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ABSTRACT

Nucleobase analogs 5-methylisocytosine (M¢isoC)
and isoguanine (isoG) form a non-natural base pair
in duplex nucleic acids with base pairing specificity
orthogonal to the natural nucleobase pairs. Sequenc-
ing reactions were conducted with oligodeoxyribo-
nucleotides (ODNs) containing d"¢isoC and disoG
using modified pyrosequencing and dye terminator
methods. Modified dye terminator sequencing was
generally useful for the sequence identification of
ODNSs containing the non-natural nucleobases. The
two sequencing methods were also used to monitor
nucleotide incorporation and subsequent extension
by Family A polymerases used in the sequencing
methods with a six-nucleobase system that includes
d"@isoC and disoG. Nucleic acids containing the six-
nucleobase system could be replicated well, but not
as well as natural nucleic acids, especially in regions
of high d"®isoC—disoG content. Challenges in replica-
tion with d"®isoC-disoG are consistent with nucleo-
base tautomerism in the insertion step and disrupted
minor groove nucleobase pair—polymerase contacts
in subsequent extension.

INTRODUCTION

Non-natural nucleobase analogs with base pairing specificity
orthogonal to the natural base pairs have been designed
to expand the sequence and functional diversity of nucleic
acids (1-3). One strategy in the design of additional base
pairs has been to work within the Watson—Crick pairing

rules of size and hydrogen bonding complementarity. In this
approach, nucleobase analogs with carbon/nitrogen ring sys-
tems isosteric to natural purines or pyrimidines are used to
implement hydrogen bonding functionality arrayed in patterns
not found in natural DNA (4). The most thoroughly studied of
these non-natural pairs is the 5-methylisocytosine—isoguanine
(M¢isoC—isoG) pair joined by three hydrogen bonds in duplex
nucleic acids (Figure 1) (5-7), and capable of acting as a third
base pair in PCR amplification (8). The M¢isoC~isoG pair has
established technological value in reducing background signal
(9) in widely used commercial diagnostic nucleic acid hybrid-
ization assays (10,11) approved by the U.S. Food and Drug
Administration and other global regulatory authorities. The
pair has been used as a component of a real-time quantitative
PCR assay (12). Non-natural isoC—isoG or M¢isoC—isoG pairs
have also been used as mechanistic probes of the fundamental
biological processes of template-directed nucleic acid syn-
thesis (13,14), translation (15), protein-mediated strand
exchange of DNA (16) and excision repair (17).

If nucleic acids containing ~ “isoC and isoG are to have
the utility of natural nucleic acids, the tools and techniques
of molecular biology must be available. A powerful tool for
characterizing nucleic acids is sequence determination.
Non-natural nucleobase positions in nucleic acids have been
identified in very limited experiments using various methods,
including enzymatic pausing (18), chemical degradation
(8,13,14,19) and dye-labeled terminators (20). No reported
sequencing method has concurrently identified both nucleo-
bases of a non-natural pair. Here, we describe work to sequence
oligodeoxyribonucleotides (ODNs) containing d™isoC and
disoG. We demonstrate that d™¢isoC and disoG positions can
be unambiguously identified within a single nucleic acid using
a dye-labeled terminator method, despite lacking terminators
corresponding to the non-natural nucleobases. We have
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Figure 1. Base pairing with the isoC-isoG non-natural pair. (A) IsoC and
isoG form a three hydrogen bond pair. (B) An isoG tautomer is comple-
mentary to T in Watson—Crick pairing. 2’-Deoxy-5-methylisocytidine and
2'-deoxyisoguanosine were used in this work (R = CH3, R’ = 2’-deoxyribose).

repeatedly used this method to verify synthetic ODN
sequences. Another method using pyrosequencing, which
detects pyrophosphate generated from the enzymatic addition
of a nucleoside triphosphate to a nucleic acid strand, is only
partially successful at sequencing ODNs containing d™®isoC
and disoG. Development of these sequencing systems with
non-natural analogs has afforded the additional benefit of prob-
ing polymerase molecular recognition. The two sequencing
methods were used to monitor nucleotide incorporation and
subsequent extension by polymerases with a six-nucleobase
system that includes dM¢isoC and disoG.

MATERIALS AND METHODS
Oligodeoxyribonucleotides

Synthetic ODN sequences containing disoG and d™¢isoC were
synthesized using phosphoramidite chemistry (5,21) and
PAGE purified. ODN purity was verified as at least 90%,
and nearly always >95%, by capillary electrophoresis analysis
(22). The identity of each ODN was confirmed by matrix-
assisted laser desorption ionization time-of-flight mass spec-
trometry and high-performance liquid chromatography
(HPLC) analysis of component nucleosides after enzymatic
degradation (22).

Pyrosequencing

Pyrosequencing was performed using a PSQ96MA Sequencer
(Biotage AB). For optimal results, the concentration of a nuc-
leotide in pyrosequencing reactions should be slightly above
the K, of the enzyme for that particular nucleotide. Lower
concentrations cause incomplete incorporation and higher
concentrations increase misincorporation. Stock solutions
of nucleotides are dispensed stepwise from four reservoirs
in a pyrosequencing dispensation cartridge. Concentrations
of stock solutions of dM¢isoCTP and disoGTP required
to give nucleotides at the appropriate K,, during extension
were roughly determined in separate experiments (data not
shown) by dispensing a range (10 uM, 50 uM, 500 uM and
2.5 mM) of nucleotide concentrations in pyrosequencing reac-
tions with templates containing either disoG (for d™¢isoCTP)
or d™¢isoC (for disoGTP). The lower concentrations were
clearly insufficient and generated less pyrophosphate than
expected for complete incorporation. Signal height at
500 uM and 2.5 mM was nearly unchanged for both non-
natural nucleotides, suggesting pyrosequencing reservoir
stock solutions at 500 uM dispense nucleotide near K, in
the reaction solution for the insertion of d™isoCTP opposite
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template disoG and disoGTP opposite template d*¢isoC. The
higher 2.5 mM concentration was chosen for these nucleotides
in the cartridge reservoirs to guard against incomplete incorp-
oration at the expense of possibly slightly increasing
misincorporation of d™isoC and disoG. For comparison,
standard cartridge concentrations used in pyrosequencing
were measured by Ayg at 0.3-0.6 mM for dCTP, dGTP
and dTTP, and ~2.5 mM for o-S-dATP.

