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Abstract

Background: Identifying persistence and extinction thresholds in species-habitat relationships is a major focal point of
ecological research and conservation. However, one major concern regarding the incorporation of threshold analyses in
conservation is the lack of knowledge on the generality and transferability of results across species and regions. We present
a multi-region, multi-species approach of modeling threshold responses, which we use to investigate whether threshold
effects are similar across species and regions.

Methodology/Principal Findings: We modeled local persistence and extinction dynamics of 25 forest-associated breeding
birds based on detection/non-detection data, which were derived from repeated breeding bird atlases for the state of
Vermont. We did not find threshold responses to be particularly well-supported, with 9 species supporting extinction
thresholds and 5 supporting persistence thresholds. This contrasts with a previous study based on breeding bird atlas data
from adjacent New York State, which showed that most species support persistence and extinction threshold models (15
and 22 of 25 study species respectively). In addition, species that supported a threshold model in both states had associated
average threshold estimates of 61.41% (SE = 6.11, persistence) and 66.45% (SE = 9.15, extinction) in New York, compared to
51.08% (SE = 10.60, persistence) and 73.67% (SE = 5.70, extinction) in Vermont. Across species, thresholds were found at
19.45–87.96% forest cover for persistence and 50.82–91.02% for extinction dynamics.

Conclusions/Significance: Through an approach that allows for broad-scale comparisons of threshold responses, we show
that species vary in their threshold responses with regard to habitat amount, and that differences between even nearby
regions can be pronounced. We present both ecological and methodological factors that may contribute to the different
model results, but propose that regardless of the reasons behind these differences, our results merit a warning that
threshold values cannot simply be transferred across regions or interpreted as clear-cut targets for ecosystem management
and conservation.
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Introduction

Motivated largely by indications of declining wildlife popula-

tions due to habitat loss and fragmentation [1,2,3] ecologists

established a vast body of work on species-habitat relationships

over the last decades. From these studies, it became apparent that

wildlife responses to habitat loss and fragmentation are often non-

linear [4,5,6,7,8]. An increasing number of studies support the

main prediction of the extinction threshold hypothesis that there

are certain critical amounts of habitat required for population

persistence [9]. These thresholds are often defined as a ‘range of

habitat cover below which the probability of population persis-

tence decreases dramatically’ [10,11]. Documentation of thresh-

olds’ existence led to a rise of interest in determining critical

habitat amount or minimum patch size for species or population

persistence [1,12,13,14,15]. More recently, threshold modeling

extended to incorporate landscape-scale thresholds, leading to

reasonable evidence for thresholds in relationships between species

occurrence and habitat cover at landscape extents [16,17,18]. In

addition, first attempts in determining habitat thresholds in

persistence dynamics over time, rather than mere occurrence at

a single point in time, have been fruitful and comprise a useful

contribution to landscape ecology and conservation alike [19].

Although determination of persistence and extinction thresholds

are now considered major focal points of research [20,21,22,23],

uncertainty and debate on numerous issues continue to persist.

These issues include the mechanisms that are driving threshold

responses [24,25], confounding factors [26,27] and the value of
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applying threshold modeling approaches in conservation planning

and management [28,29,30,31]. One of the main concerns

regarding the incorporation of threshold analyses in conservation

is the lack of generality and transferability of results across species

[32,33,34] and regions [18,35].

Spatial and interspecific variation in critical thresholds has been

widely recognized [18,19,36,37], but few studies have directly

aimed at quantifying the mechanisms driving variation (but see

[18,38,39]). In order to derive conservation targets and general-

izations regarding species-habitat relationships, we will need to

study spatial and interspecific variation more intensely [35,40,41]

and conduct studies across more species and larger geographic

areas than previously pursued. In order to do so, we might be

required to step away from time and budget-limited smaller scale

field studies [18,42] and instead focus on existing data sources for

broad-scale analyses. Zuckerberg and Porter [19] provide an

example of a methodology through which we can assess threshold

responses of breeding birds on a broad (state-wide) scale. For their

study they make use of breeding bird atlas data. These data

provide a unique opportunity to model species distributions and

species-habitat relationships, because of the broad scale and

number of species for which analyses can be made

[19,43,44,45,46]. In addition, many regions (states, countries)

have repeated breeding bird atlas projects, usually spaced 20–25

years apart, thus allowing us to compare between regions and to

address spatial variation in long-term persistence rather than

occurrence at a single point in time [19].

Here, we present a first multi-region comparison in a larger

study that quantifies variation in thresholds found in long-term

species-habitat relationships at a landscape scale. We conducted

an analysis of threshold responses across a large set of breeding

forest birds at the scale of an entire state (Vermont) in a similar

fashion to the aforementioned study by Zuckerberg and Porter

[19]. Subsequently, we compared their results to ours in what is to

our knowledge the first attempt of a regional comparison of

threshold responses. Here, we highlight the potential that the use

of state-wide breeding bird atlases has for threshold analyses and

how our approach may answer existing questions regarding the

generality and transferability of models and results [18,35,47,48].

