flop experiment simulations
We simulated three experimental conditions. To simu-

late neuronal inactivation (i.e., increased inhibitory cur-
rent) we reduced the excitatory bias current in select
pools. These changes in the applied current are included
in Extended Data Table 8-1. We simulated inactivation of
the N-pool, the R-pool, and the combination of N-pool
and R-pool for each randomly generated circuit configuration.
For some connectivity matrices, the R-state dominated from
the onset of simulations despite the dominance of the Nj!Ri

inhibitory connection weights (13/60 networks: these connec-
tivity matrices were excluded). Therefore, the total number of
simulations was 376: two input scenarios (ramp into R-pool
and ramp into N-pool) � four experimental conditions (base-
line, N inactivation, R inactivation, N and R inactivation) � 47
randomized flip-flop connectivity matrices. The objective of
these simulations was to define characteristic changes in flip-
flop switch output, in terms of the bouts statistics of N, R, and
particularly NRt, that occur in response to multiple possible
flip-flop inactivation experiments

Code accessibility
The code created for this paper is freely available online at

https://github.com/KPGrace/Grace_Horner_Eneuro2020 and
is available as Extended Data 1.

Statistical analysis
Data were analyzed using estimation statistics (Cumming,

2014). The statistical analyses and data plotting were per-
formed using a MATLAB-based analysis package devel-
oped by Ho and colleagues (DABEST version 1.0.0.0; Ho et
al., 2019). This code is freely available online at https://www.
mathworks.com/matlabcentral/fileexchange/65260-dabest-
matlab (copyright 2019, Tayfun Tumkaya, all rights re-
served). Effect sizes were reported as paired mean differ-
ences together with 95% confidence intervals (CIs).
Bootstrapping was used to compute the mean difference
sampling distributions. For bootstrapping, 5000 samples
were taken. CIs were bias corrected and accelerated.
When comparing effects from our in vivo dataset with
those from simulated experiments, we standardized effect
sizes using Cohen’s d (i.e., standardizedmean difference).

Results
Estimating the spread of muscimol using
microdialysis delivery
Intuitions regarding the degree of spread of focally ap-

plied drugs in the brain can vary widely. Therefore, we
suggest that it is instructive to provide an estimate of the
approximate tissue volumes where muscimol-mediated
suppression of neuronal activity is likely to have occurred
in our animals. To generate these estimates, we used
computer simulations of muscimol diffusion based on
available muscimol pharmacology and diffusion data in
vivo. A previous study from Arikan et al. (2002) measured
changes in spontaneous neural activity surrounding mi-
croinjections of titrated muscimol before quantifying tis-
sue levels of bound muscimol using autoradiography.
Over a 2.5-h period after injection, the maximum tissue
volumes where muscimol produced any observable sup-
pression had a radius of 2 mm. Autoradiography indicated
that the concentration of muscimol at the fringe of this
volume was ;10 nM. This is consistent with a study by
Rijal and Gross (2008), which calculated the dose–re-
sponse relationship between muscimol concentration and
percent changes in spontaneous spiking. That study esti-
mated that the effect of muscimol on spontaneous spiking
approaches zero at concentrations near 10 nM. From this
study we can compute the expected percent spike inhibi-
tion (PSI) given estimates of nanomolar muscimol con-
centration ([mus]):

PSI ¼ 4e�7 mus½ �3 � 0:0007 mus½ �210:45½mus�:
We simulated diffusion in both microinjection and mi-

crodialysis scenarios to relate the microinjection findings
of Arikan et al. (2002) to our own microdialysis experi-
ments. For important considerations regarding drug con-
centration profiles over time when using microinjection
versus microdialysis administration, see Materials and
Methods, Microdialysis perfusion. Neuronal inhibition vol-
umes reported by Arikan et al. (2002) were obtained using
1-ml microinjections containing 20-mg muscimol adminis-
tered over 30min, in contrast to the present study, where
we used reverse microdialysis delivery of a 85mM solution.
Here, we conservatively ignore the extracellular bulk flow
induced by pressure microinjection and the difference in
microinjection initial volume (1ml) as compared with our
microdialysis initial volume (19 nl, the volume of the mi-
crodialysis probe tip). For the purposes of simulation,
we set the source volume to be equal (19 nl) for both sim-
ulations. Therefore, a 30-min microinjection of 20-mg
muscimol (we treated each iteration of the simulation as a
1-min diffusion time) yields 0.667mg/iteration, which is
equal to 307 mM/iteration given a 19-nl source volume.
Simulations were conducted by applying the Smooth3
function to a 250 � 250 � 250 matrix in MATLAB (convo-
lution kernel size = 3; Gaussian filter with a SD of 1.2),
where a single central cell was treated as the source vol-
ume. For the simulation of microinjection, the initial
source volume concentration of 307 mM was reset for the
first 30 iterations, whereas for microdialysis simulations
the initial source volume concentration of 0.085 mM was
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reset for all 150 iterations. The standard deviation of the
Gaussian filter was set such that the concentration at the
matrix coordinate adjacent to the source volume pla-
teaued at 20% of the source volume concentration (in the
case of the microdialysis simulation). This value is taken
from measurements in agarose tissue phantoms of per-
manganate concentrations adjacent to a microdialysis dif-
fusion source [molecular weight (MW) permanganate
=119 g/mol vs MW muscimol = 114 g/mol; Grace et al.,
2014a]. After converting estimated muscimol concentra-
tion to PSI, we chose the diffusion distance where values
dropped below 1% spike inhibition (equal to ;2.5 nM
muscimol) in our matrix to correspond to the boundary of
the 4-mm-wide volume where Arikan et al. (2002) meas-
ured changes in spontaneous neural activity surrounding
muscimol microinjections. The diffusion distance where
concentration dropped below 1% spike inhibition in the
case of microdialysis simulation was 61% of that for mi-
croinjection simulation after 150 smoothing iterations.
Using this distance and the positions of the microperfu-
sion sites in our experiments we were able to produce an
estimate of average PSI across all experiments in stereo-
taxic coordinate space (Fig. 1).
Figure 1 shows the location of the micro-perfusion sites

from both experimental groups. Figure 1A shows an ex-
ample microperfusion lesion located at the boundary of
the vlPAG and the dorsal aspect of the DpMe. Figure 1B
shows that for all 25 rats, probe locations were located in
the combined vlPAG/DpMe region, from the anterioposte-
rior level defined by the caudal pole of the paratrochlear
nucleus to the caudal extent of the superior cerebellar pe-
duncle decussation. Figure 1C shows the results of our
simulation-based estimate of the approximate tissue vol-
umes where muscimol-mediated suppression of neuronal
activity is likely to have occurred in our animals over a 2.5-
h period. Our simulations indicate that spike inhibition is
expected to be concentrated in the vlPAG and the DpMe.
Importantly, we do not expect high levels of spike inhibi-
tion at important sites for REM sleep regulation located
caudally to the vlPAG and the DpMe, i.e., pre-locus co-
eruleus, the laterodorsal and sublaterodorsal tegmental
regions.