Most of the pyrophosphate impurities visible in pyrosequen-
cing were removed from d™¢isoCTP and disoGTP by HPLC
purification with a YMC-Pack ODS-AM column (120 A, 5 um,
250 x 4.6 mm). Approximately 0.2 wmol of nucleotide (20 pl)
was injected on a Series 1100 HPLC (Hewlett Packard) and
purified with a binary gradient (solvent A = 0.2 M triethyl-
ammonium acetate, pH 6.8; solvent B = 95% solvent A,
5% acetonitrile) at 1.0 ml/min: 4% solvent B hold for 10
min, then increase solvent B to 100% over 25 min. The eluate
containing the d™isoCTP or disoGTP was collected by
monitoring at 260 nm. Eluate containing d™¢isoCTP was
immediately adjusted to pH 8.3 with triethylamine. The
solvent and the volatile buffer were removed under vacuum
and the nucleotide was redissolved in water. The purification
yielded nucleotides with no detectable impurity peaks upon
reinjection and analysis with this HPLC method, and removed
most of the pyrophosphate undetectable by UV monitoring,
but visible in pyrosequencing.

Fifteen ODN templates were designed to vary the nearest-
neighbor positions around d™isoC and disoG positions. Only
three of the four natural nucleobases were used in each tem-
plate to leave an available reservoir for either d™isoCTP
or disoGTP. Complementary nucleotides were sequentially
dispensed for each template. In instances of incomplete
incorporation, sequential dispensations of a single nucleotide
were used in a subsequent experiment to examine whether
extending the time available for incorporation would increase
incorporation. One dispensation of an out-of-sequence non-
complementary nucleotide was performed with each ODN as a
negative control (Supplementary Figure S3). Pyrosequencing
data presented are peak heights of emitted light detected and
are the average of two replicates.

Preparation of ODNs for cycle sequencing

Synthetic ODNs were ligated with T4 DNA ligase (Amersham
Biosciences) to a DNA fragment, which was assembled from
three component ODNs (170 nt total, sequences in Supple-
mentary Material). The ODN to be sequenced (1.73 nmol) was
ligated to a 5’-phosphorylated 50mer ODN (1.44 nmol) using a
reverse complementary linker ODN (2.02 nmol) that formed
a 6 nt duplex with each of the ODNs to be ligated. Simultan-
eously, the 50mer was ligated to a 5’-phosphorylated 57mer
(1.20 nmol) through an analogous linker ODN (1.68 nmol),
and the 57mer was in turn ligated to a 5'-phosphorylated
63mer (1.00 nmol) through another linker ODN (1.40 nmol).
An annealing step was first performed in 1x 100 pl ligation
buffer (50 mM Tris—HCI, pH 7.5, 10 mM MgCl,, 2 mM
spermidine) by incubating the solution at 55°C (2 min) and
reducing the temperature (0.67°C/min) to 22°C, then holding
(2 min). To the ODN solution was added 10x ligation buffer
(10 ul), 100 mM ATP (4 ul), 500 mM DTT (4 ul), water (28 ul),
50% PEG-8000 (48 ul) and T4 DNA ligase (6 ul, 6 U).
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The ligation reaction was incubated at 20°C for 14 h. The
reaction was quenched with 0.5 M EDTA (6 pl) and the nuc-
leic acid was precipitated by adding pH 4.8 ammonium acetate
(137 ul) and ethanol (687 ul) and cooling at —20°C for 1 h.
After spinning in a microcentrifuge at 4°C (20 000 r.c.f.,
30 min) and rinsing three times with cold 80% ethanol, the
pellet was dissolved and the ligation product separated on a
5% polyacrylamide gel. The product band was excised and
isolated by electroelution. The ligation product was purified
using a NAP-25 column and then ethanol precipitated again.

Cycle sequencing

The template produced by ligation was included in cycle
sequencing reactions with d"“isoCTP (21), disoGTP (21),
and either BigDye 3.0 (Applied Biosystems) or BigDye 3.1
(Applied Biosystems) kits. Cycle sequencing was performed
on a 7700 Sequence Detector (Applied Biosystems) in 9600
emulation mode with 17.6 ul of Ready Reaction Mix using
25 nM template and 160 nM primer in 44 pl reactions for
25 cycles (96°C, 10 s; 60°C, 240 s). The reactions were then
purified with DTR spin columns (Edge Biosystems). The
sequencing reactions were analyzed on a 310 Genetic Ana-
lyzer (Applied Biosystems) using POP-6 polymer gel in a
61 cm x 50 pm uncoated capillary (50°C, 200 V/cm). Con-
centrations of d™isoCTP and disoGTP (10-1000 uM) were
examined in optimization matrix experiments with the goals
of minimal signal attenuation and no mispaired terminator
signals opposite d™isoC or disoG template positions.

RESULTS
Pyrosequencing

In pyrosequencing (23,24), nucleoside triphosphates are singly
dispensed into a solution containing primer, template and
exo(—) Klenow fragment of DNA polymerase I at 28°C.
Incorporation of a complementary nucleotide produces an
enzymatically mediated cascade resulting in the generation
of visible light. The amount of light generated is proportional
to the pyrophosphate produced during incorporation. Excess
nucleotide is enzymatically destroyed before subsequent nuc-
leotide dispensations. The ODN templates used here all have
natural nucleobases at the first four template positions and
these positions always yielded relative signal heights typical
of pyrosequencing with natural nucleobases. In evaluating
these signals, it is important to note that dispensations of
0-S-dATP used in pyrosequencing typically result in peak
heights ~20% higher than the other nucleotides (25). These
first four positions form a baseline for comparison of replica-
tion performance with non-natural nucleobases. Because of
the template design, non-natural positions were challenged
with natural nucleotides upon dispensation of the complement-
ary nucleotide opposite the fourth template position of the
ODNGs containing dMisoC or disoG positions. Significant
incorporation of a natural nucleotide opposite the dMeisoC
or disoG at the fifth template position would add to the signal
for incorporation opposite the fourth position and give a signal
greater than one equivalent.

