
iScience

Article

ll
OPEN ACCESS
Machine learning unveils immune-related
signature in multicenter glioma studies
Sha Yang, Xiang

Wang, Renzheng

Huan, ...,

Guoqiang Han,

Jiqin Zhang, Ying

Tan

hanguoqiang@gz5055.com

(G.H.)

zhangjiqin@gz5055.com (J.Z.)

tanying@gz5055.com (Y.T.)

Highlights
Robust ML model stratifies

glioma patients, enhancing

prognostic precision

CIPS is a prognostic factor

and insight into glioma

immune microenvironment

CIPS improves outcomes in

glioma patients, showing

practical implementation in

treatments

IGFBP2 and TNFRSF12A

pinpointed as tumor

markers, paving way for

targeted interventions

Yang et al., iScience 27, 109317
April 19, 2024 ª 2024 The
Author(s).

https://doi.org/10.1016/

j.isci.2024.109317

mailto:hanguoqiang@gz5055.com
mailto:zhangjiqin@gz5055.com
mailto:tanying@gz5055.com
https://doi.org/10.1016/j.isci.2024.109317
https://doi.org/10.1016/j.isci.2024.109317
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2024.109317&domain=pdf


OPEN ACCESS

iScience ll
Article

Machine learning unveils immune-related
signature in multicenter glioma studies

Sha Yang,1,6 Xiang Wang,2,6 Renzheng Huan,3 Mei Deng,4 Zhuo Kong,4 Yunbiao Xiong,4 Tao Luo,4 Zheng Jin,4

Jian Liu,1,4 Liangzhao Chu,2 Guoqiang Han,4,7,* Jiqin Zhang,5,7,* and Ying Tan4,7,8,*
SUMMARY

In gliomamolecular subtyping, existing biomarkers are limited, prompting the development of new ones.
We present a multicenter study-derived consensus immune-related and prognostic gene signature (CIPS)
using an optimal risk scoremodel and 101 algorithms. CIPS, an independent risk factor, showed stable and
powerful predictive performance for overall and progression-free survival, surpassing traditional clinical
variables. The risk score correlated significantly with the immune microenvironment, indicating potential
sensitivity to immunotherapy. High-risk groups exhibited distinct chemotherapy drug sensitivity. Seven
signature genes, including IGFBP2 and TNFRSF12A, were validated by qRT-PCR, with higher expression
in tumors and prognostic relevance. TNFRSF12A, upregulated in GBM, demonstrated inhibitory effects
on glioma cell proliferation, migration, and invasion. CIPS emerges as a robust tool for enhancing individ-
ual glioma patient outcomes, while IGFBP2 and TNFRSF12A pose as promising tumor markers and ther-
apeutic targets.

INTRODUCTION

Glioma is highly heterogeneous, and histological differentiation has no effect on the current clinical treatment. However, the diversity of mo-

lecular subtypes can better explain the heterogeneity of glioma, which is significantly related to the treatment and prognosis of patients.1,2

Therefore, the 2021 WHOCNS5 has updated the classification of tumor types by considering the molecular markers of different tumor types

and combining with histological characteristics, which will bring more benefits and meaningful guidance to the clinic.1–7 Resection should be

completed as soon as possible even for LGG to avoid malignant progression and accurately identify the molecular subtypes.8 High-risk LGG

has a high probability of recurrence and requires standard postoperative treatment, including radiotherapy and adjuvant chemotherapy.9 For

GBM, standard treatment should include maximum total tumor resection, locoregional radiotherapy, and concurrent temozolomide (TMZ)

chemotherapy.10,11 In addition, immunotherapy have made significant progress in preclinical and clinical trials.12 However, the majority of

gliomas do not fully recover and do not achieve the ideal prognosis, which is largely attributed to the molecular heterogeneity of the tumor

microenvironment (TME) of glioma.13,14 There is therefore an urgent need to identify predictive biomarkers to guide clinical decision making

while developing new and more effective targeted therapies.