In addition, we propose that our approach holds potential for

further investigation of traits that may be correlated with species-

specific area-sensitivity [33,40,41] and mechanisms that drive

geographic variation in thresholds responses [18]. In this paper,

we do not go into depth on the reasons behind regional variation

in threshold responses, but do highlight potential ecological

explanations as well as methodological biases that may lead to

difference in model outcomes. Finally, we investigate how scale

influences threshold responses by comparing models that include

habitat cover at different scales. Due to the grid-based design of

our data set (i.e. atlas blocks) these kinds of comparisons across

scales are straightforward, thus affording a unique opportunity to

address the influence of scale on species-habitat relationships

[32,46,49,50].

Methods

Bird distribution atlases present a unique opportunity to study

occurrence dynamics on a broad scale and over a relatively long

term [19]. We based our analyses on a repeated atlas project, The

Atlas of Breeding Birds of Vermont, for which 1976–1981 [51]

and 2003–2007 [52] data were available. We thereafter compared

our results with a previous analysis by Zuckerberg and Porter [19]

that is based on data from the 1980–1985 and the 2000–2005 New

York State Breeding Bird Atlases. Surveys for these atlases were

conducted following a largely similar protocol, allowing analyses

without large sampling biases. We will hereby briefly summarize

the sampling approach that was used for the Vermont atlases, as

fully described in Renfrew [52], whereas further details on the

New York State Atlases can be found in McGowan and Corwin

[53] and Zuckerberg and Porter [19].

Both Vermont Breeding Bird Atlas Projects were based on

systematic sampling of predetermined blocks by both volunteer

and expert fieldworkers. These fieldworkers were expected to

determine both species occurrence and breeding bird status in

each of the surveyed blocks. Blocks measured approximately

25 km2, and were based on a grid derived from U.S. Geological

Survey maps. Due to limited manpower, 179 randomly selected

priority blocks were assigned for which adequate coverage was to

be achieved (Figure 1). The overall aim for the Vermont Breeding

Bird Atlas Projects was to determine breeding bird occurrence at

three different levels of confidence (‘possible breeding’, ‘probable

breeding’, and ‘confirmed breeding’) [51].

For our purpose, and to keep consistency with the protocol

followed by Zuckerberg and Porter [19], we considered a bird

present when it was listed in an atlas under any of the

aforementioned levels of confidence. In order to investigate how

this decision with regards to the inclusion of data influences our

Figure 1. Map of priority blocks of the First and Second
Vermont Breeding Bird Atlas Projects.
doi:10.1371/journal.pone.0055996.g001
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results we also provide a sensitivity analysis in which we only

consider a bird present in the case of ‘confirmed breeding’.

The Vermont Breeding Bird Atlas Project considered blocks to

be satisfactorily surveyed when 75 or more species were observed,

while at least 35 had to be confirmed as breeders. This

corresponded to observations of roughly 75% of the total number

of species likely to occur in an average atlas block, and nesting

confirmation for half of these species [51]. Each block was

surveyed by volunteers during the breeding season until, over the

course of a 1–5 year period, the aforementioned predetermined

coverage standard was reached [51].

The second atlas followed a similar approach [52] to the

protocol outlined in the first atlas. In our analyses, we excluded

data from four atlas blocks because they were not fully located

within Vermont, and thus did not overlap exactly with our

Vermont land cover data, or because the majority of the block

consisted of water.

We assessed the change in occurrence from the first to the

second atlas as persistence or extinction for each focal species. As

in Zuckerberg and Porter [19] we classified birds as persistent in

an atlas block when found in both the first and second atlas, and

extinct as detected in the first but not the second atlas. Focal

species were 25 forest generalists or obligates, and were the same

as those studied by Zuckerberg and Porter [19]. This selection did

not include rare species in order to avoid issues of low sample size

and detection biases.

We determined the percentage of forest cover in each atlas

block using 1992 National Land Cover Data (NLCD) (for an

accuracy analysis see [54]). Zuckerberg and Porter [19] used this

same data set for their analysis in New York. The date of the land

cover data is midway between the two atlas projects, and we

assumed that loss or gain of forest in Vermont between 1978

(onset, first atlas) and 2007 (last sampling year, second atlas) was

small and thus not biasing. We based this assumption on the small

change in forest cover in the Northeastern Highlands Ecoregion,

which includes Vermont, between 1973 and 2000 (from 85.2% to

81.4% of the total landcover) [55]. The HISTO command in the

software program IDRISI Taiga [56] provided a numeric

frequency histogram from which the percentage of forest cover

for each atlas block could be calculated. We combined the

percentages of the land cover types ‘‘mixed’’, ‘‘deciduous’’ and

‘‘coniferous’’ forest to account for the total forest cover in each

block.