Pyrosequencing reactions performed quite differently
depending on whether disoG or d™¢isoC was present in the
9 nt template region of the individual ODNs (Figure 2 and

Supplementary Figures S1 and S2). Complementary disoG
nucleotide was always readily incorporated opposite d™isoC
in the template, while the natural nucleotides were not
significantly incorporated opposite d“°isoC (Figure 2B).
However, further extension following the d™®isoC-disoG
pair was slowed and was often incomplete after a single dis-
pensation of nucleotide. Sequential dispensations of the same
complementary nucleotide allowed more cumulative time for
incorporation and usually improved the incomplete incorpora-
tion observed with a single dispensation at positions follow-
ing a disoG—d™®isoC pair (Figure 2C). Misincorporation upon
dispensing disoGTP was observed when disoGTP was dis-
pensed at dM¢isoC positions followed by dT (Figure 2F);
more than one equivalent of pyrophosphate was produced,
indicating that disoG nucleotide was incorporated opposite
dM¢isoC and then further incorporated opposite the follow-
ing dT. When o-S-dATP was mixed 1:1 with disoGTP and
dispensed at a template d“isoC position followed by dT,
two equivalents of pyrophosphate were produced and incorp-
oration opposite the position following dT was improved
(Figure 2G), suggesting that disoG and dA were incorporated
opposite disoC and dT, respectively. This implies that dA
is incorporated more readily opposite template dT positions
than disoG.

In contrast, significantly less than one equivalent of pyro-
phosphate was produced when d™¢isoCTP was dispensed at
disoG template positions (Figure 2D). The proportion of
template disoG paired with dM¢isoC was quite variable
in different sequence contexts (Supplementary Figure S1).
Extending the time available for incorporation through
multiple dispensations of d™¢isoCTP increased the incorpora-
tion of dM®isoC only slightly (Figure 2E). Further extension
of the fraction of templates incorporating d"isoC opposite
template disoG was slow and was improved by multiple
nucleotide dispensations at positions following d™¢isoC—
disoG (Figure 2E). Significant misincorporation of any natural
nucleotide opposite template disoG was not observed, and
dM¢isoC nucleotide was not visibly incorporated opposite
any of the natural nucleobases.

Natural nucleotides were not significantly incorporated
opposite dM¢isoC or disoG positions of any template. No
misincorporation following the fourth template position is
visible in any of the pyrosequencing reactions, which cover
all possible natural nucleotide misincorporations opposite
non-natural template positions. Interestingly, even dT was
not misincorporated opposite template disoG.

Dye terminator sequencing

Sequencing reactions with a thermophilic polymerase and dye
terminator chemistry were also conducted with ODNs con-
taining disoG and d"“isoC. Two sequencing kits, BigDye 3.0
and BigDye 3.1 (Applied Biosystems), were used. Amplitaq
FS in BigDye 3.0 is a Tag polymerase with two point muta-
tions: the F7660Y mutation increases the acceptance of dideoxy
nucleotides and G46D eliminates the 5'-exonuclease activity
(26). The identity of the polymerase from the BigDye 3.1 kit is
undisclosed, but the kit almost certainly includes a Family
A polymerase with two analogous mutations (26). The poly-
merases from the two kits had qualitatively similar perform-
ance in sequencing reactions with d™¢isoC and disoG.
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Figure 2. Pyrosequencing of ODNs containing d™isoC and disoG. All primer binding regions were identical and a 9 nt template region was varied. Nucleotide
dispensations are indicated on the x-axis and relative peak height of light emitted from pyrophosphate release is the y-axis. Consecutive dispensations of a single
nucleotide are cumulatively tallied in a single bar. At least one negative control dispensation of a non-complementary nucleotide was made during pyrosequencing of
each ODN. These negative control dispensations resulted in no pyrophosphate release and have been omitted for clarity. (A) A template sequence of all natural
nucleobases, 3'-CTATGTATC-5', was sequenced as a positive control. (B) Template sequences containing d*°isoC, such as 3'-CATAICATAC-5, displayed
complete incorporation of disoG, but extension at subsequent natural nucleobases was inhibited. (C) Allowing more time for incorporation at template positions
following d™®isoC through consecutive dispensations of a single nucleotide improved the incomplete incorporation observed in (B). (D) Template sequences
containing disoG, such as 3-CTGTiGTGTC-5', displayed incomplete incorporation of d"°isoC nucleotide, and extension at subsequent natural nucleobases was
inhibited. (E) Consecutive dispensations of d™®isoCTP opposite the template disoG position in (D) incorporated slightly more nucleotide, but still gave less than one
equivalent of nucleotide incorporation. Consecutive dispensations of the same nucleotide at positions following disoG improved the incomplete incorporation at
these positions observed in (D). (F) Template sequence 3'-CTGTiCTGTC-5" demonstrated misincorporation of disoG nucleotide opposite template dT following
correct incorporation opposite template d“*°isoC. (G) Dispensing a 1:1 mixture of disoG and dA nucleotides in place of disoGTP in (F) generated no pyrophosphate at
the following dispensation of dA nucleotide and improved incorporation at the second position following the template d™isoC position, suggesting correct
incorporation opposite template d™isoC and the following dA position.

A series of sequencing reactions with a 59mer template
ODN containing 12 non-natural nucleobase positions was per-
formed to determine suitable concentrations of disoGTP and
dM¢isoCTP for dye terminator sequencing. At low concentra-
tions of disoGTP and dMeisoCTP, ddA and ddT terminators
were incorporated opposite d"“isoC and disoG template posi-
tions, respectively (Figure 3 and Supplementary Figures S4
and S5). We presume that incorporation of a dideoxy nucle-
otide opposite a given template position indicates concurrent
incorporation of the corresponding deoxynucleotide at a
fraction of the template nucleic acid at this position, as in
standard dideoxy terminator sequencing. Because disoGTP
and d°isoCTP do not have corresponding fluorescent dideoxy
terminators in these reactions, incorporation of these nucle-
otides lacks an associated dye terminator signal. Therefore,

dye signals from ddA vanished opposite disoC template
positions as proportionally more disoG nucleotide was incor-
porated with increasing concentration of disoGTP (Figure 3
and Supplementary Figure S4). Similarly, dye signals from
ddT diminished opposite disoG template positions with
increasing concentration of d™¢isoCTP (Figure 3 and Supple-
mentary Figure S5). Useful concentrations at which incorp-
oration of terminators was substantially suppressed with
minimal signal attenuation appear to be 100-200 uM disoGTP
and 100-200 uM d™°isoCTP for AmpliTaq FS in the BigDye
3.0 kit. The BigDye 3.1 kits required 200-400 uM disoGTP
and 100-400 uM d™°isoCTP for similar results.

