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Abstract

The pathology of Alzheimer’s disease (AD) is characterized by the accumulation of amyloid-b (Ab) peptide, hyperpho-
sphorylated tau protein, neuronal death, and synaptic loss. By means of long-term two-photon in vivo imaging and confocal
imaging, we characterized the spatio-temporal pattern of dendritic spine loss for the first time in 3xTg-AD mice. These mice
exhibit an early loss of layer III neurons at 4 months of age, at a time when only soluble Ab is abundant. Later on, dendritic
spines are lost around amyloid plaques once they appear at 13 months of age. At the same age, we observed spine loss also
in areas apart from amyloid plaques. This plaque independent spine loss manifests exclusively at dystrophic dendrites that
accumulate both soluble Ab and hyperphosphorylated tau intracellularly. Collectively, our data shows that three spatio-
temporally independent events contribute to a net loss of dendritic spines. These events coincided either with the
occurrence of intracellular soluble or extracellular fibrillar Ab alone, or the combination of intracellular soluble Ab and
hyperphosphorylated tau.

Citation: Bittner T, Fuhrmann M, Burgold S, Ochs SM, Hoffmann N, et al. (2010) Multiple Events Lead to Dendritic Spine Loss in Triple Transgenic Alzheimer’s
Disease Mice. PLoS ONE 5(11): e15477. doi:10.1371/journal.pone.0015477

Editor: Sven G. Meuth, University of Muenster, Germany

Received August 5, 2010; Accepted September 23, 2010; Published November 16, 2010

Copyright: � 2010 Bittner et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by grants to JH from the Deutsche Forschungsgemeinschaft (SFB 596, A13), the Bavarian State Ministry for Science, Research
and Arts (ForNeuroCell), the German Federal Ministry of Education and Research (Bundesministerium für Bildung und Forschung, 01GZ0713, 13N10644), the
German Federal Ministry of Economics and Technology (Bundesministerium für Wirtschaft und Technologie, 16IN0675), and the European Union (Neuro.GSK3, FP-
7-223276). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: jochen.herms@med.uni-muenchen.de

. These authors contributed equally to this work.

Introduction

Alzheimer’s disease (AD) is the most common age-related

neurodegenerative disorder. Pathognomonic features include the

accumulation of amyloid-b (Ab) peptide, hyperphosphorylated tau

protein, neuronal death, and synaptic loss [1,2]. AD is clinically

characterized by a gradual and global decline of cognitive function.

Synaptic loss as one of the hallmarks of AD is the best correlate of

cognitive decline and has previously been detected in the human

cortex and hippocampus [1,3–9]. This suggests that synaptic loss

represents a critical event in the pathophysiology of AD.

It is widely believed that the abundance of Ab plays a central

role in the pathogenesis of AD. However, which Ab species, i.e.

soluble forms like monomers and oligomers or insoluble fibrils

primarily contributes to AD pathogenesis and in what way

remains controversial [10,11]. Indeed, the abundance of soluble

Ab levels in the cortex correlates positively with the first cognitive

deficits and synaptic loss [12,13] long before fibrillar Ab plaques

accumulate [1,14]. This has been modeled in AD transgenic mice

that exhibit early synaptic loss and cognitive decline at a time,

when only soluble Ab is present, but before amyloid plaques

become abundant [15–20]. Moreover, several in vitro studies have

convincingly demonstrated that high levels of soluble Ab directly

lead to synaptic loss [21–25]. In addition to soluble Ab, there is

also evidence from transgenic AD mouse models that synaptic loss

occurs in close proximity to insoluble fibrillar Ab plaque deposits

[26–31]. Besides the accumulation of soluble and insoluble Ab, the

intraneuronal abundance of hyperphosphorylated filamentous tau

protein represents the second major pathological signature of AD

[32–34], which correlates well with cognitive impairment [35,36].

Collectively, it is of great significance to understand how soluble

Ab, insoluble amyloid plaques and hyperphosphorylated tau

accumulation contribute to synaptic loss in AD.

We monitored dendritic spines by long-term two-photon in vivo

imaging in AD transgenic mice that were crossed with YFP-H

mice expressing yellow fluorescent protein (YFP) in a subset of

cortical neurons [37]. Long-term two-photon in vivo imaging

provides a powerful tool to explore structural plasticity at the level

of individual spines and neurons followed over extended time

periods in living mice [38–45]. Specifically, dendritic spines of

apical dendrites of layer III and layer V neurons in the

somatosensory cortex were repeatedly analyzed. Dendritic spines

embody the post-synaptic side of excitatory synapses and are as

such a reliable indicator of synapses themselves. They are also

highly plastic structures and represent a structural correlate of

learning and memory processes in the mammalian brain [46–48].

