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Coronavirus disease 2019 (COVID-19), which is caused by the 
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2), emerged in China and spread throughout the world caus-
ing a global pandemic (1, 2). Some patients who were dis-
charged with undetectable SARS-CoV-2 have reportedly had 
a positive result upon subsequent tests (3–5). Recently, SARS-
CoV-2-specific neutralizing antibodies (NAbs) were detected 
around 10–15 days after the onset of COVID-19 (6–8). The pos-
sibility that patients have a risk of “relapse” or “reinfection” 
after recovery from the initial infection has raised concern. 
In this study, we therefore used nonhuman primates to lon-
gitudinally track the short-term infectious status from pri-
mary SARS-CoV-2 infection to reinfection by the same viral 
strain. 

Seven adult Chinese-origin rhesus macaques (M0 to M6, 
3–5 kg, 3–5 years of age) were modeled for challenge–rechal-
lenge observations. Six monkeys (M1 to M6) were intratra-
cheally challenged with SARS-CoV-2 at 1 × 106 50% tissue-
culture infectious doses (TCID50). After undergoing a mild-to-
moderate course of SARS-CoV-2 infection, and transitioning 
into the recovery stage from the primary infection, four mon-
keys (M3 to M6) were rechallenged intratracheally with the 
same dose of the SARS-CoV-2 strain at 28 days post-initial 
challenge (dpi). The remaining two monkeys (M1 and M2) 
with primary infection were not rechallenged and were used 
as the negative control of the rechallenge group. A healthy 
monkey (M0) was given an initial challenge as a model 

control of the second challenge. The pathological changes 
with viral-dependent distribution were compared using nec-
ropsy specimens between two monkeys that underwent only 
the initial challenge (M0 at 5 dpi and M1 at 7 dpi) and two 
monkeys that underwent challenge–rechallenge (M3 and M5) 
at 5 days post rechallenge (dpr, 33 dpi). Body weight, rectal 
temperature, nasal/throat/anal swabs, hematological meas-
urement, chest X-ray, virus distribution, pathological 
changes, and the analysis of immunocytes, and binding and 
neutralizing antibodies were examined at the designated 
time points (Fig. 1). Weight loss ranging from 200 to 400 g 
was found in four monkeys that underwent the initial chal-
lenge (4/7, M0, M1, M2, and M4) (Fig. 2A), whereas the rectal 
temperature was not elevated in any of the monkeys (0/7) 
(Fig. 2B). Reduced appetite and/or increased respiration were 
common (6/7, the exception of M4), but emerged transiently 
and exhibited a very short duration. Regarding viral dissem-
ination, the peak viral load (6.5 log10 RNA copies/mL) in nasal 
swabs and pharyngeal swabs was detected at 3 dpi, followed 
by a gradual decline (Fig. 2, C and D). The peak viral load (5 
log10 RNA copies/mL) in anal swabs was observed at 3 dpi, 
followed by a linear decline to reach undetectable levels at 14 
dpi (Fig. 2E). In all monkeys that received the initial chal-
lenge, white blood cell count (WBC, 3.5–9.5 × 109/L), lympho-
cyte counts (LYMP, 1.1–3.4 × 109/L), and neutrophil counts 
(NEUT, 1.8–6.4 × 109/L) fluctuated within normal ranges. 
Compared with the baseline, a slight but significant 
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reduction in WBC and LYMP was observed after the primary 
infection (Fig. 2F). On radiological examination, bilateral ob-
scured diaphragmatic surface and decreased transparency of 
lung fields with a small patch shadow in the left lower lobe 
were detected, indicating mild-to-moderate interstitial infil-
tration in monkeys with pneumonia (represented by M4 and 
M6, Fig. 2G). Using necropsy specimens, viral RNA copies 
were detected in the M0 monkey at 5 dpi and the M1 monkey 
at 7 dpi in the nose (106–108 copies/mL), pharynx (104–106 cop-
ies/mL), lung (103–107 copies/mL), and gut (104–106 cop-
ies/mL) (Fig. 3A, left panel). Hematoxylin and eosin (H&E) 
staining revealed a mild-to-moderate interstitial pneumonia 
characterized by widened alveolar septa, increased alveolar 
macrophages and lymphocytes in the alveolar interstitium, 
and degenerated alveolar epithelia; moreover, infiltrated in-
flammatory cells were detected in the lungs of monkeys with 
primary infection. Collagen fiber could also be observed in 
the thickened alveolar interstitium in M0 and M1 monkeys 
using Modified Masson’s Trichrome stain at 5 or 7 dpi (Fig. 