Sequencing reactions with even very little disoGTP and
d™¢isoCTP allowed full extension through the 12 non-
natural nucleobase positions (Figure 3B), although modest
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Figure 3. Dye terminator sequencing (BigDye 3.1 kit) of an ODN containing d™*isoC and disoG used to optimize concentrations of d**isoCTP and disoGTP. The

template sequence in the region shown is 3'-GCTGCTTCGTGCiIGTiGAACICATGICCGCiGAiC TGATTTTTCiGTiGAACICATGiICCGCiGAICTGACATCTA-
5'. Changing the concentrations of d™isoCTP and disoGTP caused differences in dye terminator signals at template disoG (black arrow) and d™isoC (red arrow)
positions. With increasing concentrations of d™°isoCTP, 51gnals from ddT were suppressed opposite template disoG positions. With increasing concentrations of
disoGTP, signals from ddA were suppressed opposite d™¢isoC template positions. These changes are indicative of competition for incorporation at non-natural
template positions between a non-natural nucleotide and a specific natural nucleotide. (A) Sequencing with 100 uM d™¢isoCTP and 400 uM disoGTP largely
suppressed terminator incorporation opposite the non-natural positions. Modest signal attenuation caused by unwanted strand termination was apparent. (B) As the
concentrations of disoGTP and d™“isoCTP were decreased (10 uM d™¢isoCTP and 10 uM disoGTP), ddA terminators were incorporated opposite template d™¢isoC
positions and ddT terminators were incorporated opposite template disoG positions. Signal attenuation caused by unwanted strand termination was increased. (C) In
the absence of disoGTP and dM°isoCTP, more ddA was incorporated opposite template disoC and more ddT was incorporated opposite template d™isoG. Forced
misincorporation at all non-natural template positions led to premature termination of the sequencing reaction, unlike in (A) and (B) where it was possible to
incorporate some non-natural nucleotide. Similar reactions were performed using the BigDye 3.0 kit (Supplementary Figures S4 and S5).

signal attenuation was always observed upon encountering sequencing reactions in the presence or absence of disoGTP
the multiple non-natural nucleobase positions. In contrast, and d™isoCTP. In the absence of disoGTP and d™*isoCTP,
replication of the template was completely terminated in  extension required misincorporation of natural nucleobases
the absence of disoGTP and d™¢isoCTP (Figure 3C). These opposite the dVisoC and disoG template positions in order
changes in incorporation and extension with varying disoGTP to proceed; ddA was always incorporated opposite template

and dMisoCTP concentrations were primarily a result of the ~ dM®isoC positions (Figure 4B) and ddT was always incorpor-
change in nucleotide concentration, and not a generally 1nh1b- ated opposite template disoG positions (Figure 4D). In the
itory effect, such as an effective reduction in the free Mg** presence of disoGTP and d™¢isoCTP, the complementary

concentration. If an increase in disoGTP or dMisoCTP caused  non-natural nucleotide was paired opposite dMeisoC and
a general inhibition, then the dye signals for the >170 natural disoG in all sequence contexts, verified by diminished
nucleobases preceding the non-natural template positions terminator signals opposite the non-natural template positions
would also be attenuated. General attenuation was observed (Figure 4A and C). Additionally, a noticeable signal that may
only at very high concentrations of disoGTP and d™isoCTP correspond to the polymerase skipping over a fraction of

(data not shown). template disoG positions was often visible opposite disoG
A series of sequencing reactions was conducted to examine (Figure 4C).
the influence of sequence context (Figure 4 and Supplementary Notable features of the terminator signal intensities were

Figures S6 and S7). These experiments were performed with evident in the sequencing reactions. Interestingly, no apparent
42mer template ODNs containing all 16 natural nucleotide signal attenuation was visible with these ODN templates con-
nearest-neighbor contexts possible for d*¢isoC and analogous taining only isolated non-natural nucleobases, either in the
template ODNSs for disoG. The ODNs were used as templates in presence or absence of disoGTP and d™¢isoCTP. Extremely
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Figure 4. Dye terminator sequencing of two ODNs used to examine d™°isoC and disoG in all possible natural nearest-neighbor contexts (Supplementary Figures S6
and S7 contain additional sequences). An ODN containing four d™®isoC positions (red arrows) was sequenced in a BigDye 3.1 reaction in the presence of (A) 300 uM
disoGTP and 0 uM d™¢isoCTP or (B) 0 uM disoGTP and 0 uM d™¢isoCTP. The template sequence in the region shown is 3'-TGCTGCTGAAAGCIiCATGT-
CAGCiCCTGTCAGCICGTGTCAGCICTTTGTCAG-5'. Very large ddA terminator signals were always observed opposite dM¢isoC in the absence of disoGTP,
perhaps indicating a transition state base pairing geometry different from complementary pairings. An ODN containing four disoG positions (black arrows) was
sequenced in a BigDye 3.1 sequencing reaction in the presence of (C) 100 pM dM®isoCTP and 0 UM disoGTP or (D) 0 uM dM®isoCTP and 0 UM disoGTP. The
template sequence in the region shown is 3’-TGCTGCTGAAAGAIG ATGTCAGAIGCTGTCAGAIGGTGTCAGAIGTTGTCAG-5'. Terminator ddT was always
incorporated opposite disoG in the absence of d™¢isoCTP. Extremely large terminator signals were observed at the position following disoG for all conditions.
Additionally, a noticeable signal that may correspond to the polymerase skipping over a fraction of tem Mplate disoG positions was visible opposite disoG. Little, if any,

signal attenuation caused by unwanted strand termination was visible upon encountering isolated d* “isoC or disoG positions, either in the presence or absence of
nd