The aim of our study was to analyze structural plasticity of

dendritic spines in triple transgenic AD mice (3xTg-AD) which

progressively develop both Ab and tau pathology in the cortex

and hippocampus [49]. This leads to a distinct spatio-temporal
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pattern of dendritic spine loss which we characterize here for the

first time.

Materials and Methods

Transgenic mice
Homozygous triple transgenic mice (3xTg-AD) [49] were crossed

with heterozygous mice of the YFP-H line [37] (The Jackson

Laboratory, Bar Harbor, USA). The offspring was crossed back

with homozygous 3xTg-AD mice to yield quadruple transgenic

animals homozygous for the knock-in mutation and the AD

transgenes and heterozygous for YFP-H. As controls, age-matched

heterozygous YFP-H mice on the same background were used.

Mice were of mixed gender. All procedures were in accordance with

an animal protocol approved by the University of Munich and the

government of upper Bavaria (Az. 55.2-1.54-2531-110-06).

Cranial window surgery
A cranial window over the right cortical hemisphere was

surgically implanted as previously described [43,45]. Imaging

began following a 21 day rest period after surgery.

Long-term two-photon in vivo imaging
Long-term two-photon imaging was performed as previously

described [43,45]. Less than 50 mW laser power was used to avoid

laser-induced phototoxicity. For overview images z-stacks of

150 mm depth with 2 mm z-resolution and 102461024 pixels per

image frame (0.22 mm/pixel) were taken with a Zeiss 40x water

immersion objective (0.8 NA) to count dystrophic dendrites. In

order to count dendritic spines, higher resolution images were

taken with the same objective with 1 mm z-resolution and

5126512 pixels per image frame (0.11 mm/pixel). To follow the

fate of individual cortical layer III neurons a Zeiss 20x water-

immersion objective (1.0 NA) was used to acquire image stacks of

300 mm depth with 3 mm z-resolution and 102461024 pixels per

image frame (0.41 mm/pixel).

Immunohistochemistry
An immunohistochemical staining protocol was adapted from

Gogolla et al. [50]: Following transcardial perfusion with 4%

paraformaldehyde 100 mm thick free-floating sections were

prepared. The following antibodies conjugated to biotin were

used in 1:100 dilutions: 6E10 mAb (Covance Research Products

Inc., Denver, PN, USA), anti-Ab-oligomer A11 (Invitrogen,

Carlsbad, CA, USA), anti-human Tau clone HT7 mAb and

anti-PHF-Tau clone AT8 mAb (Thermo Scientific Pierce Protein

Research Products, Rockford, IL, USA). Secondary detection was

performed with the TSATM kit #26 with streptavidin-HRP

(Invitrogen, Carlsbad, CA, USA). Alexa Fluor 647 tyramide was

incubated for 3 hours. Staining of fibrillar Ab plaques and

neurofibrillary tangles was performed with 145 mM methoxy-

X04 in PBS for 30 min and subsequently washed with PBS.

Fluorescence images were acquired with a confocal laser scanning

microscope mounted on an inverted microscope support (LSM

510 and AxioVert 200, Carl Zeiss MicroImaging GmbH, Jena,

Germany). Two different immersion oil objectives were used, a 25x

(LD LCI Plan-Apochromat NA 0.8) and a 40x (Plan-Apochromat

NA 1.3) (Carl Zeiss MicroImaging GmbH, Jena, Germany). XYZ-

spacing was 0.1860.1861 mm3 and 0.1160.1161 mm3, respectively.

DAPI and Nissl staining
This was previously described [45]. Briefly, brains were fixed

with 4% PFA in PBS at 4uC overnight. DAPI and Nissl staining

was performed on 100 mm thick fixed brain slices that were cut in

the same orientation as the in vivo images were taken. Free-floating

sections were permeabilized with 2% Triton X-100 overnight.