Evidence supporting the reliability of the NRt scoring
method
To test the involvement of vlPAG/DpMe neurons in the

control of sleep bistability we quantified bistability in the
form of NRt. First, we validate our quantification method.
We used the NREM and REM sleep state-space bounda-
ries that were defined from data collected in period one
(i.e., control period ZT3–ZT5) to score NRt bouts in both
periods one and two (i.e., the period of muscimol microper-
fusion in the drug treatment group ZT5.5–ZT7.5). Given
that we hypothesized that vlPAG/DpMe inhibition would
compromise sleep bistability, resulting in increased NRt
time, we tested whether or not our NRt scoring method is
predisposed to potential false-positive NRt identification.
First, in the group of control rats (n=13), when performing
manual 3-stage scoring, Figure 2A shows there was no
consistent change in the amount of wake, NREM, and

REM sleep between period 1 and period 2 expressed as
percentages of the total recording time [TRT; paired mean
differences (wake = �0.575%, NREM = �0.484%,
REM=1.06%), 95% CIs (wake = �13.2%, 9.68%; NREM =
�8.85%, 9.81%; REM = �1.19%, 3.81%)]. Figure 2B
shows that no spurious changes in sleep-wake state abun-
dance emerged when NRt scoring is performed as there
were still no consistent changes in levels of wake, NREM,
REM, or NRt between periods 1 and 2 in the control
group (paired mean differences (wake = �0.026%,
NREM = �0.458%, REM=0.451%, NRt = 0.320), 95%
CIs (wake = �12.3%, 9.97%; NREM = �8.91%, 9.70%;
REM = �2.22%, 1.35%; NRt = �0.163%, 0.73%).
Figure 2C shows that when comparing 3-stage sleep
scoring with our 4-stage scoring including NRt in the
control group, that NRt epochs were consistently
scored as NREM sleep using 3-stage scoring (paired
mean difference in NREM for 4-stage scoring minus 3-
stage scoring = �3.17% TRT; CI = �4.08%, �2.45%).

Effects of vlPAG/DpMe inhibition on NREM/REM
transitionary sleep
Figure 3A shows that muscimol treatment decreased

wake, and therefore increased sleep opportunity, by
9.85% of the TRT with a 95% CI of (�14.8%, �1.03%).
Note that there is considerable uncertainty about the
magnitude of the wake suppression effect, with the CI
stretching toward zero difference. Nevertheless, to con-
trol for the possibility that inhibition of the vlPAG/DpMe
suppresses wake, we chose to quantify changes in sleep
and NRt as percentages of the total sleep time (TST).
Figure 3B shows that, with 3-stage scoring, vlPAG/DpMe
inhibition produced a large increase in REM sleep of
6.79% TST with a 95% CI of (4.39%, 8.86%). However,
when accounting for changes in sleep bistability using 4-
stage NRt scoring, muscimol treatment was associated
with a smaller increase in REM sleep of 2.74% TRT [CI
(0.748%, 4.92%)], where the CI is compatible with negligi-
ble effect sizes. We found that when using 4-stage NRt
scoring, much of the observed increase in REM sleep was
better classified as bouts of NRt (this despite the evidence
detailed in Fig. 2 that our method of 4-stage NRt scoring
is not predisposed to reclassification of REM sleep to
NRt). Therefore, inhibition of the vlPAG/DpMe compro-
mised normal sleep bistability, as evidenced by a large in-
crease in NRt of 7.53% of the TST with a 95% CI of
(5.89%, 9.7%; Fig. 3B). The CI here suggests that all com-
patible effect sizes are large.

Effects of vlPAG/DpMe inhibition on REM sleep
stability
The data presented here after were derived using 4-

stage NRt scoring unless otherwise stipulated.
Figure 4A,B shows that inhibition of the vlPAG/DpMe

produced a fragmentation of REM sleep; the average fre-
quency of short (�15 epochs in duration) REM sleep
bouts/2 h increased by 4.5 (an 86% increase relative to
baseline) with a 95% CI of (1.92, 6.25). By contrast, the
change in longer REM sleep bouts (.15 epochs in
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Figure 1. Location of microperfusion sites and prediction of the anatomic extent of muscimol-mediated inhibition. A, Example site
of microperfusion located at the boundary of the vlPAG and the DpMe. The black arrow indicates the most ventral point of the lesion
left by the microdialysis probe. B, Probe locations sites for all 25 rats (blue rectangles = muscimol group; red rectangles = control
group) located between the anterioposterior level defined by the caudal pole of the paratrochlear nucleus to the caudal extent of the
superior cerebellar peduncle decussation. All probes were implanted on the right side; probes positions are shown on both sides for
clarity purposes. C, Results of our simulation-based estimate of average PSI across all experiments in stereotaxic coordinate
space.
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duration) was near zero [0.917 bouts/2 h with a CI of
(�0.667, 2.0)]. Figure 4C,D shows that, during muscimol
microperfusion animals entered transitional sleep more
frequently and remained in NRt longer relative to baseline.
The average frequency of long (more than or equal to
three epochs in duration) NRt bouts increased by 6.33
bouts/2 h (a 108% increase relative to baseline) with a CI

of (3.83, 9.5). Importantly, in contrast to REM sleep,
NREM sleep was not consistently fragmented by vlPAG/
DpMe inhibition. Figure 4E,F shows the analysis of NREM
sleep bout frequency. For NREM sleep bout number/2 h,
the CI of (�9.75, 10.8; mean difference of 11.58 bouts/2
h) is compatible with their being no effect; however, the
interval is wide, and so we cannot rule out moderate effect