The TME of glioma is highly heterogeneous, which is involved in the recurrence, metastasis, and drug resistance.15–17 The interaction be-

tween glioma cells and immune cells promotes the process of carcinogenesis. The establishment of glioma stem cells and the involvement of

immune cells in TME become important factors in tumor resistance to therapy.18–20 Based on genetic alterations in the primary tumor,

changes in the TME enable tumor cells to evade host tumor surveillance mechanisms and promote highly aggressive tumor growth.21,22

In addition, these combined effects further affect the molecular heterogeneity of gliomas. The tumor immune microenvironment (TIME) is

also determined by the interaction of the respectivemolecular biological states of the tumor.22–25 Interestingly, a systemic immunodeficiency

has been found in glioma patients,26 while glioma can induce an immune response.27,28 The prognosis of gliomas has been associated with

the presence of immune cells in the TME.29,30 However, the exact interplay between the molecular biological characteristics of cells and the

TIME has not been elucidated. A detailed description of these complex mechanisms is essential for tuning and developing therapeutic stra-

tegies that may overcome immune escape in gliomas. On the one hand, effective immunotherapy can be selected based on individual mo-

lecular status, and on the other hand, the molecular status can be changed by targeted therapy.
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Figure 1. Identification of immune-related genes

(A) The consensus score matrix of all samples when k = 2, showing the clustering stability after the 1000 times k-means cluster approach.

(B) The CDF curves of consensus matrix for each k.

(C) The relative change in area under CDF curve of consensus matrix for each k.

(D) The results of single-sample gene set enrichment analysis (ssGSEA): the immune infiltration for each cluster.

(E) The results of ssGSEA: the immune function for each cluster.
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Figure 1. Continued

(F) The results of seven other algorithms, including TIMER, CIBERSORT, CIBERSORT�ABS, QUANTISEQ, MCPCOUNTER, XCELL, and EPIC: the immune

infiltration for each cluster.

(G) The heatmap showed the results of GSVA analysis for each cluster.

(H and I) Kaplan-Meier OS (H) and RFS (I) curves comparing the patients in different cluster.

(J) Heatmap of the correlation between module eigengenes and clinical traits. Data are represented as mean G SEM.
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Machine learning has emerged as a transformative tool in medical research, significantly enhancing diagnostic and prognostic capabilities

in various complex diseases. Its applications range from predicting protein crystallization processes and assessing drug-food interactions to

evaluating cancer prognosis in types such as triple-negative breast cancer and lung adenocarcinoma.31–34 Notably, machine learning has

been instrumental in delineating tumor-infiltrating immune cell signatures in gliomas, offering deeper insights into the interactions within

the TME.35,36 These advancements demonstrate the versatility and efficacy of machine learningmethods in addressing the intricacies of com-

plex diseases like glioma.

According to glioma CNS5 grading, tumor mutational burden (TMB), tumor infiltrating lymphocytes (TIL), and microsatellite instability

(MSI) can predict the prognosis and response to immunotherapy.37–39 However, it only applies to a limited number of glioma patients. There-

fore, further consideration of molecular biological characteristics also needed. In this study, we attempted to develop and validate a risk strat-

ification signature in glioma patients by combining bioinformatics andmachine learning algorithms to screen relevantmolecular signatures to

evaluate the prognosis, recurrence, and treatment benefit of glioma. The correlation between risk stratification signature and TIME was also

explored. Finally, we validated our findings by in vitro and in vivo experiments. The aim of this study is to optimize precision treatment,

improve new ideas for targeted therapy, and further improve the clinical outcome of patients.