3B). Furthermore, the mucous membranes of the trachea, 
tonsils, pulmonary lymph nodes, jejunum, and colon of the 
M0 and M1 monkeys exhibited inflammatory cell infiltrations 
(fig. S1, left panel), as well as infiltration with abundant CD4+ 
T cells, CD8+ T cells, B cells, macrophages, and plasma cells 
in lungs, as assessed using immunohistochemistry (IHC) (fig. 
S2). Viral-infected cells were mainly found in alveolar epithe-
lia and macrophages by IHC on sequential sections (Fig. 3C), 
as well as in the mucous membranes of the trachea, tonsils, 
pulmonary lymph nodes, jejunum, and colon (fig. S1), con-
firming that SARS-CoV-2 caused COVID-19 in rhesus mon-
keys. Collectively, these data demonstrated that all seven 
monkeys were successfully infected with SARS-CoV-2 and 
that the pathogenicity in monkeys is similar to that reported 
in recent studies (9–14). 

By 15 dpi, the body weight of infected monkeys (M2 to M6) 
had gradually increased into the normal range (4/5, the ex-
ception of M4, Fig. 2A), and their rectal temperature was 
maintained within the normal range (Fig. 2B). Moreover, the 
viral loads were negative in all nasopharyngeal and anal 
swabs (5/5, Fig. 2, C to E). As shown in Fig. 2F, the hemato-
logical changes remained relatively stable within the normal 
range. Chest X-rays returned to normal levels at 28 dpi (rep-
resented by M4 and M6, Fig. 2G). These traits were similar to 
the hospital discharge criteria used for patients with COVID-
19, including absence of clinical symptoms, radiological ab-
normalities and twice-negative RT–PCR results (15). Taken 
together, our results suggest that monkeys that underwent 
initial SARS-CoV-2 infection required about 2 weeks to tran-
sition into the recovery stage (10, 16). 

At 28 dpi, four monkeys (M3 to M6) that underwent pri-
mary infection and recovery were rechallenged intratrache-
ally with the same dose of an identical SARS-CoV-2 strain. 

The clinical tracking of the reinfection included examination 
of weight loss (Fig. 2A) and rectal temperature (Fig. 2B). In-
terestingly, the rechallenged monkeys exhibited a transient 
increase in temperature, which was not observed during the 
primary infection. Viral loads remained negative over a 2-
week intensive detection of the virus in nasopharyngeal and 
anal swabs after rechallenge with SARS-CoV-2 (Fig. 2, C to E). 
Peripheral blood measurements revealed no significant fluc-
tuation during the rechallenge stage (Fig. 2F). Moreover, we 
did not detect abnormalities by X-ray in the M4 and M6 mon-
keys at 33 dpi (5 dpr, Fig. 2G). In necropsy specimens of the 
lungs and extrapulmonary tissues of rechallenged monkeys 
(M3 and M5 at 5 dpr), we found no detectable viral RNA (Fig. 
3A, right panel), no significant pathological lesions (Fig. 3B, 
right panel of fig. S1), no viral-infected cells (Fig. 3C, right 
panel of fig. S1), and no immune cell infiltration (fig. S2). 
Therefore, the rhesus monkeys that initially developed pri-
mary SARS-CoV-2 infection did not appear re-infected with 
the identical SARS-CoV-2 strain during their early recovery 
stage. 