Figure 2. Control group validation of the NRt scoring method. A, Compared levels of wake, NREM, and REM sleep between periods
1 (ZT3 and ZT5) and 2 (ZT5.5 and ZT7.5) in the control group (n=13). B, Same data as in A, except the NRt scoring method is used.
C, Same data as in B, except levels of sleep are expresses as a percentage of TST rather than TRT. For each comparison, the
paired mean differences are shown in Cumming estimation plots. The raw data are plotted on the upper axes; each paired set of ob-
servations is connected by a line. On the lower axes, each paired mean difference is plotted as a bootstrap sampling distribution.
Mean differences are depicted as dots; 95% CIs are indicated by the ends of the vertical error bars. The algorithm for defining
NREM-to-REM sleep transition dynamics is illustrated in Extended Data Figure 2-1.
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Figure 3. Effects of vlPAG/DpMe inhibition on sleep macroarchitecture and bistability. A, Effects of vlPAG/DpMe inhibition on the
levels of sleep-wake states as a proportion of the TRT. Levels of REM sleep are given for both 3-stage scoring and 4-stage NRt
scoring. B, Effects of vlPAG/DpMe inhibition on the levels of REM sleep and NRt states as a proportion of the TST. Levels of REM
sleep are given for both 3-stage scoring and 4-stage NRt scoring. For each comparison, the paired mean differences are shown in
Cumming estimation plots. The raw data are plotted on the upper axes; each paired set of observations is connected by a line. On
the lower axes, each paired mean difference is plotted as a bootstrap sampling distribution. Mean differences are depicted as dots;
95% CIs are indicated by the ends of the vertical error bars.
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Figure 4. Effects of vlPAG/DpMe inhibition on bout frequency and length. The effects of vlPAG/DpMe inhibition on bout fre-
quency and length for (A, B) REM sleep, (C, D) NRt, (E, F) NREM sleep, and (G, H) wake. For each state, we give the total num-
ber of bouts, the number of short bouts and the number of long bouts for the ACSF and muscimol conditions (A, C, E). For
each comparison, the paired mean differences are shown in Cumming estimation plots. The raw data are plotted on the upper
axes; each paired set of observations is connected by a line. On the lower axes, each paired mean difference is plotted as a
bootstrap sampling distribution. Mean differences are depicted as dots; 95% CIs are indicated by the ends of the vertical error
bars. Also, for each state, bout length histograms are provided in B, D, F showing the cumulative bout numbers across all 12
rats in the muscimol group.
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sizes in either direction. The uncertainty largely stems
from one animal. Exclusion of this animal yields a CI of
(�13.4, 1.0; mean difference of �5.64 bouts/2 h; i.e., a CI
that is not compatible with a marked increased NREM
sleep bout number). Figure 4 G,H shows the analysis of
waking bout frequencies.
That NREM sleep was not fragmented by muscimol mi-

croperfusion suggests that the increased number of NRt
bouts induced by vlPAG/DpMe inhibition originated dis-
proportionately from periods of REM sleep. Figure 5
shows the hypnograms for all transitions into REM sleep
from all rats in the muscimol group, inclusive of REM
sleep episodes and the preceding 90 s. The figure shows
that, under normal (ACSF) conditions, entries into NRt
from REM sleep were rare, occurring only five times in 24

h of baseline recording in 12 rats. In contrast, during
vlPAG/DpMe inhibition there was increased emergence of
NRt from REM sleep episodes. Figure 6A shows an exem-
plar state-space plot from a single experiment including
all the NRt trajectories originating in NREM sleep space
during the baseline period. Figure 6B shows the trajectory
of the only excursion into NRT space originating in REM
sleep over the same period in the same animal. Figure
6C,D show examples of the NRt trajectories, originating
from NREM and REM sleep, respectively, during musci-
mol-mediated inhibition of the vlPAG/DpMe. Notice in
Figure 6D the increased propensity to enter NRt from REM
sleep during vlPAG/DpMe inhibition. Figure 6E gives group
data showing that muscimol inhibition increased the density
of NRT originating in NREM sleep by 39% (paired mean

Figure 5. Hypnograms for all transitions into REM sleep. Shown are the hypnograms for all transitions into REM sleep from all rats
numbered 1–12, inclusive of REM sleep episodes and the preceding 90 s. All transitions are aligned according to the epoch where
the transition into REM sleep takes place (denoted as time 0).
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Figure 6. NRt dynamics in NREM versus REM sleep. A–D, Exemplar state-space plot from a single experiment. A, All NRt trajecto-
ries originating in NREM sleep space during the baseline period. B, Trajectory of the only excursion into NRT space originating in
REM sleep over the same period in the same animal. C, D, Examples of the NRt trajectories originating, from NREM and REM
sleep, respectively, during muscimol-mediated inhibition of the vlPAG/DpMe. E, Group data of paired mean difference in NRt den-
sity originating in NREM sleep (NRt bouts/minutes of NREM sleep) and REM sleep (NRt bouts/minutes of REM sleep). F, Total NRt
amount as a percentage of TST for NRt originating in NREM and REM sleep. G, Average NRt bout duration for NRt originating in
NREM and REM sleep. Paired mean differences are shown for all comparisons in a Cumming estimation plot. The raw data are plot-
ted on the upper axes; each paired set of observations is connected by a line. On the lower axes, each paired mean difference is
plotted as a bootstrap sampling distribution. Mean differences are depicted as dots; 95% CIs are indicated by the ends of the verti-
cal error bars.
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difference in NRt density (bouts/minute of NREM
sleep) = 0.103 [CI (0.027, 0.229)]. However, there is un-
certainty about the magnitude of this effect given that
the CI is compatible with negligible effect sizes. By con-
trast, we observed a larger, more robust increase in the
density (bouts/minutes of REM sleep) of NRt originating
in REM sleep. Muscimol inhibition increased NRt density
originating in REM sleep by 576% [paired mean differ-
ence in NRt density = 0.355, CI (0.208, 0.506)]. The CI
here suggests that all compatible effect sizes are large.
Figure 6F shows that while vlPAG/DpMe inhibition may

not produce large increases in NREM NRt density, musci-
mol microperfusion did reliably increase the total amount
of NRt originating in NREM sleep. The amount of NRt orig-
inating in NREM sleep increased by 3.58% of TST (69.3%
increase from baseline) during muscimol microperfusion
with a 95% CI of (2.44%, 4.67%). This can be accounted
for by an average increase in the duration of NRt bouts
originating in NREM sleep of 20.7 s [95% CI (11.7 s, 35.5
s); a 51.5% increase from baseline; Fig. 6G]. The amount
of NRt originating in REM sleep increased by 3.93% of
TST during muscimol microperfusion with a 95% CI of
(2.76%, 5.44%), representing an 876% increase relative
to baseline (Fig. 6F). The duration of NRts originating in
REM sleep increased 216% over baseline with a paired
mean difference of 30.6 s and a 95% CI of (18.2 s, 45.5 s).
Taken together, these data suggest that the loss of sleep
bistability resulting from vlPAG/DpMe inhibition was
driven by a greater frequency of NRts originating in REM
sleep and the lengthening of NRt bouts regardless of the
sleep state of origin.