! \

complements disoGTP and d™“isoCTP. This contrasts with Figure 3C, in which several proximate non-natural template positions caused premature termination of
sequencing reactions lacking disoGTP and dM¢isoCTP.

large terminator signals were always observed at the position Sequencing reactions were also conducted to verify the
following incorporation of either d™“isoC or dT nucleotides specificity of incorporation of d™¢isoC and disoG nucleotides
opposite template disoG positions, indicating the partitioning (Supplementary Flgure S$8). Addition of d™¢isoCTP and
of dideoxy and deoxy nucleotides opposite these positions was disoGTP to sequencing reactions with templates lackmg
outside the usual range for natural nucleobase templates. In the dM¢isoC and disoG caused no discernable differences in
absence of disoGTP, extremely large ddA terminator signals dye termlnator patterns from standard sequencmg reactions.
were observed opposite dVisoC positions. The perturbed ratio Addition of disoCTP had no effect on sequencing reactions
of dideoxy terminator to deoxynucleotide for incorporation of templates containing dMisoC, even in the absence of diso-
of A nucleotides opposite d™¢isoC suggests that transition GTP. Similarly, addition of disoGTP had no effect on sequen-
state base pairing geometry of this pair may be different from cing reactions of templates containing disoG in the absence of
complementary pairs. d™€isoCTP. These reactions demonstrate that d™isoC and
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disoG were not significantly incorporated opposite natural
nucleobases and were not self-paired.

DISCUSSION

We have demonstrated the first generally useful method to
determine sequences of nucleic acids containing both constitu-
ents of a non-natural nucleobase pair. Our dye terminator
method has been routinely used in a single reaction with
dM¢isoCTP and disoGTP to verify the known sequences
of diverse synthetic ODNs containing d™isoC and disoG.
Additionally, the method may have future application in
determining unknown sequences of nucleic acids, such as
ODNs generated from in vitro selection (27) experiments
using a six-nucleobase lexicon with d™¢isoC and disoG.
More than one reaction is necessary to unambiguously identify
dM®isoC and disoG positions in nucleic acids of unknown
seN(lluence containing both nucleobases. In a first reaction,
d“°isoCTP and isoGTP are present at concentrations sufficient
to suppress misincorporation at d"**isoC and disoG positions.
In subsequent sequencing reactions, the concentration of
d™®isoCTP or disoGTP is reduced (both nucleotide concen-
trations may also be reduced simultaneously in a single reac-
tion), permitting ddA and ddT nucleotides to be incorporated
opposite some of the d™¢isoC and disoG positions, respect-
ively. Suppression of specific terminator signals at increased
dM®isoCTP or disoGTP concentrations, in addition to the
signature large terminator signal following disoG template
positions, should allow the identification of the non-natural
positions.

The sequencing experiments also demonstrate how replica-
tion with the six-nucleobase lexicon falls short of the perform-
ance of the natural nucleobases, providing an opportunity to
probe features of nucleobases important for polymerase recog-
nition. The pyrosequencing method with dMe¢isoC and disoG
suffered from three defects. First, extension in the positions
following dM¢isoC—disoG pairs was significantly slowed.
Second, d™¢isoC nucleotide was not readily incorporated
opposite disoG template nucleobases. Third, disoG nucleotide
was incorporated opposite template dT positions more readily
than natural nucleotides are misincorporated opposite natural
nucleobases. The more successful dye terminator sequencing
method also had some difficulty with the non-natural nucleo-
bases. Extension at several positions following a d“¢isoC—
disoG pair was clearly inhibited, leading to modest signal
attenuation upon encountering additional proximate disoG
and dM¢isoC positions.

Tautomerism

Some of the peculiarities in the replication of the d™isoC—
disoG pair may be a consequence of tautomerism. A 20-H
tautomer of isoG (Figure 1B), complementary to T, has long
been suspected of confounding replication of isoC—isoG
(13,14,28-30). One problem that may result from isoG tauto-
merism is the difficulty of incorporating d™¢isoC nucleotide
opposite template disoG positions in the pyrosequencing reac-
tions. Two observations suggest that the deficient incorpora-
tion of d™¢isoC is indeed the result of interaction between
paired nucleobases and not a protein—nucleobase interaction
at insertion. First, crystal structures of complexes of Family A

polymerases, DNA duplex and dNTP lack direct contacts
with nucleobases at the insertion site (31-33). Second,
3-deazaadenine (34) and nonpolar nucleobase analogs, unable
to form minor groove hydrogen bonding contacts (35,36), are
nonetheless efficiently incorporated opposite template dT
by diverse polymerases. Tautomerism of the template isoG
is implicated because replication should only be affected by
tautomerism at the template nucleobase; an unsuitable tauto-
mer as triphosphate would simply be selectively excluded.
It is possible that isoG may not readily interconvert between
tautomeric forms at the polymerase active site in the lower
temperature pyrosequencing method, leading to problematic
dM¢isoC incorporation when isoG is locked in an alternate
tautomeric form. The evident incorporation of d™isoC oppos-
ite template disoG positions by the thermophilic polymerases
may be the result of relatively more rapid interconversion of
tautomers in the polymerase active site or a shifted tautomeric
equilibrium [although the tautomeric equilibrium of disoG has
been reported as unperturbed by variations in this temperature
range (30)]. Curiously, if the 20-H tautomer of isoG was
present in the templates, it did not lead to significant dT
incorporation opposite disoG in pyrosequencing (Supplement-
ary Figure SI1C-F). Pyrosequencing and dye terminator
sequencing suggest that the incorporation of dT nucleotide
opposite template disoG by Family A polymerases, while
apparently facile for a misincorporation event (14,30,37,38),
is probably much slower than the incorporation of d™¢isoC
nucleotide opposite disoG.