To interpret the challenge–rechallenge disparity, we per-
formed a comparison of the clinical, pathological, viral and 
immunological traits that comprehensively reflected the vi-
rus–host interaction between the primary-challenge stage 
and the rechallenge stage in four monkeys (M3 to M6). First, 
the viral loads in nasopharyngeal and anal swabs were much 
higher at 5 or 7 dpi than they were at 5 or 7 dpr (right side of 
Fig. 2, C to E). An increased WBC and neutrophils were ob-
served at 14 dpr compared with 14 dpi (Fig. 2F, right side). 
Second, T and B cells from peripheral blood, including CD4+ 
T subsets [naïve CD4+ T cells (CD4+ T naïve), central memory 
CD4+ T cells (CD4+ Tcm), and effective memory CD4+ T cells 
(CD4+ Tem)], CD8+ T subsets (CD8+ T naïve, CD8+ Tcm, and 
CD8+ Tem), memory B cells, and plasma cells were relatively 
stable during the challenge–rechallenge infectious stage. 
However, an increased percentage of activated CD8+ T cells 
from peripheral blood was observed at 14 dpi, which was also 
found at 0 dpr compared with 0 dpi (Fig. 4A, right side). Re-
garding the immune responses from lymph nodes, an in-
creased percentage of CD4+ Tcm cells and decreased 
percentage of naive CD4+ T cells and memory B cells from 
lymph nodes were observed at 5 dpr compared with 5 dpi 
(Fig. 4B). Third, the specific antibody levels against the SARS-
CoV-2 spike increased gradually, leading to a significantly 
higher titer at 21 dpi than at 3 dpi and 42 dpi (14 dpr) com-
pared with 28 dpi or 0 dpr (Fig. 4C). Moreover, the specific 
antibody titers were much higher at 14 dpr compared to 14 
dpi (Fig. 4C, right panel). As shown in Fig. 4D, the average 
titers of neutralizing antibodies exhibited a linear enhance-
ment at the time of rechallenge (28 dpi; range, 1:8-1:20 in all 
monkeys). We observed an enhanced activation of CD8+ T 
cells from peripheral blood, and changes in CD4+ Tcm cells 
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and memory B cells from lymph nodes. It appeared an in-
creased number of neutralizing antibodies against SARS-
CoV-2 were induced by cellular or humoral immunity facili-
tated by the primary infection, which might have protected 
the same nonhuman primates against reinfection in the short 
term. However, factors that are directly correlated to protec-
tion are yet to be fully elucidated. Further studies of passive 
transfer of convalescent sera from this model to a naïve ma-
caque, or CD8+ T cell depletion in the recovered monkeys 
prior to rechallenge, would be required to define the mecha-
nisms underlying the pathogenicity of SARS-CoV-2. 

In the present challenge–rechallenge infection of rhesus 
monkeys with SARS-CoV-2, observations and detections were 
carried out within the relative short time window in which 
neutralizing antibodies plateaued after the primary infection. 
A longer interval (longer than 6 months) between the pri-
mary challenge and the rechallenge is needed to track longi-
tudinally the host–virus interaction and elucidate the 
protective mechanism against SARS-CoV-2 in primates. 
Moreover, all infected monkeys exhibited relative mild-to-
moderate pneumonia, which is similar to the mild or com-
mon clinical characteristics of COVID-19 in infected human 
individuals; however, a COVID-19 monkey or transgenic 
mouse model with severe clinical symptoms or lethality 
should be explored according to increasing challenge dose, 
exposed tissues, or other treatments. Although we observed 
macrophages in association with SARS-CoV-2 infection, rapid 
rechallenge in the absence of potent serology relieved some 
level of concern regarding the occurrence of ADE. In addi-
tion, mucosal immunity, which is triggered by primary infec-
tion and includes both the respiratory and intestinal mucosa 
and local lymph nodes, might contribute substantially to the 
viral rechallenge response. Thus, future studies are required 
to examine experimentally the mucosal antibody responses, 
such as bronchoalveolar lavage IgG levels, serum IgA or IgM 
levels. 