Effects of vlPAG/DpMe on EEG power
That much of the increase in REM sleep induced by

vlPAG/DpMe inhibition is better classified as transitionary
sleep, is also evident in the EEG power analysis.
Extended Data Figure 7–1A–D shows an example of
spectral changes in the EEG across a normal NREM-to-
REM sleep transition (Extended Data Fig. 7–1A,B) com-
pared with the spectral changes across a period of sleep
instability during vlPAG/DpMe inhibition (Extended Data
Fig. 7–1C,D) with corresponding state-space plots show-
ing the state trajectories in NRt space. Figure 7A shows
baseline group data comparing the difference in relative
EEG power, across multiple frequency bands, between:
(1) NREM sleep and NRt (blue lines), and (2) REM sleep
and NRt (red lines). Figure 7A, bottom panel of the
Cumming estimation plot, shows the frequency ranges
where NRt, NREM, and REM sleep states reliably differ
from one another. At baseline, relative to NREM sleep,
NRt periods exhibited reduced d power [1–3 Hz; CI
(�12.0, �7.77)], elevated u power [7–9 Hz; CI (4.94,
8.05)], and elevated s power [11–13 Hz; CI (1.41, 3.86)].
Relative to REM sleep, NRt periods exhibited reduced u
power [7–9 Hz; CI (�11.1, �4.97)] and elevated s power
[11–13 Hz; CI (4.04, 5.69)]. Figure 7B shows the effect of
vlPAG/DpMe inhibition on relative EEG power. For each
power band, we show the bootstrap sampling distribu-
tions of the paired mean differences for each state (data
points from individual animals are omitted for clarity). We
found that the largest and most robust effects on EEG
power occurred in REM sleep, specifically in those fre-
quency bands where REM sleep differed most from NRt,

Figure 7. EEG effects of vlPAG/DpMe inhibition. Group data showing the effect of muscimol on relative EEG power (in 2-Hz-wide
bins from 1 to 19 Hz). A, Comparison of EEG power between NRt and both NREM and REM sleep in the baseline condition. B,
Effect of muscimol inhibition on EEG power for each band and each state (NRt, NREM, and REM sleep). EEG power in REM sleep is
given for 3-stage scoring and 4-stage NRt scoring. For each comparison, the paired mean differences are shown in Cumming esti-
mation plots. The raw data are plotted on the upper axes; each paired set of observations is connected by a line. Raw data are
omitted in panel B. On the lower axes, each paired mean difference is plotted as a bootstrap sampling distribution. Mean differen-
ces are depicted as dots; 95% CIs are indicated by the ends of the vertical error bars. Examples of EEG traces, state-space plots,
and NRt trajectories in state space are shown in Extended Data Figure 7-1.
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i.e., 7–9 and 11–13 Hz. The magnitude of power changes
in these bands was greatest when using 3-stage scoring.
The CIs suggest that all compatible effect sizes are large.
When changes in sleep bistabilty were accounted for with
4-stage NRt scoring, the effect sizes of muscimol inhibi-
tion on EEG power changes in REM sleep were dimin-
ished and the CIs are, instead, compatible with smaller
or negligible effect sizes. The attenuation of EEG power
effects in REM sleep, when accounting for the incidence
of NRt bouts, indicates that these power differences
stemmed from these discrete NRt bouts rather than a
more general modulation of REM sleep EEG features.

Computer simulations of flip-flop circuits: optimizing
baseline flip-flop behavior
We used neural circuit simulations to evaluate whether

the effects, on NRt dynamics in particular, of vlPAG/
DpMe inhibition in vivo are consistent with the predicted
changes in NRt dynamics resulting from modulation of
an underlying flip-flop circuit. We simulated a ramping
input signal into a flip-flop switch composed of two pools
of noisy, tonically active LIF-type neurons that are mutu-
ally inhibitory, randomly connected, and asymmetrically
weighted (for more detail, see Materials and Methods).
Figure 8A,B shows the configurations of the simulated
flip-flop circuits. It is important to keep in mind that we
consider two input scenarios: one where the ramping R-
state drive input is delivered to the flip-flop switch through
the stronger N-pool (Fig. 8A) and one where it is delivered
through the weaker R-pool (Fig. 8B). Figure 8C gives the
connectivity matrix for one example simulation circuit.
Each cell in the grid corresponds to the weight of a synap-
tic connection. Each row corresponds to an individual
neuron as a source of connections, while every column
corresponds to an individual neuron as a recipient of
input. Neurons are grouped according to the pools to
which they belong: input pool (n=10), R-pool (n=25), and
N-pool (n=25). The regions of the matrix filled with black
denote the fact that there is no intrapool connectivity.
Otherwise, the fill color of the cells denotes the synaptic
weight between cells (white denotes a weight of zero or
no connection). It is important to keep in mind that the N-
pool!R-pool and R-pool!N-pool inhibitory connections
depicted in Figure 8C are only examples; we constructed
47 circuits where the N-pool!R-pool and R-pool!N-
pool inhibitory connections were randomized. An example
simulation run is shown in Figure 8D. In the case of this
example, the ramping input is delivered through the N-
pool. Spike raster plots are shown for representative R-
pool and N-pool input neurons. Spike raster plots are also
shown for all N-pool and R-pool neurons. Figure 8E gives
the average population levels of firing for the N-pool and
R-pool over the time course of the simulation. From the
population activities, we calculated the average spike rate
difference between the pools (R-pool minus N-pool spik-
ing). Average spike rate difference is represented as a
color-coded bar in the middle segment of Figure 8E and a
matching “scoring” bar, where spike rate differences are
converted to one of three states: N, NRt, and R (according

to the scoring rules stipulated in Materials and Methods,
Technical details of flip-flop circuit computer simulations).
The baseline behavior of the flip-flop circuits used in

these simulations is very sensitive to the balance of the
synaptic weighting between N-pool and R-pool and the
level of excitatory bias current applied to the neurons. We
examined flip-flop switch behavior across a range of N-
pool and R-pool weighting combinations and excitatory
bias currents in the absence of any ramping R-state drive.
The results of those simulations are shown in Extended
Data Figure 8-2. As outlined in Materials and Methods
(Setting flip-flop synaptic weights and excitatory bias cur-
rents), for each weighting combination, we performed 25
simulations, calculated the average spike rate difference
between the N-pool and R-pool and created a histogram
showing the frequencies of binned R-pool minus N-pool
firing rate differences. Examples of such histograms are
shown in Extended Data Figure 8-2B–D. In these histo-
grams, the magnitude of the left and right peaks indicates
the prevalence of the N-state and R-state, respectively.
The height of the intervening trough indicates the preva-
lence of N/R intermediate states. In Extended Data Figure
8–2E,F, individual cells in the grid correspond to a given
parameter combination and the color-coding is a repre-
sentation of the associated firing rate histogram: the
height of the N-peak, N/R trough, and the R-peak are indi-
cated by the color of the left, middle and right bars, re-
spectively. The parameter combinations selected for the
experimental simulations are outlined in yellow. We chose
a combination of R!N and N!R connection weights
where N!R weights are slightly stronger. This results in
dominance of the N-state while maintaining the tendency
of the circuit to periodically transition into an R-state in
the absence of any ramping R-state drive input. Without a
modest tendency to switch into R-states despite the lack
of switching input (a result of including noise in the bias
currents), we do not observe “failed” transition attempts
(i.e., N!NRt!N or R!NRt!R events) as occur in vivo.
The effect of any inactivation or activation of R or N neu-

rons is equivalent to movement between cells of the grid
in Extended Data Figure 8-2F. For instance, when reduc-
ing the excitability of N-pool and R-pool simultaneously,
equivalent to moving toward the top left corner of the grid,
flip-flop circuits lose bistability, as evidenced by the in-
creased time spent in NRt. It is important to note that
given the nonlinear changes in flip-flop switch behavior
across bias current space, that the qualitative nature of
the effect of any change in N-pool and/or R-pool activa-
tion level will be sensitive to the initial configuration of the
switch.