DAPI (10 mg/ml) and Nissl (20x dilution in PBS; # N-21482;

Molecular Probes/Invitrogen, Carlsbad, CA, USA) was adminis-

trated and incubated for 2 hours and rinsed with PBS three times

for 10 minutes. Fluorescence images were acquired with a confocal

laser scanning microscope mounted on an inverted microscope

support (LSM 510 and AxioVert 200, Carl Zeiss MicroImaging

GmbH, Jena, Germany). Three different lasers were used for

excitation: Ar ion laser at 514 nm for YFP, HeNe laser at 543 nm

for Nissl, and a Ti-Sapphire laser (Mai Tai DeepSee, Spectra-

Physics Lasers Division, Newport Corporation, Mountain View,

CA, USA) at 780 nm for DAPI. A 25x (LD LCI Plan-Apochromat

NA 0.8) immersion oil objective was used (Carl Zeiss MicroImaging

GmbH, Jena, Germany). XYZ-spacing was 0.3660.3662 mm3.

Image processing and data analysis
All images were deconvolved using the adaptive blind 3D

deconvolution algorithm of AutoDeblur with 10 iterations

(Version x2.0.1, Media Cybernetics Inc., Bethesda, MD, USA).

The images were maximum intensity projected (Imaris 6.1,

Bitplane, Zürich, Switzerland). In some figures, distracting

neighboring dendritic elements were removed. The volume of

dystrophic dendrites was automatically calculated using Imaris

software (Version 6.1, Bitplane, Zürich, Switzerland). In this case

dendrites were classified as dystrophic if they exhibited at least a 2-

fold increased dendritic volume over the whole imaging period.

Spines were counted in z-stacks by manually scrolling through the

images of subsequent time points of the same position. The spine

scoring method has previously described [42,43,51]. Spine

densities refer to the amount of spines per dendrite length in mm

from which they protrude. Spines lasting for less than 8 days were

classified as transient and spines with a lifetime of 8 days or more

as persistent [41,52]. All results are reported as mean 6SEM.

Statistical differences in measurements over time were determined

using repeated measures ANOVA while statistical comparison

between groups was performed with the Wilcoxon Rank Sum Test

or the Student’s t-test as indicated. The Pearson product-moment

correlation coefficient R was calculated to determine a correlation

between dendritic volume and dendritic spine density.

Results

The 3xTg-AD mouse line harbors a knock-in mutation for

presenilin 1 (PS1M146V) and transgenes for the amyloid precursor

protein (APPswe) and for tau (tauP301L) and progressively develops

both an Ab and tau pathology in the cortex and hippocampus

[49]. Soluble Ab can already be detected at 4 months of age in the

hippocampus and cortex (Fig. S1A), but fibrillar amyloid plaques

do not appear before 12 months of age (Fig. S1B). Once they form,

amyloid plaques are present in the hippocampus and in the frontal

cortex, while the somatosensory cortex is free of plaques, even at

20 months of age (Fig. S1B). Hyperphosphorylated tau is abundant

in the hippocampus and cortex from 12 months on (Fig. S1C).

Dendritic spine loss in the hippocampus
Based on this spatio-temporal pattern of Ab and tau pathology,

dendritic spine density was analyzed in the hippocampus and

frontal cortex of 6, 10, 15, and 20 month old mice by confocal

imaging in fixed slices (Fig. 1). In total, 21,220 spines were counted

on 50 dendrites per group (n = 5 mice per group). Hereby, we

detected no difference in dendritic spine density between 3xTg-

AD mice and controls at 6 and 10 months of age. This age is prior

to the appearance of amyloid plaques and hyperphosphorylated

Dendritic Spine Loss in 3xTg-AD Mice
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tau (Fig. S1B and S1C). In 15 months old 3xTg-AD mice, once

amyloid plaques and hyperphosphorylated tau are abundant, the

dendritic spine density was significantly reduced not only around

amyloid plaques (d,50 mm) (Fig. 1A, 1C, and 1D; hippocampus:

0.8060.02 mm21 vs. 1.0160.03 mm21, P,0.001; frontal cortex:

0.4660.01 mm21 vs. 0.5460.02 mm21, p,0.001) but also in areas

distant to plaques (d.50 mm) compared to controls (Fig. 1B, 1C,

and 1D; hippocampus: 0.8960.02 mm21 vs. 1.0160.03 mm21,

p,0.01; frontal cortex: 0.5160.01 mm21 vs. 0.5460.02 mm21,

P,0.05). The dendritic spine density further decreased from 15 to

20 months while it remained unchanged in age-matched wild type

control mice (Fig. 1C and 1D). The threshold of 50 mm was used

since previous studies in different AD mouse models have shown

that the dendritic spine density is predominantly reduced within a

radial distance of 50 mm around amyloid plaques [26–28]. In

conclusion, spine loss in the hippocampus was not only apparent

in proximity to amyloid plaques. It also occurred in areas distant

from plaques.