We built threshold (segmented logistic regression [57]) and non-

threshold (logistic regression) models to describe the relationship

between forest cover and occupancy dynamics using R [57]. We

used the fitted values of locally weighted nonparametric models

(loess plots) with a smoothing parameter of 0.75 to visualize

empirical relationships between forest cover (%) and occurrence

and to identify initial values for segmented regression models

(Figure 2). We explored all possible initial values between 0 and

100% forest cover in 5% steps (e.g. 35%, 40%) when model

algorithms failed to converge using our initial starting point

[18,19]. We conducted our statistical analyses in R [58], using

standard packages and the ‘segmented’ package [59]. In total, we

fitted 50 logistic models (25 species62 dynamics) and 50

segmented logistic regression models in this study (Figure 3). We

took an information-theoretic approach on selecting the best

models describing species-habitat amount relationships using

Akaike’s Information Criterion (AIC) and delta AIC (Di). We

selected a model as best model if the alternative model had Di .2

[60]. Both models could be considered equivalent in their support

when Di ,2 between threshold and non-threshold models [60]. In

this case, we selected the model with the least parameters: the non-

threshold model. Subsequently, we determined the fit of the best

models to the original data by calculating the Area Under the

Curve (AUC) [60] using the ROCR package [61]. In general,

AUC values vary between 0 and 1, with 1 representing a perfect fit

and 0.5 representing that the model fits no better than a random

prediction would. Models with AUC values .0.7 are usually

considered acceptable, while values .0.8 are considered excellent

[18,62].

Sample size might have pronounced effects on the power to

detect thresholds and the percentage of forest cover at which the

thresholds are estimated [63] and could thus potentially explain

(part of) differences in results the Vermont (N= 175 atlas blocks)

and New York (N= 5074 atlas blocks) analyses. We investigated

the effect of sample size by obtaining 5000 random subsets of 175

blocks from the entire New York data set and fitted a segmented

regression and logistic regression to each of these subsets. We

repeated this procedure for all 25 species and both dynamics

(persistence and extinction). Based on the aforementioned

selection criteria (AIC, delta AIC) we obtained information on

the number of times (out of 5000 simulations) threshold models

were selected as the better model and the distribution and range of

the associated breakpoints (measured in percentage of forest

cover).

Although spatial autocorrelation is considered an important

aspect of analyses such as ours [32,64,65], the atlas blocks used in

our analysis were sufficiently spaced apart to exclude this as

a source of error (Figure 1). This sample design allowed us to

investigate the relationship between persistence, or extinction, and

habitat amount on a larger scale. We repeated earlier outlined

models of species responses, using forest cover (%) in an atlas block

and all the surrounding eight atlas blocks as an independent

variable. We compared AIC scores and threshold estimates of

these new models with our original models and determined

whether forest cover in the wider landscape or merely forest cover

in the atlas block was a better predictor of species persistence or

extinction.

Results

Logistic and segmented regression models converged for most

species and provided us with a base for model selection (Table 1,

Table S1). However, for Red-eyed Vireo (Vireo olivaceus) none of

the models converged because it was persistent in all atlas blocks.

In addition, no threshold models converged for Black-capped

Chickadee (Poecile atricapilla) and Hermit Trush (Catharus guttatus)

with regards to persistence, which is likely due to this species being

persistent in all but few atlas blocks (Figure S1).

For extinction dynamics, we found that 9 out of 25 supported

models included a threshold parameter (alternative non-threshold

model Di .2, Table S1). Six other species showed support for

a threshold model (with regard to both AIC and AUC values), but

we deemed the standard errors for the breakpoint estimates too

large to consider these valid models to incorporate in further

analyses. For persistence dynamics, threshold models were selected

to describe the habitat-relationships of 5 species (Table S1). Two

more species, Winter Wren (Troglodytes troglodytes) and Blue-headed

Vireo (Vireo solitaries), would have supported threshold models

based on mere AIC values, but visual interpretation of plotted data

(Figure S1) did not support the existence of any thresholds and

thus we did not include these species in further analyses. We

interpret our results as moderate support for threshold response at

landscape scale, in contrast to Zuckerberg and Porter [19] who

used a similar approach and the same set of focal species and

found overall strong support for threshold models. They conclud-

Regional and Interspecific Variation in Thresholds
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ed that 15 species showed support for the inclusion of a threshold

parameter in extinction responses in New York, and no less than

21 of 25 species supported threshold models for persistence [19].

Estimates of threshold forest amounts in extinction responses

varied considerably between species, ranging from 50.82%

(SE= 5.03) for the Blue-headed Vireo (Vireo solitaries) to 91.02%

(SE= 5.67) for the Black-and-white Warbler (Mniotilta varia)

(Table 1, Table S1). For persistence, threshold estimates varied

from 19.45% (SE= 3.83) for the Yellow-rumped Warbler (Den-

droica coronata) to 87.96% (SE=5.83) for the Black-and-white

Warbler. Discriminatory power of all selected models was high,

with an average AUC of 0.73 (SE=0.02) for non-threshold models

and 0.76 (SE=0.03) for threshold models. Although threshold

models were in general less often selected in our analysis than in

Zuckerberg and Porter’s [19], we did find that the selected models

provided a good fit with 11 out of 14 threshold models having an

AUC value .0.7 and 8 out of 14 models having an AUC .0.75

(Table S1).

Not only did the support for threshold responses in Vermont

differ from that of New York [19], but the estimated threshold

values for species also differed between the two states (Table 2).