Computer simulations of flip-flop circuits: the effects
of neuronal inhibition on switching behavior and
bistability
Figure 8F,G show the results of every simulation across

all experimental conditions. Simulation results are pre-
sented in the “state-scoring format” depicted in Figure
8E. Note that Figure 8F also shows the average spike rate
difference between N-pool and R-pool, in the colored bar
format, for all B1, baseline simulations. By selectively
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Figure 8. Computer Simulations of flip-flop circuits. A, B, Configurations of the simulated flip-flop circuits. Two input scenarios are
used: (A) ramping R-state drive is delivered to the flip-flop switch through the N-pool and (B) ramping R-state drive is delivered to
the flip-flop switch through the R-pool. C, Connectivity matrix for one example simulation circuit. Each cell in the grid corresponds
to the weight of a synaptic connection. Each row corresponds to an individual neuron as a source of connections, while every col-
umn corresponds to an individual neuron as a recipient of input. Neurons are grouped according to the pools to which they belong:
input pool (n=10), R-pool (n=25), and N-pool (n=25). The regions of the matrix filled with black denote the fact that there is no in-
trapool connectivity. Otherwise, the fill color of the cells denotes the synaptic weight between cells (white denotes a weight of zero
or no connection). N!R and N!R inhibitory connections depicted are only representative examples (47 circuits were used across
all simulations, where the N!R and N!R inhibitory connections were randomized). D, An example simulation run. Spike raster
plots are shown for representative R-pool and N-pool input neurons (every fifth input neuron spike is shown to make visualizing the
spikes easier). Spike raster plots are also shown for all N-pool and R-pool neurons. E, N-pool and R-pool raster plots as average
population levels over the time course of the simulation, average spike rate difference between the pools (R-pool minus N-pool
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reducing the applied currents to neurons in the N-pool
and R-pool, we performed three experiments: inhibition of
the R-pool, inhibition of the N-pool and combined inhibi-
tion of the N-pool and R-pool. This is in keeping with the
possible effects of vlPAG/DpMe inhibition in vivo, as this
region is enriched in both REM sleep-inactive and REM
sleep-active neuron types. We used several measures to
quantify flip-flop switch behavior that are based on our in
vivo analyses: the density of NRt bouts originating in the
R-state, the density of NRt bouts originating in the N-
state, and the latency of transition to the R-state (simula-
tions are initialized in the N-state). Quantification of the
simulation results according to these metrics is presented
in Figure 9.
Figure 9A shows the results of experimental simulations

on the density of NRt bouts originating in the R-state (i.e.,
the frequency of NRt bouts relative to the total number of
R-state epochs). Relative to the baseline configuration, in-
hibition of the R-pool (simulation set 2) robustly increased
the frequency of NRt originating in the R-state by 93%
with a 95% CI of (74%, 116%). By contrast, inhibition of
the N-pool (simulation set 3) did not increase the fre-
quency of NRt originating in the R-state (paired mean dif-
ference �24% with a 95% CI of (�43%, 2%). In
simulation set 4, where both N-pool and R-pool were in-
activated, the frequency of NRt originating in the R-state
increased 51% with a 95% confidence in interval of (33%,
73%). Therefore, the CIs indicate that, a marked increase
in R-state NRt density is only compatible with R-pool and
combined R-pool/N-pool inhibition.
Figure 9B shows the results of experimental simulations

on the density of NRt bouts originating in the N-state (i.e.,
the frequency of NRt bouts relative to the total number of
R-state epochs). Relative to the effect sizes in Figure 9A,
showing the propensity of the R-state to be destabilized
and fragmented by NRt, the CIs shown in Figure 9B indi-
cate that the N-state was associated with much smaller,
possibly negligible, changes in average NRt density.
Relative to the baseline configuration, inhibition of the R-
pool (simulation set 2) decreased the frequency of NRt
originating in the N-state by 21% with a 95% CI of
(�43%, �3%). This is in contrast to the robust increase in
NRt density in the R-state occurring in the same simula-
tions. Inhibition of the N-pool (simulation set 3) yielded a
CI of N-state NRt effect size that is compatible with no ef-
fect (�2%, 61%; paired mean difference = 130%).
However, the interval is wide and therefore admits of
moderate increases in the frequency of NRt originating in
the N-state with N-pool inhibition. A similar result was ob-
tained in experiment 4, where both N-pool and R-pool
were inactivated. Here, the frequency of NRt originating in
the N-state increased 24% with a 95% confidence in in-
terval of (4%, 46%).

Figure 9C shows the results of experimental simulations
on the latency to initiation of the R-state (i.e., the drive
threshold for N-to-R-state transitioning). Relative to the
baseline configuration, inhibition of the R-pool (experi-
ment set 2) robustly increased R-state latency by 26%
with a 95% CI of (20%, 31%). In contrast, inhibition of the
N-pool (experiment 3) robustly decreased R-state latency
by 40% with a 95% CI of (�49%,�32%). In experiment 4,
inactivation of both N-pool and R-pool produced a mark-
edly smaller 10% decrease in R-state latency with a 95%
confidence in interval of (�17%,�4%).
The preceding results are from stimulations of circuit con-

figurations where the ramping input was delivered through
the N-pool (i.e., simulations 1–4). The results of experiments
5–8, where the ramping input was delivered through the
weaker R-pool, were not markedly different. Group data for
simulations 5–8 are included in Figure 9D-F.
Figure 9G summarizes the results of vlPAG/DpMe inhi-