Dendritic spine loss in the somatosensory cortex
To analyze dendritic spine loss in the absence of amyloid

plaques in more detail, we monitored dendritic spines in the

somatosensory cortex where no amyloid plaques are present at any

age (Fig. S1B). By long-term two-photon in vivo imaging (Fig. 2A–

C), the fate of individual dendritic spines was analyzed in four age

groups (4–6, 8–10, 13–15, and 18–20 months) in 3xTg-AD mice

and age-matched non-AD transgenic control mice (n = 4 mice per

group) for up to 60 days (in total n = 100,642 spines).

Dendritic spine density did not change over time (Fig. 2D1, 2D2,

2E1, 2E2) in 4–6 and 8–10 months-old 3xTg-AD mice, when only

soluble Ab, but neither hyperphosphorylated tau nor amyloid

plaques are present in the somatosensory cortex (Fig. S1). In these

age groups, dendritic spine density remained at a level comparable

to age-matched wild type controls (Fig. 2D1, 2D2, 2E1, 2E2). At 13-

15 months of age, when both soluble Ab and hyperphosphorylated

tau accumulate in the somatosensory cortex (Fig. S1), dendritic

spine density significantly decreased over time by 1.8460.84

spines day21 mm21 (Fig. 2D3, 2E3; 0.4260.04 mm21 to

0.3660.02 mm21, P,0.001). The decline was even stronger in

18–20 month-old 3xTg-AD mice and progressed with 4.2560.79

spines day21 mm21 (Fig. 2D4, 2E4; 0.3660.03 mm21 to

0.2760.01 mm21, P,0.001). At 13–15 and 18–20 months of

age, the spine density of wild type mice did not decrease over time

(Fig. 2D3, 2D4, 2E3, 2E4).

In addition to dendritic spine density, the experimental design

enabled us to analyze the fate of functional synapses over time.

Dendritic spines with a lifetime of more than eight days were

classified as ‘‘persistent’’ spines (Fig. 2B and 2C). It has been

shown that the majority of persistent spines predominantly forms

functional synapses with presynaptic boutons [52]. In contrast,

short-lived ‘‘transient’’ dendritic spines, with a lifetime of less than

eight days, primarily represent non-functional synapses

[39,44,51,52]. Between 4–6 and 8–10 months of age, when the

spine density remained constant, neither the persistent nor the

transient spine density was altered (Fig. 2F1, 2F2, 2G1, 2G2). This

changed at 13–15 months, when specifically persistent spines were

lost (Fig. 2F3). Interestingly, the density of transient spines was

significantly increased during this time-period, compensating at

least partially for the loss of persistent spines (Fig. 2G3;

0.02860.009 mm21 to 0.01560.007 mm21, P,0.001). This com-

pensatory increase in the density of transient spines was not

apparent at 18–20 months (Fig. 2G4), resulting in an even more

pronounced loss of spines at this age (Fig. 2E4).

Dendritic dystrophy coincides with dendritic spine loss in
the somatosensory cortex

At the same time when we observed a decline in dendritic spine

density in the somatosensory cortex of 13–15 and 18–20 months-

old 3xTg-AD mice, we noticed that some dendrites showed a

dystrophic volume increase over time (Fig. 3A and 3B). Figures 3A

and 3B exemplarily illustrate a dendrite that became dystrophic

and lost spines over 60 days compared to a neighboring dendrite

that neither exhibited dystrophic swellings nor spine loss (see also

Video S1). The analysis of spines at dystrophic and non-dystrophic

dendrites revealed that dystrophic dendrites showed a significant

decline in spine density over time (Fig. 3C; 0.4060.03 mm21 to

0.2660.04 mm21, P,0.001). Dendrites of wild type control mice

displayed unchanged spine densities and dystrophic changes were

never observed (Fig. 3C). Interestingly, the volume of dystrophic

dendrites did not stay at a constant level over time, but

significantly increased (P,0.001), indicating a progressing pathol-

ogy (Fig. 3D). Moreover, a strong correlation was identified

between a reduction of dendritic spine density and an increase in

dendritic volume (Fig. 3E; R2 = 0.84, P,0.001). Additionally, as

shown above, the spine density was unaffected before the first

dystrophies emerged at 13 months (Fig. 2E1 and 2E2). From that

age on, the number of dystrophies significantly increased from

9.5863.056103 mm23 at 15 months to 33.2367.026103 mm23

at 20 months (Fig. 3F; P = 0.004), indicating a progression with

age.