Taken together, our results suggest that rhesus macaques 
that have undergone an initial infection with SARS-CoV-2 
mount protection against rechallenge during the early recov-
ery days. However, it remains necessary to elucidate the pro-
tective mechanism against SARS-CoV-2 regarding 
neutralizing antibodies or other immunological roles. This 
short-term infection rechallenge macaque model provides in-
sightful information for vaccination research, therapy of con-
valescent sera, and prognosis of COVID-19. 
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Fig. 1. Experimental design and sample collection. Seven adult Chinese-origin rhesus macaques (M0 to M6) 
were enrolled in the current study. At the outset of this experiment, six monkeys (M1 to M6) were challenged 
intratracheally with SARS-CoV-2 at 1 × 106 TCID50. After all the experimentally-infected monkeys had recovered 
from the primary infection, four infected monkeys (M3 to M6) were intratracheally rechallenged at 28 days post 
initial challenge (dpi) with the same dose of the SARS-CoV-2 strain, to ascertain the possibility of reinfection. In 
addition, an uninfected monkey (M0) was also treated with SARS-CoV-2 as the model control of the second 
challenge, and a previously infected monkey (M2) was untreated in the rechallenge experiment and was 
continuously monitored as the control animal. To compare the virus distribution and histopathological changes 
between the initially infected monkeys and the reinfected monkeys, two monkeys per group (M0 and M1 in the 
initial infection group, M3 and M5 in the reinfection group) were euthanized and necropsied at 5 dpi (M0), 7 dpi 
(M1) and 5 days post rechallenge (dpr) (M3 and M5), respectively. Body weight, body temperature, 
nasal/throat/anal swabs, hematological changes, immunocytes, and specific antibodies were measured over 
the short-term observation period. Two measurements of virus distribution and histopathology (H&E/IHC 
staining) were carried out at 5 dpi (M0), 7 dpi (M1), and 5 dpr (M3 and M5). Chest X-ray and neutralizing antibody 
titers against SARS-CoV-2 were examined at the indicated time points. 
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Fig. 2. Longitudinal tracking of clinical signs, viral replication, hematological changes, and 
radiological changes. (A and B) Clinical signs in each monkey. Monkeys were examined daily for 
changes in body weight and rectal temperature over the observation period after the initial infection, 
followed by virus rechallenge. The changes in weight are expressed as body weight loss prior to primary 
infection. (C, D, and E) Detection of viral RNA in nasal, throat, and anal swabs. The SARS-CoV-2 RNA 
was detected by qRT–PCR in the swabs from seven monkeys at the indicated time points. (F) 
Hematological changes, including WBC, LYMP, and NEUT counts in the peripheral blood, were 
monitored. (G) Chest X-rays of animals at 0, 7, 28, and 33 dpi (5 dpr) were examined and the 
representative images of M4 and M6 are shown (red circles, areas of interstitial infiltration and 
exudative lesion; red arrows, obscured diaphragmatic surface; blue circles and arrows, areas that have 
recovered from pneumonia). Four monkeys (M3 to M6) were rechallenged at 28 dpi (dotted line and 
shaded areas), and the results of the initial infection and rechallenge were compared in bar graphs. The 
bars represent the average of four rechallenged animals at the indicated time points. The viral RNA in 
nasal, throat, and anal swabs of rechallenged animals were significantly lower than those of the initial 
infection, while significant hematological changes were observed between the primary and second 
challenges (unpaired t-test, dpi vs. dpr, *P < 0.05; **P < 0.01; ***P < 0.001; #P < 0.05 0 dpi vs. 7 dpi). 
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Fig. 3. Comparison of virus distribution and pathological changes between the primary challenge and 
rechallenge stages. (A) Detection of viral RNA in the indicated organs (brain, eye, nose, pharynx, lung, and gut. 