bition in vivo and that of simulated flip-flop switch inacti-
vations. Standardized effect sizes (Cohen’s d) are given
for: (1) NRt density originating in R/REM, (2) NRt density
originating in N/NREM, and (3) the latency to R/REM,
which is represented by NREM sleep bout length in the
case of in vivo data. The major effects of simulated inhibi-
tion of the R-pool were an increase in NRt density origi-
nating in the R-state and an increase in the latency to
initiation of the R-state. While the fragmentation of the R-
state by NRt is consistent with the fragmentation of REM
sleep by NRt in vivo, the increase in R-state latency is not
consistent with our in vivo findings. The major effects of
simulated inhibition of the N-pool were mostly inconsis-
tent with our in vivo findings, which is notable considering
that the prevailing hypothesis of vlPAG/DpMe involve-
ment in REM sleep control focuses on the role of REM
sleep-inactive neurons in gating NREM-to-REM sleep
transitioning. The major effect of simulated N-pool inacti-
vation was reduced R-state transition latency. To be con-
sistent with this scenario, we would have expected
shortening of NREM sleep bout lengths in vivo, indicat-
ing a lowered switching threshold for NREM-to-REM
sleep transitioning. Most importantly, simulated N-pool
inactivation failed to increase NRt density originating in
the R-state. This is not compatible with the largest ef-
fect of vlPAG/DpMe inhibition in vivo. The in vivo effects
of vlPAG/DpMe inhibition are most compatible with the
scenario where both vlPAG/DpMe REM sleep active
and inactive populations contribute to REM sleep regu-
lation through participation in a flip-flop switch.
Inhibition of both N-pool and R-pool in flip-flop simula-
tions was necessary to produce increased NRt density
originating in the R-state alongside smaller or negligible
effects on N-state NRt density and the threshold for N-
to-R-state transitioning.

continued
spiking), and a corresponding scoring bar, where spike rate differences are converted to one of three states: N, NRt, and R. F, G,
Shows the results of every simulation across all experimental conditions. Simulation results are presented in the state-scoring for-
mat depicted in E. The procedure for setting flip-flop synaptic weights and excitatory bias currents is illustrated in Extended Data
Figure 8-2. A listing of the parameter values/settings used for computer simulations is given in Extended Data Table 8-1.
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Figure 9. Computer simulations of flip-flop circuits: analysis of bistability and switching behavior. A, Group data for NRt density
originating in the R-state, calculated ratio of the number of NRt bouts over the amount of R-state, across four sets of simulations:
B1 (baseline), 2 (inhibition of the R-pool), 3 (inhibition of the N-pool), and 4 (inhibition of the N-pool and R-pool). B, NRt density origi-
nating in the N-state, calculated ratio of the number of NRt bouts over the amount of N-state, for simulation sets (B1, 2, 3, and 4).
C, Latency to the R-state for simulation sets (B1, 2, 3, and 4). For each comparison, the paired mean differences are shown in
Cumming estimation plots. The raw data are plotted on the upper axes. On the lower axes, each paired mean difference is plotted
as a bootstrap sampling distribution. Mean differences are depicted as dots; 95% CIs are indicated by the ends of the vertical error
bars. D–F, The results of simulations using circuits where the ramping input was delivered through the R-pool (B5, 6, 7, and 8). G,
Compares the effects from our in vivo dataset with that from simulated experiments. Effect sizes are standardized (Cohen’s d).
Simulation sets (B1, 2, 3, and 4) use the circuit configuration where the ramping input is delivered to the flip-flop through the
N-pool.
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Discussion
The results of our GABAergic inactivation of the vlPAG/

DpMe are consistent with the REM sleep enhancement
reported by previous inactivation studies (Petitjean et al.,
1975; Sastre et al., 1996; Crochet et al., 2006; Lu et al.,
2006a; Vanini, et al., 2007; Sapin et al., 2009; Weber et al.,
2015, 2018; Hayashi, 2015). Based on these reported in-
creases in REM sleep following vlPAG/DpMe inactivation,
it is reasonable that current hypotheses of vlPAG/DpMe
involvement in REM sleep control are focused on the role
of REM sleep-inactive neurons in gating NREM-to-REM
sleep transitioning (Lu et al., 2006a; Sapin et al., 2009;
Saper et al., 2010). However, after accounting for changes
in sleep bistability using an analysis of NRt dynamics
(both in vivo and in the context of flop-flop circuit simula-
tions), we find that current thinking is too narrowly fo-
cused on the role of the REM sleep-inactive population of
the vlPAG/DpMe in the control of REM sleep.
We argue that the narrow focus on REM sleep-inactive

vlPAG/DpMe neurons may be the result of a narrow focus
on REM sleep bout statistics as an output measure. Our
results show that a portion of the reported increase in
REM sleep following vlPAG/DpMe inhibition may be more
appropriately classified as a NREM/REM intermediate
state (NRt), indicating that some vlPAG/DpMe neurons
participate in a sleep bistability mechanism. Small
amounts of NRt are a feature of normal sleep cycling
(Benington et al., 1994). Episodes of REM sleep are com-
monly preceded by transitionary periods where the EEG
signatures of NREM sleep evolve into that of REM sleep
while the discharge rates of REM sleep-active brainstem
neurons gradually increase from low rates in NREM sleep
to maximal firing rates in REM sleep (Steriade and
McCarley, 2005; Boucetta et al., 2014; Weber et al.,
2018). The small proportion of time spent in NRt, ,5% of
the total sleep-wake record, is evidence of its instability
relative to NREM sleep and REM sleep states. On this
basis, it is reasonable that many researchers do not give
NRt major consideration when describing experimental
manipulations of sleep-state dynamics.
However, in the case of vlPAG/DpMe neuronal activa-

tion, we found an increase in NRt to be the most robust ef-
fect. Importantly, NRt periods predominately originated in
REM sleep. Under normal conditions, entries into NRt
from REM sleep were rare. This fragmentation of REM
sleep episodes by NRt bouts resulted in an increase in the
number of short REM sleep bouts. With conventional
sleep staging, an episode of REM sleep fragmented by
NRt can be scored either as a continuous bout or as multi-
ple transitions between REM sleep and NREM sleep. In
the former case, frequent transitioning between REM
sleep and NRt will present as a shift in the distribution of
REM sleep bout lengths toward longer episodes, rather
than a fragmentation of the REM sleep state. This is im-
portant because previous vlPAG/DpMe inactivation stud-
ies, which did not quantify NRt periods, have reported
lengthening of REM sleep bouts (Sastre et al., 1996;
Crochet et al., 2006; Lu et al., 2006a; Weber et al., 2015).
In the latter case, frequent transitioning between REM
sleep and NRt will present as a fragmentation of both