Four out of five species that showed support for persistence

thresholds in both states had lower associated threshold estimates

(threshold at lower proportion of forest cover) in Vermont as

compared to New York. On average, the 5 species that supported

a threshold model for persistence in both states had an associated

threshold estimate of 61.41% (SE= 6.11) in New York and

51.08% (SE= 10.60) in Vermont (Figure 4). Seven species showed

threshold responses in extinction in both states, with average

threshold values of 66.45% (SE= 9.15) in New York and 73.67%

(SE= 5.70) in Vermont (Figure 4).

Differences in the number of atlas blocks used in the Vermont

and New York analyses might be one of the factors contributing to

differences in threshold estimates. We obtained threshold models

and associated forest cover estimates that were at times very

different from the results as presented in Zuckerberg and Porter

[19] when we randomly selected 5000 subsamples of 175 atlas

blocks (the sample size for Vermont) from the entire New York

data and subsequently fitted threshold and non-threshold models

(Figure 5, Figure S2). For most species, threshold models were

selected as best models for less than half of the subsamples

(,2500). More strikingly, the threshold estimates associated with

supported threshold models ranged from approximately 5 to 95%

forest cover for all species. When we compare the threshold

estimate as derived by Zuckerberg and Porter [19] with the

distribution of threshold estimates from our simulation of subsets

we see that our subsampling approach hardly gave different results

for some species (e.g. persistence for Veery) but very different ones

for others (e.g. persistence for Hermit Trush) (Figure 5, Figure S2,

Table 2).

We included bird presence at all levels of confirmation

(‘possible’, ‘probable’ and ‘confirmed’) in our analyses. However,

Figure 2. Loess plots of persistence and extinction dynamics for two bird species. Loess plots showing the relationship between
percentage of forest cover in an atlas block and the probability of persistence or extinction for two species (BLBW=Blackburnian Warbler (Dendroica
fusca); VEER= Veery (Catharus fuscescens)). These plots were used for visual assistance in finding initial values for our segmented regression
algorithms and visual checks only.
doi:10.1371/journal.pone.0055996.g002
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we do note that similar analyses based on only the most

conservative data (‘confirmed’) give us considerably different

results. Not only did fewer species show support for threshold

models for persistence (2 species) and extinction (6 species)

dynamics (Table 3, Figure 4), the critical threshold estimates

associated with these models also differed from our original

analysis. Threshold models for persistence were supported for

Blue-headed Vireo (Vireo solitaries) (threshold estimate at 94.50%

forest cover (SE= 2.72)) and Scarlet Tanager (82.84%, SE= 6.75).

Neither of these species supported a threshold model for

persistence in our original analysis (including all levels of

occurrence). Three species, Magnolia Warbler (Dendroica magnolia)

(79.63%, SE= 6.29), Yellow-rumped Warbler (Dendroica coronate)

(98.20%, SE= 8.12) and Blackburnian Warbler (Dendroica fusca)

(46.43%, SE= 15.21) supported an extinction threshold model in

our conservative approach as well as our initial analysis, but with

different threshold estimations. Red-breasted Nuthatch (Sitta

canadensis) (60.24%, SE=9.58), Winter Wren (Troglodytes troglodytes)

(97.41%, SE=16.07) and Veery (Catharus fucescens) (31.52%,

SE= 9.30) supported threshold models for extinction only in our

more conservative (confirmed breeding only) approach.

In order to analyze the influence of forest amount in the

surrounding landscape on both persistence and extinction

dynamics, we created a new set of models that included the

average forest cover of the focal atlas blocks plus all eight

surrounding blocks as an independent variable. The average forest

cover in blocks surrounding atlas blocks was not significantly

correlated with the forest cover within atlas blocks (Spearman rank

correlation; r=0.08, P = 0.30). Only 5 times was a threshold

model selected for one of the 50 models that included forest in the

Figure 3. Plots of persistence data and logistic (Panel A–B) and segmented (Panel C–D) regression models. Plots showing point data
(1 =persisting, 0 = not persisting) and either a fitted logistic or segmented regression model for two species (BLBW=Blackburnian Warbler (Dendroica
fusca); VEER= Veery (Catharus fuscescens)). These plots were used to provide a visual check of the actual data and fitted models (in addition to the
loess plots). The plots for Blackburnian Warbler are illustrative for a species with strong support for a threshold model, whereas both the data
distribution and model plots of Veery are indicative of low support for a threshold model (additional figures for all species can be found in Figure S1).
In the case of Veery, this might simply be due to it being persistent in the majority of atlas blocks.
doi:10.1371/journal.pone.0055996.g003
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surrounding blocks as an extra parameter (Table 4; Figure 4).

Regarding persistence, Common Raven (Corvus corax, 80.36%,

SE= 1.89), and Black-throated Green Warbler (Dendroica virens,

83.91%, SE= 9.23212) showed support for a threshold model that

included habitat amount at this broad spatial extent. Neither

species supported a threshold model for persistence in the original

analysis that was based on forest cover in the atlas block alone.

Brown Creeper (Certhia americana, 59.51%, SE=2.94), Black-

throated Green Warble, 66.31%, SE= 17.71) and Blackburnian

Warbler (Dendroica fusca, 65.56%, SE= 0.84) showed support for

a threshold model in extinction. Two of these species, Black-

throated Green Warbler and Blackburnian Warbler, also

supported a threshold response for extinction in the original

analysis but at slightly different estimates (Black-throated Green

Warbler 73.82%, SE= 21.49; Blackburnian Warbler 69.91%

(SE= 5.26), Table S1).