In order to clarify if soluble Ab and tau were present in

dystrophic dendrites, we performed immunohistochemistry with

antibodies 6E10, A11, HT7, and AT8 on fixed slices (Fig. 3G).

Indeed, soluble Ab and hyperphosphorylated tau protein were

abundant in all analyzed dystrophic dendrites (n = 2,305 dystro-

phies in n = 13 mice). This strongly indicates a relationship

between intracellular Ab and hyperphosphorylated tau accumu-

lation on one side and spine loss at dystrophic dendrites on the

other.

We can exclude the possibility that dendritic dystrophy was

caused by cranial window surgery and laser-induced phototoxicity,

since neighboring dendrites that were imaged with the identical

parameters did not exhibit any dystrophic changes (Fig. 3A and 3B

and Video S1). In addition, dystrophic dendrites were also

apparent in cortical slices of 3xTg-AD mice that underwent

neither cranial window surgery, nor two-photon in vivo imaging

(Fig. 3G and 3H).

Early layer III neuron loss in the somatosensory cortex
While we analyzed dendritic spines on apical dendrites of layer

III and layer V cortical neurons in 3xTg-AD mice, we occasionally

observed dendrites disappearing from one imaging time point to

the next (Fig. 4A). When we followed the disappearing dendrite to

the corresponding layer III neuron in previous images, we realized

that the neuron had in fact disappeared along with the dendrite

(Fig. 4A). Neighboring neurons and dendrites persisted over the

entire imaging period (Fig. 4A), whereas the disappeared neurons

and dendrites did not reappear in subsequent imaging sessions.

Based on these observations, layer III neuron loss was

systematically analyzed by two-photon in vivo imaging stereology

as previously described [45]. Therefore, identical YFP expressing

layer III neurons were imaged and counted at day 0 and 30 days

later in 3xTg-AD and non-transgenic mice. Neuron loss

manifested only in 3xTg-AD mice, whereas not a single neuron

loss was detected in non-AD transgenic control mice (Fig. 4B;

decrease of 4.661.1% vs. 0.060.0% respectively; P = 0.012,

Student’s t-test; n = 1,200 neurons imaged in a total volume of

2.22 mm3 in n = 18 mice). Layer III neuron loss was apparent at

Dendritic Spine Loss in 3xTg-AD Mice
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Figure 1. Dendritic spine density is reduced in the hippocampus and frontal cortex from 15 months on. (A, B) High-resolution images of
dendrites and dendritic spines in the vicinity of (d,50 mm) and distant to (d.50 mm) amyloid plaques in the hippocampus. Scale bars: 10 mm
(overviews); 2 mm (close ups) (C, D) In the hippocampus (C) and frontal cortex (D) of 15 and 20 month-old 3xTg-AD mice, the dendritic spine density
was significantly reduced in areas close to (grey columns) and distant from (black columns) amyloid plaques compared to non-AD transgenic control
mice (white) (* P,0.05, ** P,0.01, *** P,0.001, Student’s t-test, n = 50 dendrites in n = 5 mice per group). The dendritic spine density was unchanged
at 6 and 10 months of age. Error bars indicate +S.E.M.
doi:10.1371/journal.pone.0015477.g001

Dendritic Spine Loss in 3xTg-AD Mice
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4–6 months of age when oligomeric Ab accumulates in 3xTg-AD

mice [53].

Importantly, before dendrites disappeared due to neuron loss

their spine density was comparable to the spine density of

dendrites that persisted (Fig. 4C; 0.4060.01 mm21 vs.

0.4360.02 mm21 respectively; n = 10 dendrites per group). This

indicates that the dendritic spine density was not altered before the

neuron was lost and therefore spine loss did not precede layer III

neuron loss. Obviously, when a neuron was lost all dendrites and

spines that protruded from this neuron were lost, too.

To determine if the disappearance of neurons was based on a

loss of YFP expression or if the neuron itself was lost, we

performed post-mortem nuclear DAPI- and neuronal Nissl-

staining of the same area where neuron loss has previously been

detected by two-photon in vivo imaging. This experimental

approach has previously been described in detail [45]. As

expected, the lost neurons were not labeled positive for DAPI or

Nissl compared to neighboring neurons that were still present

(Fig. 4D). This provides strong evidence, that these neurons were

in fact lost and did not just loose YFP expression.