REM sleep and NREM sleep bout lengths. These scoring
variations can produce major differences in functional in-
terpretation from the same data. Therefore, in cases
where experimental manipulations may compromise
sleep bistability, we suggest that transitionary states be
quantified.
In the scenario that vlPAG/DpMe REM sleep-inactive

neurons contribute to negatively regulating the initiation
of REM sleep, while neighboring REM sleep-active neu-
rons are not significant contributors to REM sleep genera-
tion, we would expect specific changes to result from
vlPAG/DpMe inhibition. Suppression of the vlPAG/DpMe
would be expected to increase the probability of transi-
tioning from NREM-to-REM sleep as evidenced by a
shortening of NREM sleep bout lengths and an increase in
the number of transitions from NREM-to-REM sleep and/
or NRt. However, we did not observe a shortening of
NREM sleep bout lengths. Moreover, simulated inactiva-
tion of the flip-flop N-pool failed to destabilize and frag-
ment the R-state with bouts of NRt. In fact, N-pool
inactivation was compatible with a moderate stabilization
of the R-state. This prediction contradicts our in vivo find-
ing that REM sleep was fragmented by NRt during vlPAG/
DpMe inhibition. In contrast, simulated inhibition of the
REM sleep-active component of a flip-flop switch pro-
duced a strong and disproportionate fragmentation of
REM sleep by NRt. However, the scenario where vlPAG/
DpMe REM sleep-active neurons exert major control over
the stability of REM sleep while REM sleep-inactive neu-
rons contribute negligible functional output is also not in
agreement with our in vivo experimental data. Simulated
inhibition of the REM sleep-active component of a flip-
flop switch delayed transitioning in to REM sleep, but we
did not find a decrease in REM sleep propensity in vivo.
Our in vivo findings are most consistent with the results

of simulated suppression of both NREM and REM sleep-
active flip-flop switch components. While inhibition of the
individual N-pool and R-pool led to decreased and in-
creased N-state propensity, respectively, the combined
suppression of both pools resulted in a preservation of
transition latency/threshold. This result is important be-
cause it is consistent with our in vivo finding where, de-
spite a loss of sleep bistability, the distribution of NREM
sleep bout lengths was largely unchanged by vlPAG/
DpMe inhibition (a shift in NREM sleep bout lengths to-
ward shorter or longer durations would be an indicator of
an increase or decrease, respectively, in NREM-to-REM
sleep transition propensity). In the context of a flip-flop
mechanism of bistability, such changes in propensity re-
flect changes in the threshold sensitivity of the switch to
the level of external drive. Our simulations indicate that
this threshold is controlled by both the REM sleep active
and inactive switch components, as both pools contribute
to the overall strength of positive feedback in the switch.
Therefore, while our in vivo data seems to suggest that
vlPAG/DpMe inhibition did not produce a net change in
the threshold sensitivity of the NREM/REM switching cir-
cuitry, this is wholly consistent with combined inhibition of
mutually inhibitory NREM and REM sleep active switch
components.
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In contrast to the dependence of switching threshold on
both NREM and REM-sleep active switch components,
our simulations suggest that the robustness of the flip-
flop switch to noise/variability is primarily determined by
the weaker REM sleep-active pool. Without inclusion of
noise sources, switching between states in our flip-flop
simulations would be unidirectional, irreversible and sole-
ly dependent on input from the external drive. Previous
modeling studies show that flip-flop circuits, with appro-
priately tuned parameters are capable of reproducing the
temporal organization of rodent and human sleep only
where source(s) of variability and noise are incorporated
(Rempe et al., 2010; Kumar et al., 2012; Dunmyre et al.,
2014). On a short time scale (epoch-by-epoch), sleep-
wake state dynamics can be treated as a Markov process
where the probability of state transitioning is only depend-
ent on the current state of the system and therefore inde-
pendent of past states (Zung et al., 1965; Yang and
Hursch, 1973; Kemp and Kamphuisen, 1986; Gregory
and Cabeza, 2002; Diniz Behn et al., 2007; Bianchi et al.,
2012; Stephenson et al., 2013, 2016). Over comparatively
longer time scales, this property breaks down and higher
order dependencies emerge in state dynamics. While it is
unlikely that short-term sleep state dynamics strictly con-
form to the properties of a first-order Markov process (i.e.,
complete “memorylessness”), it is nevertheless useful to
explain sleep patterning in terms of interactions between
short-term stochastic processes and long-term proc-
esses, including sleep propensity drives. Therefore, it is
important that models of sleep state switching, such as
our own, incorporate both deterministic and stochastic
sources of switching. The aim of previous modeling stud-
ies has been to show proof of concept that individual or
coupled flip-flop switches are plausible circuit arrange-
ments underling sleep state transitioning (Rempe et al.,
2010; Kumar et al., 2012; Dunmyre et al., 2014). However,
past studies have not explicitly modelled NREM/REM in-
termediary states. Here, our primary aim was to simulate
changes in NRt dynamics in response to different flip-flop
switch configurations and simulated inhibition of switch
components. Previous modeling has shown that weaken-
ing input to a flip-flop switch will have the effect of in-
creasing the frequency of transitioning between steady
states (Rempe et al., 2010). In our simulations, when the
parameters are appropriately tuned, flip-flop switches are
guaranteed to transition between N-state and R-state at
least once under the influence of the external R-state pro-
moting input. Additional transitioning (i.e., N!NRt!N
and R!NRt!R transitions) is strictly driven by sources of
noise and therefore this type of transitioning reflects ro-
bustness of the switching circuit to sources of noise and
variability. We found that when a flip-flop switch is asym-
metrically weighted (i.e., N-pool!R-pool inhibition domi-
nates), the weaker pool dictates switch robustness to
noise and the switch’s sensitivity to noise is strongest
when activity in the weaker pool is highest. Therefore,
based on our simulations, the disproportionate fragmen-
tation of REM sleep by NRt, that we observed in vivo fol-
lowing vlPAG/DpMe inhibition, is consistent with an
inhibition of the REM sleep-active subpopulation of the
vlPAG/DpMe.

In our simulations, we did not include negative feed-
back between the switch output and the REM promoting
drive (i.e., a homeostatic control circuit). Homeostasis
and bistability, while related, are nevertheless separable
features of the REM sleep control circuitry. Our study fo-
cuses on sleep bistability per se, and on what NRt dynam-
ics reveal about the underlying mechanism of bistability.
Future modeling studies are needed that incorporate pre-
dictions of NRt bout statistics in the context of interacting
NREM and REM sleep homeostats. For such models, it
will be important to consider the influence of NRt on the
dissipation of REM sleep and NREM sleep drives. Past
REM sleep deprivation studies have shown that NRt pro-
pensity seems to increase over the course of selective
REM sleep deprivation, but that NRt per se does not ex-
hibit rebound following deprivation (Maloney et al., 1999,
2000). Moreover, the occurrence of REM sleep rebound
following deprivation suggests that the increased preva-
lence of NRt during deprivation is insufficient for the dissi-
pation of REM sleep drive.
It is important to note that because we do not model