Table 1. Comparisons between logistic (non-threshold) and segmented (threshold) regression models for four forest breeding
birds, with the best models highlighted in bold.

Species Dynamic Model AIC Di %1 SE AUC

Yellow-bellied Sapsucker(Sphyrapicus varius) Persistence Threshold 113.21 0 34.61 10.97 0.84

Non-Threshold 116.10 2.89

Extinction Threshold 31.92 0 42.65 142.60

Non-Threshold 33.65 1.73 0.65

Blue-headed Vireo (Vireo solitarius) Persistence Threshold 165.47 0 91.23 8.59

Non-Threshold2 169.80 4.33 0.82

Extinction Threshold 77.17 0 50.82 5.03 0.70

Non-Threshold 80.64 3.47

Black-and-white Warbler(Mniotilta varia) Persistence Threshold 75.77 0 87.96 5.83 0.82

Non-Threshold 79.52 3.75

Extinction Threshold 39.70 0 91.20 5.67 0.78

Non-Threshold 41.90 2.20

Yellow-rumped Warbler(Dendroica coronata) Persistence Threshold 151.47 0 19.45 3.83 0.80

Non-Threshold 161.00 9.53

Extinction Threshold 112.03 0 78.67 3.76 0.73

Non-Threshold 118.50 6.47

1Percentage of forest cover associated with the response threshold.
2Although the AIC and AUC values indicate support for the threshold model, visual inspection of the loess plot did not support the existence of a threshold.
doi:10.1371/journal.pone.0055996.t001

Table 2. Comparison of estimated threshold values (% of forest cover) between New York and Vermont.

New York1 Vermont

Species Dynamic %2 SE %2 SE

Blue-headed Vireo (Vireo solitarius) Extinction 85.62 (60) 4.82 50.82 5.03

Black-and-white Warbler (Mniotilta varia) Persistence 39.79 (36) 5.72 87.96 5.83

Extinction 39.90 (66) 6.85 91.20 5.67

Magnolia Warbler (Dendroica magnolia) Extinction 84.41 (72) 3.68 83.91 4.64

Yellow-rumped Warbler (Dendroica coronata) Persistence 73.61 (44) 4.70 19.45 3.83

Black-throated G. Warbler (Dendroica virens) Extinction 32.31 (58) 3.64 73.82 21.49

Blackburnian Warbler (Dendroica fusca) Persistence 77.35 (75) 3.93 56.26 6.61

Extinction 82.87 (73) 6.81 69.91 5.26

Canada Warbler (Wilsonia canadensis) Extinction 88.16 (45) 1.99 87.40 3.55

Dark-eyed Junco (Junco hyemalis (hyemalis)) Persistence 59.68 (59) 2.16 57.12 7.43

Extinction 51.91 (51) 3.73 58.65 5.90

Yellow-bellied Sapsucker (Sphyrapicus varius) Persistence 56.64 (38) 5.30 34.61 10.97

1We derived threshold values for New York state from Zuckerberg and Porter [19]. In parentheses: The percentage of forest cover at which we found the maximum
kernel density for threshold estimates of all selected (out of 5000) subsamples in our simulation approach. These subsamples consisted of 175 atlas blocks randomly
taken from the original New York data.
2Percentage of forest cover associated with the response threshold.
doi:10.1371/journal.pone.0055996.t002
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Discussion

Regional and interspecific variation in species responses to

habitat loss and fragmentation has previously been recognized and

put forward as a warning against generalizing results of threshold

studies across species and regions [18,19,35,36,47]. We adopted

a simple yet efficient approach to threshold estimation as proposed

by Zuckerberg and Porter [19] and extended it to a region

(Vermont) adjacent to their original study area (New York). Even

though these two regions are largely similar in landscape

characteristics such as forest cover and composition, faunal species

composition and climate and latitudinal aspects, we found striking

differences in the results of our threshold modeling approach. We

found less support for the inclusion of a threshold parameter in

models of both persistence and extinction responses in Vermont

compared to New York. In addition, there were differences

between the two regions in the estimate of thresholds in forest

cover below which the probability of persistence dramatically

declined or extinction increased for species that did support

a threshold model in both states.

Although the design of the current study did not allow us to

assess the cause of regional differences in threshold responses

directly, we argue that they might be related to the higher forest

cover in Vermont (average atlas blocks 73.89%, SE= 0.02)

compared to New York (63.10%, SE= 0.35) (Figure 6). Arguably,

high forest cover in the broader surrounding landscape might

indicate that forest-associated bird species are able to maintain

breeding populations in atlas blocks with low forest cover, because

resources (e.g. food resources) can be found in the surrounding

atlas blocks with a higher forest cover [17]. In general, atlas blocks

with relatively high forest cover are abundant throughout the state

of Vermont, whereas a considerable number of atlas blocks with

low percentages of forest cover exist in New York (Figure 6).