Discussion

It has previously been shown that Ab oligomer administration

[23,24] and virally induced overexpression of mutated APP

[22,25] led to a reduced dendritic spine density in hippocampal

slice cultures. Further evidence from AD mouse models shows that

a decline in the density of the synaptic marker synaptophysin and

Figure 2. Dendritic spine density progressively declines in the somatosensory cortex from 13 months on. (A) A cranial window was
implanted over the somatosensory cortex to perform long-term two-photon in vivo imaging of neurons, dendrites, and dendritic spines. (B) High-
resolution time-lapse images of a dendritic region (blue box in A) over 16 days. Present spines (blue arrows), lost spines (red arrows), and gained
spines (green arrows) are exemplarily marked. (C) Classification of the 5 spines marked in B in categories of persistent (lifetime $8 days) and transient
spines (lifetime ,8 days). (D) Start and end point images of a 49-60 day in vivo imaging period of dendrites and dendritic spines in the somatosensory
cortex of 4–6 (D1), 8–10 (D2), 13–15 (D3), and 18–20 (D4) months old 3xTg-AD mice. Color code of arrows as in B. (E–G) Dendritic spines imaged in 4–6
(1), 8–10 (2), 13–15 (3), and 18–20 (4) months old 3xTg-AD mice and age-matched non-AD transgenic control mice over a 49–60 day in vivo imaging
period. (E) Dendritic spine density, (F) density of persistent dendritic spines, (G) density of transient dendritic spines. Each circle indicates one imaging
time point 6S.E.M. (*** P,0.001, repeated measures ANOVA (E and F) or Wilcoxon Rank Sum Test (G), n = 4 mice per group). Scale bars: 20 mm (A),
2 mm (B and D);
doi:10.1371/journal.pone.0015477.g002

Dendritic Spine Loss in 3xTg-AD Mice
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in dendritic spine density have also been detected at a time, when

only soluble Ab but no amyloid plaques were present [15–18].

Our working hypothesis was to determine if this early decline in

dendritic spine density is also apparent in 3xTg-AD mice [49]

where cognitive decline [54] and accumulation of oligomeric Ab

[53] occurs as early as 4–6 months of age before amyloid plaques

and hyperphosphorylated tau are present. To our surprise, at

those early stages, loss of dendritic spines was only observed as a

consequence of layer III neuron loss. This indicates that soluble

Ab, which accumulates at this age [45,53], is toxic at least for a

Figure 3. Dendritic spine density is reduced exclusively at dystrophic, soluble Ab and hyperphosphorylated tau accumulating
dendrites. (A, B) Time-lapse images of dystrophic and non-dystrophic dendrites over 60 days. Dendritic dystrophies (yellow circles), stable (blue
arrows), lost (red arrows), and gained dendritic spines (green arrows) at corresponding time-points are labeled. (C, D) Changes in dendritic spine
density (C) and dendritic volume (D) over 60 days at dystrophic, non-dystrophic and control dendrites in 13–20 month-old mice. Note that the
dendritic spine density of dystrophic dendrites significantly decreased over time, while the mean dendritic volume of the same dendrites significantly
increased (*** P,0.001, repeated measures ANOVA, n = 4 mice per group). Each circle represents one imaging time-point. (E) In 3xTg-AD mice, the
dendritic volume and spine density are inversely correlated (R2 = 0.84, P,0.001, n = 4 mice), indicating a relationship between both events. (F) The
mean number of dystrophic dendrites per volume significantly increased from 15 to 20 months of age (** P,0.01, Student’s t-test, n = 8–10 mice per
age group). (G) Dendritic dystrophies in the somatosensory cortex were labeled positive for antibodies 6E10, A11, HT7, and AT8 via
immunofluorescence staining. Co-localization (yellow) of each antibody (red) and YFP (green) in merged images. (H) Cortical section of a 20 month-
old 3xTg-AD mouse expressing YFP in cortical neurons that has not previously been imaged in vivo. Dystrophic dendrites (white arrows) are abundant
in cortical layers 1–3. Error bars: 6S.E.M. Scale bars: 10 mm (A, G, H) 2 mm (B),
doi:10.1371/journal.pone.0015477.g003