RESULTS

Construction of consensus clusters

PCA plots show no batch effect on processed data.(Figure S1) Firstly, 788 DEGs between glioma and normal brain samples were found in

training cohort, and then the expression profiles of 788 genes was applied to find 2 clusters by consensus clustering

algorithm.(Figures 1A–1C, and Table S1) Next, ssGSEA was performed to evaluate the 28 immune cells infiltration in each cluster. The results

show that cluster 1 having a markedly higher overall infiltration abundance of all immune cells compare to cluster 2. (Figure 1D and S2) Simi-

larly, the immune function activation of C1 cluster was more obvious. (Figure 1E) Therefore, we speculated that C1 was more likely to be ‘‘im-

mune-hot’’ tumors and C2 was more likely to be ‘‘immune-cold’’ tumors. To ensure that the evaluation of immune cells in the two consensus

clusters wasmore accurate, we also used the other seven algorithms. The heatmap showed that the results of the other seven algorithmswere

consistent with those of ssGSEA. (Figure 1F) Further GSVA analysis found that Cluster 1 enriched various pathways related to immunity and

metabolism, such as antigen processing and presentation, complement and coagulation cascades, glutathione metabolism, amino sugar,

and nucleotide sugar metabolism. (Figure 1G) Kaplan–Meier curves of OS and PFS showed that glioma patients in cluster 2 have a better

prognosis.(Figures 1H and 1I) In addition, DEGs between cluster 1 and cluster 2 were identified for further analyze. GO analysis revealed

that these DEGs were significantly involved in immune related pathway, such as leukocyte/lymphocyte mediated immunity, adaptive immune

response, humoral immune response.(Figure S3A) KEGG pathway enrichment analysis also indicated the roles of these DEGs in Natural killer

cell mediated cytotoxicity, Th1 and Th2 cell differentiation, and so on. (Figure S3B) Similarly, cluster 1 was found to have high expression of a

gene set related to naive CD8 T cell in GSEA (Figures S3C and S3D).

Identification of molecular subtypes-related module and intersecting DEGs

A co-expression network was constructed by the weighted correlation network analysis (WGCNA) with the soft threshold b = 11 (no scale R2 =

0.916). (Figure S4) Then, 11 modules were identified and module-trait relationships were shown in Figure 1J. The correlations between each

module and each feature, such as clusters, survival time, survival state, WHO stage, age, and gender were calculated. The strongest negative

correlation was observed between lightcyan module and cluster. Subsequently, we identified the intersection genes of DEGs between two

clusters andmodule genes in lightcyanmodule. Then, univariate cox regression analysis was performed to identify potential prognostic genes

from these intersection genes. (p < 0.05) Finally, 41 gene was considered potential prognostic genes for further analysis.(Table S2).

Construction of a prognostic consensus signature

These 41 potential prognostic genes were subjected to our machine learning-based integrative procedure to develop a consensus immune-

related and prognostic-related gene signature (CIPS). In the training cohort, a few algorithms displayed extreme accuracy, such as RSF, Step-

Cox[backward/both]+RSF, and CoxBoost+RSF, with its C-index even over 0.95. In all cohort, the models, including RSF and Lasso+RSF, with

the highest average Cindex (0.754) was considered the optimal model. Considering that fewer signature are finally determined in the Lasso+-

RSF model, we finally determined this model as the optimal one.(Figure 2A) Therefore, 7 signature genes in Lasso+RSF model were used to

weight risk score for each patient by coefficients of those genes.(Figure 2B) Subsequently, all glioma patients were divided into high-risk and

low-risk subgroups based on themedian risk score in the training cohort. Kaplan-Meier analysis revealed that significant differences between

high-risk and low-risk subgroups both in training and verification cohorts (p < 0.001), and low-risk subgroup was associated with a better

OS.(Figures 2C and 2D)Moreover, patients in low-risk subgroup had a better PFS were determined in all cohort. (Figure 2E) In order to further
iScience 27, 109317, April 19, 2024 3
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Figure 2. Construction and validation of CIPS model

(A) C-indices of 101 kinds of prediction models across all validation datasets.

(B) Coefficients of 7 genes finally obtained in RSF.