Another possible explanation for the ability of bird species to

apparently persist at lower amounts of forest cover in Vermont as

compared to New York, might be related to the ability for bird

Figure 4. Mean persistence and extinction threshold estimates for New York and Vermont. Depicted are the means of estimated
thresholds in forest cover below which the probability of persistence or extinction declined rapidly. We calculated the means across all estimated
thresholds of breeding bird species that showed support for threshold models in both states (only 5 species for persistence and 9 for extinction).
Error bars show the associated standard error. *The mean of the threshold estimates for New York State was calculated based on thresholds reported
by Zuckerberg and Porter [19].
doi:10.1371/journal.pone.0055996.g004
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species to disperse to and from patches within the atlas blocks with

lower forest cover. For example, birds might be more likely to be

detected as breeding individuals in occasional atlas blocks with low

forest cover, due to the existence of source populations in high

forest cover atlas blocks in the vicinity. In addition, patches of

forest habitat within atlas blocks with low forest cover might be less

isolated in Vermont than in New York because surrounding atlas

blocks offer patches within dispersal distance [17]. Finally, we

might reason that forest composition and structure (forest quality)

[16,35], the quality of the matrix [66,67] and the level of

fragmentation [19,68] differ between the two study regions and

contribute to differences in threshold responses in New York and

Vermont. Although fragmentation might play a role in species-

habitat relationships it is becoming widely accepted that habitat

amount per se is a better predictor of species distributions and

responses than fragmentation [10,27,46]. Despite this notion, we

do argue that incorporating a measure of fragmentation should be

part of follow-up studies in order to address whether differences in

levels of fragmentation can explain part of the regional differences

that appear in threshold estimates [68].

We may have found less support for threshold models in

Vermont because the forest cover in most of the surrounding

landscape falls above species habitat thresholds [18]. The

detection of landscape-scale species-habitat relationships is likely

to be lower in regions with high proportions of potential habitat

[68]. Pardini et al [69] support this by showing that clear

habitat-abundance and habitat-richness effects seem to be

lacking in regions with high forest cover. Indeed, most of our

study area might have forest cover above the critical values at

which thresholds are usually found (10–30%; [4,17,20]),

obviating the need for a larger study including more study

regions.

Species that were considered to follow threshold responses

differed in the estimates of threshold values, with persistence

thresholds ranging 19.45–87.96% and thresholds in extinction

ranging from 50.82% to 91.02% (Table S1). This variation in

species-habitat relationships has been widely recognized (e.g.

[17,18,19,24]) and been attributed to variation in area-sensitivity

as a function of life-history traits such as dispersal capacity [41,70],

reproductive capacity [71,72] and habitat specialization

[69,72,73]. Interestingly, in contrast to many previous studies that

indicate which species were more area-sensitive than others

[18,19,36,69], we did not find consistency in area-sensitivity across

regions. For example, when we ranked species according to their

threshold estimates for persistence, we found (e.g.) Yellow-rumped

Warbler on the high end of the ranking with a threshold value of

73.61% in New York but on the lower end in Vermont (19.45%).

The reverse was true for Black-and-white Warbler, having

Figure 5. Kernel density plots of estimated breakpoints for all subsamples (out of 5000).We superimposed an estimate of the proportion
of forest cover (the threshold) associated with the maximum kernel density of our sampling results (vertical full line) and the threshold derived by
Zuckerberg and Porter (2010) (vertical dotted line). Panel A shows results for models of persistence for Hermit Trush (Catharus guttatus), Panel B
persistence for Veery (Catharus fuscescens), Panel C extinction for Canada Warbler (Wilsonia canadensis) and Panel D extinction of Black-capped
Chickadee (Poecile atricapilla). Results for the species shown were exemplary for situations where the estimated thresholds seemingly matched with
(Veery, Black-capped Chickadee) or deviated from (Hermit Trush, Canada Warbler) the proportion of forest cover associated with maximum kernel
density. Similar plots for all species can be found in Figure S2.
doi:10.1371/journal.pone.0055996.g005
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a threshold estimate around 39.79% forest cover in New York but

87.96% in Vermont.

There are many plausible explanations for the results we found

and the lack of consistency in threshold values across regions. As

mentioned earlier, differences in levels of fragmentation, habitat

amount in the wider landscape, quality of the forest and the

surrounding matrix are all factors that might be correlated with

variation in threshold response. Yet, some of the variation could

simply come from problems in defining ‘habitat’ properly. We

used a coarse variable (‘forest’) in order to facilitate comparisons

with earlier work by Zuckerberg and Porter [19], even though the

breeding distribution of many of our focal birds might be better

predicted by more specific variables such as ‘evergreen’, ’mixed’ or

‘deciduous’ forest or even subcomponents thereof (particular tree

species, prevalence of structural components such as standing dead

wood) [18,74]. Indeed, variation in these more specific character-

istics might be large between and within regions, and might thus

result in different outcomes in threshold model studies.