In our experiments, the misincorporation of disoG nucleot-
ide opposite template dT occurred much more readily than the
misincorporation of dT nucleotide opposite template disoG.
The 20-H tautomer of isoG has also been invoked to explain
previously observed incorporation of disoG nucleotide oppos-
ite dT template positions (13,14,39,40). Misincorporation of
disoG nucleotide opposite dT positions adjacent to template
dM¢isoC was also apparent in our pyrosequencing reactions.
However, this misincorporation was evidently suppressed in
the presence of competing dA nucleotide in the pyrosequen-
cing and dye terminator reactions, suggesting a preference for
incorporation of disoG over dA opposite template d™isoC
positions (39). The comparative ease of this misincorporation,
however, may still lead to relatively high mutation rates in the
six-nucleobase system.

dMe

Extension following isoC—-disoG positions

Another irregularity in d™¢isoC—disoG replication is the relat-
ively poor extension following d™¢isoC—disoG pairs, remin-
iscent of slow extension following natural nucleobase
mismatches (41). This is the first report of hindered extension
following correctly matched d“isoC—disoG pairs. Hindered
extension in dye terminator sequencing of templates with
proximate non-natural nucleobases and in pyrosequencing
suggests that d¢isoC—disoG pairs, despite adopting a
Watson—Crick pairing conformation in duplex nucleic acids
(7), do not provide specific contacts necessary for efficient
incorporation at subsequent positions. The lone pairs of elec-
trons at N3 on purines and O2 on pyrimidines are symmet-
rically positioned about a pseudo 2-fold axis of natural base
pairs (42) and can act as hydrogen bond acceptors to confirm
correct nucleobase pairing. Crystal structures of complexes



of polymerase, duplex nucleic acid and dNTP have revealed
minor groove hydrogen bonding interactions between the pro-
tein and hydrogen bond acceptors on post-insertion nucleobase
pairs (31-33,43,44). Mismatched pairs, with associated con-
formational changes in the base pairing, cannot form these
interactions and therefore disrupt the polymerase active site
(45). The dM¢isoC—disoG pair also cannot satisfy all poly-
merase minor groove hydrogen bonding sites because d™isoC
lacks the O, acceptor found in the natural pyrimidines. Slow
extension beyond d™¢isoC—disoG is likely a result of disrup-
tion of the polymerase active site by failure of the non-natural
pair to form these contacts. The termination of extension
observed at lower non-natural nucleotide concentrations
(Figure 3) suggests that the disruption of these contacts hinders
polymerase function more severely as the number of mis-
matched positions near the insertion site increases. Compar-
ison of extension beyond mismatched positions in Figure 3
with Figure 4, in which non-natural nucleobases isolated in
templates display no visible signal attenuation in the absence
of complementary non-natural nucleotide, indicates that the
thermophilic polymerases scanned <8 bp of the duplex pre-
ceding an insertion site. Our results are consistent with several
studies that have found these interactions important in post-
insertion extension (34,35,46).

However, despite deficient minor groove protein contacts,
the steric equivalence of the d™°isoC—disoG pair to natural
nucleobase pairs may provide an advantage in avoiding steric
clashes with the protein. Extension by the thermophilic
polymerases following complementary d" “isoC-disoG pairs
proceeded more successfully than extension following mis-
matches involving the non-natural bases. Mispairing with
dMeisoC or disoG at several proximate template positions
caused complete termination of subsequent extension. In con-
trast, incorporation leading to d™¢isoC—disoG pairs at these
positions always allowed extension, although accompanied
by signal attenuation. Hence, the ability of the thermophilic
polymerases to extend several nucleotides following a non-
natural pair was not as good as following natural comple-
mentary pairs, but better than following the mismatched
pairs generated in our experiments.

Nucleobase structure and replication with
the dM¢isoC-disoG pair

Sequencing with d™¢isoC and disoG analogs has highlighted
the biological relevance of structural features of nucleobases
in polymerase-mediated replication. The analogs reinforce the
importance of interactions between polymerase and duplex
near the site of insertion during extension. Minor groove
interactions observed in natural duplexes with Family A poly-
merases are unable to form between the protein and d™¢isoC—
disoG pairs in a duplex and this is a likely cause of the slow
extension following dM¢isoC—disoG pairs. There may also be
a steric screening of base pairs in this region of the duplex,
because duplex d™¢isoC—disoG pairs unable to form usual
minor groove interactions nevertheless allow extension to pro-
ceed more smoothly than duplexes containing mismatches of
the natural nucleobases with d“isoC or disoG. Successful
utilization of the disoG nucleobase demonstrates that mispair-
ing resulting from nucleobase tautomerism can be minimized
to yield workable replication, at least in applications, such as
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sequencing, which do not demand high fidelity. In addition
to helping understand polymerase—nucleic acid interaction,
these observations should prove useful in the effective design
of nucleobase analogs intended for use in polymerase-
mediated replication.

Our sequencing experiments illustrate the utility of
replication with a six-nucleobase system that includes d™isoC
and disoG. However, the experiments also reveal potential
limitations of the pair. The d" “isoC—disoG pair, while isos-
teric to natural nucleobase pairs, does not have minor groove
hx{drogen bond acceptors, and subsequent extension following
d"*isoC—disoG pairs, with either dM¢isoC or disoG in the
template strand, does not proceed as readily as with natural
nucleobases. This will likely have undesirable consequences
not seen in the sequencing experiments. Polymerases with
significant 3’-exonuclease activity may display severe pausing
at d°isoC or disoG template positions. Nucleic acids contain-
ing d"*°isoC and disoG should suffer relatively high mutation
rates compared with high fidelity natural replication systems.
In vitro selection experiments may be biased toward yielding
nucleic acids with lower d“¢isoC—disoG content simply
because templates with high d™¢isoC—disoG content are
less readily replicated. Furthermore, although the d™¢isoC—
disoG pair demonstrates that it is possible to minimize poten-
tial mispairing problems stemming from tautomerism to yield
a workable six-nucleobase sequencing system, nucleobases
with tautomeric ambiguity may still be problematic as com-
ponents of systems requiring higher fidelity. Interconversion
between tautomers at the polymerase insertion site appears
slow, and tautomeric ambiguity will probably slow replication.
Appropriate engineering of the environment of the poly-
merase active site (47) or the carbon—nitrogen heterocycles
of disoG (48) may be effective for higher fidelity replication of
the d™¢isoC—disoG pair.

SUPPLEMENTARY MATERIAL
Supplementary Material is available at NAR Online.