Compared with M0 and M1 (at 5 or 7 dpi; primary infection stage), viral replication tested negative in the 
indicated tissues from M3 and M5 (at 5 dpr; virus rechallenge stage). Using a viral load > 10 log10 copies/mL as 
the threshold of positivity-tissue-based PCR, tissues from 49 anatomical parts were detected for qualifying 
virus-infected positivity. Fourteen tissues from the respiratory tract, gut, and heart exhibited SARS-CoV-2-
positive cells in both M0 and M1. SARS-CoV-2-positive cells were only observed in the left lower lung from M0 
or in the right upper lung, upper accessory lung, skeletal muscle, duodenum, and bladder from M1. The 
remaining tissues from 29 anatomical parts did not show SARS-CoV-2-positive cells, indicating that these 
tissues were intact from viral invasion. (B) In M0 (5 dpi), an interstitial lesion including remarkedly widened 
alveolar septa and massive infiltrated inflammatory cells was observed using H&E staining. A mild fibrosis was 
clearly detected within widened alveolar septa using Masson staining. IHC against the spike protein of SARS-
CoV-2 (7D2, grey frame), macrophages (CD68, blue frame), or alveolar epithelial cells (CK7, green frame) are 
visualized in parallel in Fig. 3C. The spike-positive cells overlapped with either alveolar epithelial cells or 
macrophages showing diffused interstitial pneumonia affected by SARS-CoV-2 invasion. In M5 (5 dpr), no 
remarked pathological changes and virus distribution were detected via H&E staining, Masson staining, or IHC, 
indicating that the interstitial lesions had completely recovered from the SARS-CoV-2 primary infection and 
were intact to reinfection. The red rectangles indicate the areas of magnification. Black scale bar at 100× or 
200× = 100 μm. Black scale bar at 400× = 50 μm. Data are representative of three independent experiments. 
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Fig. 4. Comparison of cellular and humoral immunity between primary challenge and rechallenge stages in 
macaques. Four macaques (M3–M6) were rechallenged at 28 dpi (dotted line and shaded areas), and the 
results of the initial infection and rechallenge were compared at the same time points after the challenge and 
after the rechallenge. (A) Percentages of memory CD4+/CD8+ T cell subsets, memory B cells, plasma cells, or 
activated CD8+ T cells from peripheral blood for the challenge–rechallenge experiments. Compared with 0, 5 or 
14 dpi, there was no significant differences on the percentage of naive CD4+/CD8+ T cells (CD4+/CD8+ Tnaïve, 
CD3+ CD4+/CD8+ CCR7+ CD45RA+), central memory CD4+/CD8+ T cells (CD4+/CD8+ Tcm, CD3+ CD4+/CD8+ 
CCR7+ CD45RA−), effective memory T cells (CD4+/CD8+ Tem, CD3+ CD4+/CD8+ CCR7- CD45RA−), memory B 
cells (CD3− CD20+ CD27+) and plasma cells (CD3− CD20+ CD43+) from peripheral blood at 0, 5, 14 dpr (unpaired 
t-test, ns, P > 0.05). The activation of CD8+ T cells (CD8+ CD38+ HLA-DR+ or CD8+ CD38+ HLA-DR+ PD-1+) at 14 
dpi were increased compared with the baseline (unpaired t-test, #P < 0.05, ##P < 0.01), and elevated levels of 
CD8+ CD38+ HLA-DR+ T cells were also observed at 28 dpi (unpaired t-test, 0 dpi vs 0 dpr, * P < 0.05). (B) 
Percentages of memory CD4+/CD8+ T cell subsets, memory B cells, plasma cells or activated CD8+ T cells from 
lymph nodes between 5 dpi and 5 dpr. An increased percentage of CD4+ Tcm cells and decreased percentage of 
CD4+ Tnaïve cells and memory B cells from lymph nodes were found in the dot plots (unpaired t-test, *P < 0.05, 
**P < 0.01). (C) Levels of specific IgG against the spike protein of SARS-CoV-2 in four rechallenged monkeys. 
The levels of anti-viral antigen-specific IgG from each monkey were detected at 3, 7, 14, 21, 28, 33, and 42 dpi. 
Significantly increased levels of IgG were observed between the primary and second challenges (unpaired t-test, 
**P < 0.01, 14 dpi vs. 14 dpr; # P < 0.05, 3 dpi vs. 21 dpi, 28 dpi vs. 42 dpi). (D) Neutralizing antibody titers for 
protection of SARS-CoV-2-infected monkeys against reinfection. 
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