Interestingly, thresholds in extinction and persistence did not

always seem to occur at the same percentage of forest cover. This

difference was most notable in Yellow-rumped Warbler with

a threshold in persistence at 19.45% (SE=3.83) and 78.67%

(SE= 3.76) for extinction. Due to an overall low number of species

that supported threshold models, we are not able to explore this

difference further in our current study, but we argue that

differences in thresholds of extinction and persistence might be

related to time-lags in regime shifts [69]. Species might seem to

persist at percentages of forest cover that are lower than those

where peaks in extinction probability occur because of a time-lag

in the extinction process. We aim to address this interesting

Table 3. Threshold values (% of forest cover) for species that supported a threshold model when only ‘confirmed’ breeding was
considered in the analysis.

Species Dynamic Model AIC %1 SE

Red-breasted Nuthatch (Sitta canadensis) Extinction Threshold 180.6 60.24 9.58

Non-Threshold 192.3

Winter Wren (Troglodytes troglodytes) Extinction Threshold 192.8 97.41 16.07

Non-Threshold 195.6

Veery (Catharus fuscescens) Extinction Threshold 172.9 31.52 9.30

Non-Threshold 176.4

Blue-headed Vireo (Vireo solitarius) Persistence Threshold 97.7 94.50 2.72

Non-Threshold 100.6

Magnolia Warbler (Dendroica magnolia) Extinction Threshold 168.5 79.63 6.29

Non-Threshold 174.5

Yellow-rumped Warbler (Dendroica coronata) Extinction Threshold 161.8 98.20 8.12

Non-Threshold 168.5

Blackburnian Warbler (Dendroica fusca) Extinction Threshold 177.0 46.43 15.21

Non-Threshold 181.5

Scarlet Tanager (Piranga olivacea) Persistence Threshold 134.1 82.84 6.75

Non-Threshold 137.4

1Percentage of forest cover associated with the response threshold.
doi:10.1371/journal.pone.0055996.t003

Table 4. Comparison between threshold and non-threshold models that included forest in the surrounding blocks as an extra
parameter.

Species Dynamic Model AIC %1 SE

Common Raven (Corvus corax) Persistence Threshold 204.19 80.36 1.89

Non-Threshold 208.50

Brown Creeper (Certhia americana) Extinction Threshold 109.13 59.51 2.94

Non-Threshold 113.40

Black-throated G. Warbler (Dendroica virens) Persistence Threshold 140.85 83.91 9.23212

Non-Threshold 149.50 0 0

Extinction Threshold 29.44 66.31 17.71

Non-Threshold 32.43 0 0

Blackburnian Warbler (Dendroica fusca) Extinction Threshold 46.65 65.56 8.43

Non-Threshold 64.50 0 0

1Percentage of forest cover associated with the response threshold.
doi:10.1371/journal.pone.0055996.t004
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observation further in follow-up studies, in line with arguments

that any study that addresses long-term population dynamics

should address the phenomenon of time-lags [24].

One important factor in the comparison of thresholds in

Vermont and those found in New York is the effect of sample size

on our model outcome [63]. The sample size (number of atlas

blocks) in Vermont is low (175) compared to New York (5074). We

addressed this issue of low sample size by simulating random

subsets of 175 atlas blocks from the New York data set and fitting

models to these subsets. Interestingly, we found support for

a threshold model for less than half of all random subsets and

found a wide range of threshold estimates (Figure 5, Figure S1).

The latter might be due to the wide range of forest cover found in

the atlas blocks in New York (Figure 6), with some of the random

subsets containing mainly blocks with low forest cover and others

mainly blocks with high forest cover. This is arguably less of

a problem in Vermont, where forest cover throughout the atlas

blocks seems uniformly high and where the ‘subsample’ of 175

priority atlas blocks seems a good representation of the forest cover

in all atlas blocks in Vermont (Figure 6). However, it remains an

issue that needs to be addressed. We are aware, and have shown

here, that sample size may be one potential reason for the

difference in outcome in support for thresholds and in associated

forest cover estimates [63]. Therefore, this is an additional factor

that we have to take into account when we try to extrapolate from

one study or species to the next or when we try to infer

conservation and management targets based on studies of

threshold responses.

Bird atlas data constitutes different levels of confidence in

occurrence (possible, probable, confirmed), and our model results

depend on which data we include in our analyses. Considering

only the most conservative level of occurrence confirmation

(confirmed breeding) in our analysis may arguably improve the

accuracy of estimating persistence or extinction thresholds. Basing

our analysis on a conservative subset of our data (confirmed only)

led to higher threshold estimates in those species that supported

a threshold model, indicating that the percentage of forest

required for persistence might actually be higher than previously

noted here and in other studies. However, we did not extend this

analysis here for three reasons. First, we wished to follow a protocol

similar to the analysis by Zuckerberg and Porter [19] in order to

draw consistent and valid comparisons. Second, we found

threshold models to be supported in our ‘conservative scenario’

for only 8 species-dynamic combinations (2 persistence, 6

extinction). Finally, detectability of confirmed breeding occur-

rences might be quite variable and might limit analyses to only

those common species that are easily confirmed as breeders.

Nevertheless, we suggest that any study that utilizes breeding bird

atlas data should incorporate a consideration of the different

results that data inclusion decisions may have. Most importantly

however, we suggest that these more conservative estimates of

forest requirements once more indicate that we might not be able

to directly link the outcome of a threshold estimation model to the

narrow conservation goals that are sometimes proposed [23].