ACKNOWLEDGEMENTS

The authors thank Prof. C. Ronald Geyer (University of
Saskatchewan, Saskatoon, Canada) for helpful discussions.
Funding to pay the Open Access publication charges for this
article was provided by Bayer HealthCare LLC.

Conflict of interest statement. None declared.

REFERENCES

1. Benner,S.A., Alleman,R.K., Ellington,A.D., Ge,L., Glasfeld,A.,
Leanz,G.F., Krauch,T., MacPherson,L.J., Moroney,S.E., Piccirilli,A.J.
and Weinhold,E. (1987) Natural selection, protein engineering,
and the last riboorganism: rational model building in biochemistry.
Cold Spring Harb. Symp. Quant. Biol., 52, 53-63.

2. Ogawa,A.K., Wu,Y., McMinn,D.L., Liu,J., Schultz,P.G. and
Romesberg,F.E. (2000) Efforts toward the expansion of the genetic
alphabet: information storage and replication with unnatural hydrophobic
base pairs. J. Am. Chem. Soc., 122, 3274-3287.

3. Ishikawa,M., Hirao,I. and Yokoyama,S. (2000) Synthesis of 3-(2-deoxy-
B-p-ribofuranosyl)pyridin-2-one and 2-amino-6-(N,N-dimethylamino)-
9-(2-deoxy-B-p-ribofuranosyl)purine derivatives for an unnatural
base pair. Tetrahedron Lett., 41, 3931-3934.



3184 Nucleic Acids Research, 2005, Vol. 33, No. 10

oo

10.

12.

13.

14.

19.

20.

21.

22.

23.

24.

25.

Piccirilli,J.A., Krauch,T., Moroney,S.E. and Benner,S.A. (1990)
Enzymatic incorporation of a new base pair into DNA and RNA extends
the genetic alphabet. Nature, 343, 33-37.

. Horn,T., Chang,C.-A. and Collins,M.L. (1995) Hybridization properties

of the 5-methyl-isocytidine/isoguanosine base pair in synthetic
oligonucleotides. Tetrahedron Lett., 36, 2033-2036.

. Seela,F. and Wei,C. (1999) The base-pairing properties of 7-deaza-2'-

deoxyisoguanosine and 2'-deoxyisoguanosine in oligonucleotide
duplexes with parallel and antiparallel chain orientation.
Helv. Chim. Acta, 82, 726-745.

. Chen,X., Kierzek,R. and Turner,D.H. (2001) Stability and structure of

RNA duplexes containing isoguanosine and isocytidine. J. Am.
Chem. Soc., 123, 1267-1274.

. Johnson,S.C., Sherrill,C.B., Marshall,D.M., Moser,M.J. and Prudent,J R.

(2004) A third base pair for the polymerase chain reaction: inserting
isoC and isoG. Nucleic Acids Res., 32, 1937-1941.

. Collins,M.L., Irvine,B., Tyner,D., Fine,E., Zayati,C., Chang,C.-A.,

Horn,T., Ahle,D., Detmer,J., Shen,L.-P. ef al. (1997) A branched DNA
signal amplification assay for quantification of nucleic acid targets below
100 molecules/ml. Nucleic Acids Res., 25, 2979-2984.

Gleaves,C.A., Welle,J., Campbell,M., Elbeik,T., Ng,V., Taylor,P.E.,
Kuramoto,K., Aceituno,S., Lewalski,E., Joppa,B. et al. (2002)
Multicenter evaluation of the Bayer VERSANT HIV-1 RNA 3.0 assay:
analytical and clinical performance. J. Clin. Virol., 25, 205-216.

. Elbeik,T., Surtihadi,J., Destree,M., Gorlin,J., Holodniy,M., Jortani,S.A.,

Kuramoto,K., Ng,V., Valdes,R.,Jr, Valsamakis,A. and Terrault,N.A.
(2004) Multicenter evaluation of the performance characteristics of the
Bayer VERSANT HCV RNA 3.0 assay (bDNA). J. Clin. Microbiol.,
42, 563-569.

Sherrill,C.B., Marshall,D.J., Moser,M.J., Larsen,C.A., Daudé-Snow,L.
and Prudent,J.R. (2003) Nucleic acid analysis using an expanded genetic
alphabet to quench fluorescence. J. Am. Chem. Soc., 126, 4550—4556.
Switzer,C., Moroney,S.E. and Benner,S.A. (1989) Enzymatic
incorporation of a new base pair into DNA and RNA. J. Am.

Chem. Soc., 111, 8322-8323.

Switzer,C.Y., Moroney,S.E. and Benner,S.A. (1993) Enzymatic
recognition of the base pair between isocytidine and isoguanosine.
Biochemistry, 32, 10489-10496.

. Bain,J.D., Switzer,C., Chamberlin,A.R. and Benner,S.A. (1992)

Ribosome-mediated incorporation of a non-standard amino acid into
a peptide through expansion of the genetic code. Nature,
356, 537-539.

. Rice,K.P., Chaput,J.C., Cox,M.M. and Switzer,C. (2000) RecA protein

promotes strand exchange with substrates containing isoguanine and
5-methyl isocytosine. Biochemistry, 39, 10177-10188.

. Moser,M.J. and Prudent,J.R. (2003) Enzymatic repair of an expanded

genetic information system. Nucleic Acids Res., 31, 5048-5053.

. Sismour,A.M., Lutz,S., Park,J.-H., Lutz,M.J., Boyer,P.L., Hughes,S.H.

and Benner,S.A. (2004) PCR amplification of DNA containing non-
standard base pairs by variants of reverse transcriptase from Human
Immunodeficiency Virus-1. Nucleic Acids Res., 32, 728-735.

Liu,D., Moran,S. and Kool,E.T. (1997) Bi-stranded, multisite replication
of a base pair between difluorotoluene and adenine: confirmation by
‘inverse’ sequencing. Chem. Biol., 4, 919-926.

Ohtsuki,T., Kimoto,M., Ishikawa,M., Mitsui,T., Hirao,I. and
Yokoyama,S. (2001) Unnatural base pairs for specific transcription.
Proc. Natl Acad. Sci. USA, 98, 4922-4925.