REM sleep homeostasis that the ramping R-state drive
continues to increase in the R-state in our simulations. In
vivo, we would hypothesize that REM sleep drive would
dissipate in association with REM sleep bouts. However,
we currently do not know what the dynamics of this drive
are on the order of individual epochs and bouts of REM
sleep. Nevertheless, it is important to address what influ-
ence the drive signal profile during the R-state has on flip-
flop switch behavior. In the simulations, NRt bouts are, by
definition, periods where N-pool and R-pool exhibit inter-
mediate firing rates. Once the R-state is reached, further
increases in the ramping drive, that promote R-pool firing
and inhibit N-pool firing, tend to stabilize the R-state, i.e.,
reduces the likelihood of intermediate firing rates in N-
pool and R-pool. Therefore, the choice to use a monotoni-
cally increasing linear ramp can be considered conserva-
tive, as it biases flip-flip switch behavior away from
exhibiting NRt in the R-state.
We considered two different flip-flop circuit configura-

tions: one where the R-state promoting drive inhibited the
stronger N-pool and one where that drive activated the
weaker R-pool. In our simulations, we did not detect
major differences in flip-flop switch behavior that were
sensitive to drive input pathway (i.e., the integration site
for REM sleep drive). Nevertheless, more studies are
needed to identify the populations that integrate REM
sleep drive signals and to characterize the nature of the
drive signals themselves. Weber et al. (2018), reported
that firing rate increases exhibited by REM sleep-active
vlPAG neurons before transitions into REM sleep are not
significantly different from those increases that precede
transitions into wake. By contrast, decreases in NREM
sleep-active (i.e., neurons exhibiting greater firing rates in
NREM sleep than REM sleep, but not necessarily maximal
firing rates in NREM sleep) vlPAG neuron firing in advance
of REM sleep episodes are greater in magnitude com-
pared with those that precede transitions into wake. This
suggests that the firing of NREM sleep active vlPAG neu-
rons contains information about future REM states that is
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not contained in the firing of REM sleep-active neurons.
Based on these data, it may be more likely that NREM
sleep active neurons are the recipients of REM sleep drive
inputs. For most neurons participating in a flip-flop circuit
arrangement, their activity will sharply accelerate/deceler-
ate over the course of NRt bouts; however, some neurons
receiving REM sleep drive inputs will exhibit gradual
changes in firing rate over the span of the inter-REM inter-
val. Directly recording from the later type of neuron is the
most definitive means of determining sites of REM sleep
drive integration. Weber et al. (2018) have reported that,
within inter-REM intervals, the firing rate of GABAergic
NREM sleep active neurons is higher for the first NREM
bout in the interval relative to the last. Moreover, the firing
rate of these neurons is elevated in the first NREM sleep
bout following an episode of REM sleep in comparison to
the NREM bout preceding the REM sleep episode, further
evidence that the firing rate of GABAergic NREM sleep
active neurons may relate to the accumulation/dissipation
of REM sleep drive propensity. Critically, retrogradely
tracing the pathways that input into sites of REM sleep
drive integration may be a useful strategy toward identify-
ing the physical substrate of REM sleep drive(s), mecha-
nisms of REM sleep homeostasis and, potentially, REM
sleep function.
The bulk of studies interrogating the neural circuitry of

sleep adopt a reductionist approach, where the aim of
any given experiment is to assign a well described func-
tional role to a functionally distinct cell group. Focal cell
inactivation using muscimol is regarded as inferior with
respect to genetic targeting methods because the latter
enable greater cellular specificity. Achieving cell type
specificity is undeniably important; however, it is inappro-
priate to think that any method can be used to cleanly tar-
get individual functional groups. In other words, our a
priori assumption should always be that experimental out-
comes, at least potentially, reflect the modulation of multi-
ple functional groups simultaneously. Therefore, focal
inactivation using muscimol may be judged as a less ap-
propriate tool, but only especially so where the results of
which are used to attribute functional significance to a sin-
gle cell group. However, this is not the aim of the current
study. Here, we used simulated circuit dynamics and ex-
perimental manipulations thereof to detect contributions
from multiple, functionally-related cell groups, namely the
REM sleep-active and the REM sleep-inactive groups.
Nevertheless, it should be noted that there are other cell
groups in the in the ventral PAG region that contribute to
sleep-wake regulation. For instance, the PAG contains a
dopaminergic cell population that promotes wakefulness
(Lu et al., 2006b) and a neurotensinergic subpopulation of
glutamatergic cells that are not only active during NREM
sleep, but may also promote the state through their inner-
vation and excitation of a downstream population in
caudal ventromedial medulla (Zhong et al., 2019). We ob-
served a suppression of wakefulness during muscimol-
mediated inhibition of the vlPAG/DpMe region, which
could be accounted for by inhibition of the former dopa-
minergic cell group. Our finding that the distribution of
NREM seep bout lengths was not markedly effected by

vlPAG/DpMe inhibition is not consistent with modulation
of the latter neurotensinergic cell group. Nevertheless, our
use of pharmacological inhibition undoubtedly produced
non-specific inhibition of multiple functional groups.
We cannot rule out that the possibility that the implanta-

tion of the microdialysis probes in our animals had an ef-
fect on baseline sleep dynamics as we did not include a
control group of rats without implanted probes. Our ex-
periments were conducted on singly housed animals;
therefore, we cannot account for the impact of social iso-
lation stress on our results. Data were collected between
ZT3 and ZT7.5. Repeating this study at other times of day
may produce different results.
Future studies are needed to target-specific cell group-

ings and more fully test the claims made by this study. For
instance, in interpreting our findings, we assume that the
effects we observed in NREM/REM sleep transitionary dy-
namics stem from underlying REM sleep-active and
sleep-inactive GABAergic subpopulations of the vlPAG/
DpMe. Therefore, we would predict that the results of our
study would largely agree with those of a targeted inacti-
vation of vlPAG/DpMe GABAergic neurons, where a simi-
lar analysis of NRt state dynamics is performed. The most
critical test of our model predictions, and our claim that
REM sleep-active and sleep-inactive subpopulations of
the vlPAG/DpMe both contribute to REM sleep regulation
through participation in a flip-flop switch, will be made by
interventions that can successfully target neuronal groups
on the basis of their firing rate activity profiles across the
sleep-wake cycle [e.g., through further development of
tools such as Capturing Activated Neural Ensembles
(CANE) introduced by Sakurai et al., 2016]. Based on our
study, specific inhibition (although not total inactivation)
of GABAergic REM sleep-active neurons in the vlPAG/
DpMe region would be expected to delay NREM-to-REM
sleep transitioning and to disproportionately fragment
REM sleep with bouts of NRt. In contrast, specific inhibi-
tion (although not total inactivation) of GABAergic REM
sleep-inactive neurons in the vlPAG/DpMe region would
be expected to reduce the threshold for transitioning be-
tween NREM and REM sleep while enhancing or preserv-
ing stability of the REM sleep state.
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