Smith et al. [46] noted that forest bird occurrence varies

directly with habitat amount in the surrounding landscape

regardless of landscape size. We did not test for such a relationship,

but did observe a lack of evidence for threshold responses when we

included habitat in a larger (,225 km2) focal region in our

models. The effects of habitat availability at this larger landscape

extent might be diminished by a heterogeneous habitat distribu-

tion, given that forest cover in atlas blocks was not significantly

correlated with forest cover in the surrounding blocks. Similar

effects of declining area-sensitivity with increasing landscape scales

have been recorded by Desrochers et al [75].

What we have shown is a) an approach for comparison that can

easily be repeated on an unprecedented broad scale and will

eventually allow comparison across larger numbers of study areas

and species than has been attempted previously, and b) a clear

indication that threshold effects and/or amounts are not

necessarily supported for the same species in even adjacent areas.

If further studies are as promising, our methodology will provide

insight into interspecific and regional variation of landscape level,

long-term threshold dynamics. Ecosystem managers and con-

Figure 6. Histograms of forest cover across atlas blocks in the states of Vermont and New York. The frequency of atlas blocks with
a particular proportion of forest cover in each of the states. The histograms illustrate that many atlas blocks in both states have high (e.g. more than
0.6, or 60%) levels of forest cover, but also indicate that forest cover across the Vermont atlas blocks is more or less homogeneous (high cover) while
atlas blocks in New York have a more variable range of forest cover (i.e. there are many blocks with low forest cover as well). The forest cover of the
priority atlas blocks in Vermont seems a representative sample of the forest cover of all atlas blocks in Vermont.
doi:10.1371/journal.pone.0055996.g006
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servationists would be able to derive generalities on threshold

estimate predictions and gain insight into which characteristics are

influencing the minimum habitat requirements for their specific

region or focal species of interest. Novelties of our approach

include: 1) the ability to address long-term thresholds in

persistence and extinction [19] rather than occurrence [18,36];

and 2) analyzing threshold responses with the use of extensive

broad-scale sources of data that are already widely available. This

extension of an earlier approach by Zuckerberg and Porter [19]

allows for comparisons of threshold models at scales that were

previously unobtainable due to costs of field work and time

consumption. In addition, we also show that 3) species vary in their

threshold responses with regard to habitat amount, and that

differences between regions are pronounced. This warrants the

advice put forward by many ecologists that threshold values

cannot simply be transferred across regions [35] or interpreted as

clear-cut targets for ecosystem management and conservation

[74]. We also warn that 4) sample size (in our study number of

atlas blocks) might have large effects on the outcome of threshold

studies (see also [63]) and that this might be one factor driving

differences between threshold studies. Finally, our results indicate

that 5) thresholds in long-term persistence and extinction dynamics

can be found across a wide range of habitat cover or area.

Generalizations such as ‘‘For most species with large home ranges

(such as birds), the threshold may generally be located between

30% and 40% of the habitat… in order to protect the most

sensitive species and to deal with uncertainty associated with

thresholds, to maintain at least 40% of residual habitats’’ [23] may

oversimplify threshold analyses and may be counter-productive to

conservation efforts.

We argue that while searching for thresholds in species-habitat

relationships remains a valid goal for ecologists and conserva-

tionists, the differences in threshold estimates and response

between species and regions are of greatest interest. Analyses that

address these differences may contribute to conservation by

determining which species are most at risk of being affected by

habitat loss. Future research should be directed towards broad-

scale comparisons in order to gain insights into consistency of

species-habitat relationships, driving factors of both interspecific

and regional variation, and general mechanisms underlying

species-specific area-sensitivity.

Supporting Information

Figure S1 Binomial plots of persistence data and
associated estimated logistic regression models. Plots

showing point data (1 = persisting, 0 = not persisting) and a fitted

logistic regression model for all species. Panel A contains results for

persistence, Panel B for extinction.

(PDF)

Figure S2 Kernel density plot of estimated breakpoints
(proportion of forest cover) for all subsamples (out of
5000) that supported a threshold model. Superimposed on

these plots we see an estimation of the proportion of forest cover

(the threshold) associated with the maximum kernel density of our

sampling results (vertical full line) and the original threshold

derived by Zuckerberg and Porter (2010) (vertical dotted line).

Panel A contains results for thresholds in persistence, Panel B for

thresholds in extinction.

(PDF)

Table S1 Comparisons between logistic (non-threshold)
and segmented (threshold) regression models for 24
study species. Red-eyed Vireo (Vireo olivaceus) was also included

in the analysis but excluded from this table because none of the

models converged. This species thus did not support a logistic or

a threshold relationship with forest cover. In fact, it was present in

all surveyed atlas blocks. We compared the AIC for all models

using delta AIC (Di), and selected a model when Di .2 compared

to the other model. We selected the model with the least number

of parameters (non-threshold) when the difference between two

models was Di #2. In addition, we present the estimated threshold

in the percentage of forest cover (%) and the associated standard

error (SE) for the threshold models. For the selected models, we

also present the Area Under the Curve statistic (AUC). The best

model is highlighted in bold.

(DOCX)
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