Jurczyk,S.C., Kodra,J.T., Rozzell,J.D., Benner,S.A. and Battersby,T.R.
(1998) Synthesis of oligonucleotides containing 2'-deoxyisoguanosine
and 2'-deoxy-5-methylisocytidine using phosphoramidite chemistry.
Helv. Chim. Acta, 81, 793-811.

Wang,C., Jiang,J. and Battersby,T.R. (2002) Chemical stability of
2/-deoxy-5-methylisocytidine during oligodeoxynucleotide synthesis
and deprotection. Nucleosides Nucleotides Nucleic Acids,

21, 417-426.

Ronaghi,M., Karamohamed,S., Pettersson,B., Uhlén,M. and Nyrén,P.
(1996) Real-time DNA sequencing using detection of pyrophosphate
release. Anal. Biochem., 242, 84-89.

Ronaghi,M. (2001) Pyrosequencing sheds light on DNA sequencing.
Genome Res., 11, 3—11.

Pyrosequencing Technical Note 103 (2000) Estimation of SNP allele
frequencies.

26.

27.

28.

29.

30.

31.

32.

33.

34.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

Spurgeon,S.L. and Brandis,J.W. (2004) New DNA sequencing enzymes.
In Kieleczawa,J. (ed.) DNA Sequencing. Jones and Bartlett, Sudbury,
MA, pp. 35-54.

Tuerk,C. and Gold,L. (1990) Systematic evolution of ligands

by exponential enrichment: RNA ligands to bacteriophage

T4 DNA polymerase. Science, 249, 505-510.

Roberts,C., Bandaru,R. and Switzer,C. (1997) Theoretical and
experimental study of isoguanine and isocytosine: base pairing in

an expanded genetic system. J. Am. Chem. Soc., 119, 4640-4649.
Robinson,H., Gao,Y .-G., Bauer,C., Roberts,C., Switzer,C. and
Wang,A.H.-J. (1998) 2'-Deoxyisoguanosine adopts more than one
tautomer to form base pairs with thymidine observed by high-resolution
crystal structure analysis. Biochemistry, 37, 10897-10905.
Maciejewska,A.M., Lichota,K.D. and Kusmierek,J.T. (2003)
Neighbouring bases in template influence base-pairing of

isoguanine. Biochem. J., 369, 611-618.

Doublié,S., Tabor,S., Long,A.M., Richardson,C.C. and Ellenberger,T.
(1998) Crystal structure of a bacteriophage T7 DNA replication
complex at 2.2 A resolution. Nature, 391, 251-258.

Li,Y., Korolev,S. and Waksman,G. (1998) Crystal structures of open and
closed forms of binary and ternary complexes of the large fragment of
Thermus aquaticus DNA polymerase I: structural basis for nucleotide
incorporation. EMBO J., 17, 7514-7525.

Li,Y. and Waksman,G. (2001) Crystal structures of ddATP-,

ddTTP-, ddCTP-, and ddGTP-trapped ternary complex of Klentaql:
insights into nucleotide incorporation and selectivity. Protein Sci.,

10, 1225-1233.

Hendrickson,C.L., Devine,K.G. and Benner,S.A. (2004) Probing minor
groove recognition contacts by DNA polymerases and reverse
transcriptases using 3-deazaz-2'-deoxyadenosine. Nucleic Acids Res.,
32, 2241-2250.

. Morales,J.C. and KoolLE.T. (1999) Minor groove interactions between

polymerase and DNA: more essential to replication than hydrogen
bonding? J. Am. Chem. Soc., 121, 2323-2324.

Morales,J.C. and KooLLE.T. (2000) Varied molecular interactions at the
active sites of several DNA polymerases: nonpolar nucleoside isosteres
as probes. J. Am. Chem. Soc., 122, 1001-1007.

Kamiya,H., Ueda,T., Ohgi,T., Matsukage,A. and Kasai,H. (1995)
Misincorporation of dAMP opposite 2-hydroxyadenine,

an oxidative form of adenine. Nucleic Acids Res., 23, 761-766.
Bukowska,A.M. and Kusmierek,J.T. (1996) Miscoding properties

of isoguanine (2-oxoadenine) studied in an AMV reverse transcriptase
in vitro system. Acta Biochim. Pol., 43, 247-254.

Tor,Y. and Dervan,P.B. (1993) Site-specific enzymatic incorporation
of an unnatural base, N6-(6-aminohexyl)isoguanosine, into RNA.

J. Am. Chem. Soc., 115, 4461-4467.

Kamiya,H. and Kasai,H. (2000) Two DNA polymerases of Escherichia
coli display distinct misinsertion specificities for 2-hydroxy-dATP
during DNA synthesis. Biochemistry, 39, 9508-9513.

Huang,M.-H., Arnheim,N. and Goodman,M.F. (1992) Extension of base
mispairs by Taq DNA polymerase: implications for single nucleotide
discrimination in PCR. Nucleic Acids Res., 20, 4567-4573.
Seeman,N.C., Rosenberg.J.M. and Rich,A. (1976) Sequence-specific
recognition of double helical nucleic acids by proteins. Proc. Natl
Acad. Sci. USA, 73, 804-808.

Kiefer,J.R., Mao,C., Braman,J.C. and Beese,L.S. (1998) Visualizing
DNA replication in a catalytically active Bacillus DNA polymerase
crystal. Nature, 391, 304-307.

Hsu,G.W., Ober,M., Carell,T. and Beese,L.S. (2004) Error-prone
replication of oxidatively damaged DNA by a high-fidelity DNA
polymerase. Nature, 431, 217-221.

Johnson,S.J. and Beese,L.S. (2004) Structures of mismatch replication
errors observed in a DNA polymerase. Cell, 116, 803-816.
Morales,J.C. and KoolLE.T. (2000) Functional hydrogen-bonding map of
the minor groove binding tracks of six DNA polymerases. Biochemistry,
39, 12979-12988.

Chaput,J.C. and Switzer,C. (2000) Non-enzymatic transcription of an
i50G-isoC base pair. J. Am. Chem. Soc., 122, 12866—12867.
Martinot,T.A. and Benner,S.A. (2004) Artificial genetic systems:
exploiting the ‘aromaticity’ formalism to improve the

tautomeric ratio for isoguanosine derivatives. J. Org. Chem.,

69, 3972-3975.