Figure 4. Early layer III neuron loss leads to spine loss. (A) Two-photon in vivo images of the identical cortical region of a 4 months old 3xTg-
AD mouse showing a selective disappearance of an apical dendrite in layer 1–2 (red arrows) and the corresponding layer III neuron after 3 days, while
a neighboring dendrite and neuron persisted (blue arrows). Scale bars: 20 mm. (B) Neuron loss in a 30 day interval was exclusively detected in 3xTg-
AD mice compared to control mice (* P,0.05, Student’s t-test, n = 1,200 neurons). Error bars indicate +S.E.M. (C) Mean dendritic spine density of
disappearing dendrites remained unchanged before the loss of the neuron. Dendritic spine density remained at a level comparable to the spine
density of persistent dendrites of the same 4–6 months old 3xTg-AD mice and controls (n = 10 dendrites per group). Error bars indicate 6S.E.M. (D)
Two-photon in vivo images of the same layer III neurons in a 4 months old 3xTg-AD mouse and 30 days later. A single neuron disappeared after 30
days (red circle) while a neighboring YFP positive neuron persisted (blue circle). After the neuron loss occurred, the brain was paraformaldehyde
fixed, cut in 100 mm thick sections, and the nuclei were labeled with DAPI while neurons were selectively labeled with Nissl-Red. Neither DAPI, nor
Nissl staining was detected at the position where neuron loss was previously detected in the in vivo image (red circle) while the persisting neuron was
labeled with DAPI and Nissl (blue circle). Scale bars: 20 mm.
doi:10.1371/journal.pone.0015477.g004

Dendritic Spine Loss in 3xTg-AD Mice
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subset of cortical neurons. Most importantly, in 3xTg-AD mice we

did not find any evidence that soluble Ab leads to dendritic spine

loss at intact dendrites as anticipated by previous studies

[16,17,21–25]. How can this discrepancy be explained? One

possibility is that in 3xTg-AD mice the soluble Ab concentrations

at dendritic spines are significantly lower than the concentrations

that led to dendritic spine loss in the previous in vitro studies [21–

25]. In addition, the spatio-temporal distribution of soluble Ab
might be different in 3xTg-AD compared to other AD mouse

models that show an early decline in spine density [16,17].

In 3xTg-AD mice, a decline in the density of dendritic spines of

individual dendrites could first be observed at the age of 13

months. Hereby, the dendritic spine density was reduced in close

proximity to amyloid plaques. This finding is in line with

observations from other mouse models [26–31]. In addition,

3xTg-AD mice show a strong decline in spine density also distant

to amyloid plaques. Interestingly, spine density was exclusively

reduced at dystrophic dendrites, where both oligomeric Ab and

hyperphosphorylated tau were intracellularly abundant.

Collectively, three spatio-temporally independent events lead to

a net loss of dendritic spines in 3xTg-AD mice. First, layer III

neuron loss occurs early at the time when soluble Ab accumulates.

Consequently, dendritic spines of these neurons get lost. Second,

from 13 months on, at a time when amyloid plaques are abundant,

the dendritic spine density declines in proximity to amyloid

plaques. Third, starting at 13 months, a reduction in dendritic

spine density manifests also in areas apart from amyloid plaques.

This plaque independent spine loss occurs exclusively at

dystrophic dendrites that accumulate both Ab oligomers and

hyperphosphorylated tau intracellularly. Taken together, we

identified three independent events that contribute to a loss of

dendritic spines in 3xTg-AD. Each of these events can individually

lead to dendritic spine loss. This implies that AD therapies which

are only directed at one of these causes probably fall short to

counteract the full spectrum of dendritic spine loss in AD.

Supporting Information

Figure S1 Ab and tau pathology in 3xTg-AD mice. (A-C)

Immunofluorescence images of hippocampal and cortical slices of

6, 10, 15, and 20 month-old 3xTg-AD mice stained with 6E10

antibody (A), methoxy-X04 which labels fibrillar aggregates like

Ab plaques (arrows) or neurofibrillary tangles (B). AT8 antibody

binds to hyperphosphorylated tau (C). Scale bars: 20 mm

(hippocampus) 50 mm (cortex) (TIF)

Video S1 Dendritic dystrophy in 3xTg-AD mice. In 13

months old 3xTg-AD mice, some dendrites started to become

dystrophic while neighboring dendrites showed a normal volume

over the whole imaging period of 60 days. Scale bar: 10 mm (AVI)
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