(C and D) OS analysis of risk score according to the CIPS in TCGA-GBMLGG (C) and verification cohorts (D; glioma cohorts from CGGA and GLIOVIS) based on

the Kaplan-Meier plotter.

(E) PFS analysis of risk score according to the CIPS in TCGA-GBMLGG based on the Kaplan-Meier plotter.

(F) OS analysis of risk score according to the CIPS in 6GEO cohorts (GSE7696, GSE42670, GSE43378, GSE50021, GSE72951, andGSE83300) based on the Kaplan-

Meier plotter.
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verify the accuracy of our risk scoremodel, we divided the samples containing 6 GEO cohorts into high and low risk groups, and the KM curve

showed that the results were consistent with the previous results, and the prognosis of the high-risk group was worse.(Figure 2F, p < 0.001).

Evaluation of the independent prognostic value of CIPS model

Univariate cox regression (HR: 3.30 95%CI (2.86–3.81)) andmultivariate cox regression (HR: 2.503 95%CI (2.041–3.069)) analysis showed that risk-

score was an independent prognostic factor for glioma patients. (Figures 3A and 3B) Thus, a nomogram was established to estimate 1-, 3-, and

5-year OS for glioma patients, which incorporated clinical parameters and risk score. (Figure 3C) Furthermore, the AUC value of risk score was

calculated for predicting OS at 1-, 3-, and 5-year, and the AUC was 0.880, 0.911 and 0.828, respectively. (Figure 3D) Then, we also calculated the

AUCof other clinical factors for predictingOS at 5-year, and found that AUC of risk score was larger, indicating the better the prediction effect of

our model. (Figure 3E) The 1-, 3-, 5-year calibration curves proved good predictive effect of the nomogrammodel.(Figure 3F) At the same time,

the DCA curve shows that nomograms can better predict 1-year, 3-year, and 5-year OS.(Figures S5A–S5C) Compared to the C-index and

restricted mean survival (RMS) of four published risk models,40–43 the risk model we developed has great advantages.(Figures S5D and S5E).

We also compared differences in risk scores across clinical subgroups, and found that patients with GBM or patients older than 65 years

had significant higher risk score than those with LGG or younger than 65 years, respectively (p < 0.001, Figures 3G and 3H). In addition, the

result showed that significant differences in risk scores among immune subtypes, patients in lymphocyte exhaustion (C4) had significant

higher risk score thanC3 andC5, and immune calm (C5), mainly low grade gliomas, had significant lower risk score thanC3 andC4. (Figure 3I).

Association between TME and risk score

In order to evaluate the correlation between immune cells in TME and risk score, eight algorithmswere utilized to evaluate Infiltrating immune

cells. The results of ssGSEA showed that the high-risk subgroup had significantly more infiltrating immune cells and significantly activated

immune-related functions. (Figures 4A and 4B) The heatmap showed that the infiltrating immune cells in the TME were different between

the high- and low-risk subgroups. (Figure 4C) The GSVA results suggested that the pathways related to tumor development, metastasis

and drug resistance were active in the high-risk subgroup, such as P53 signaling pathway, cell cycle, JAK STAT signaling pathway. (Figure 4D).

Association between immunotherapy and risk score

The somatic mutation profile of genes as different between two risk subgroups. A total of 399 samples in high-risk subgroup experienced

mutations, with a frequency of 91.41%, while 314 samples in low-risk subgroup experienced mutations, with a frequency of 96.91%, as shown

in Figure 5A. The stemness index was significantly negatively correlated with the risk score, and stemness index of low-risk subgroup was

significantly higher than those of high-risk subgroup. (Figures 5B and 5C) The TMB was significantly positively correlated with the risk score,

and TMB of high-risk subgroup was significantly higher than those of low-risk subgroup.(Figures 5D and 5E) Those results indicated that the

patients in high-risk subgroup tended to be more sensitive to immunotherapy. The half-maximal inhibitory concentration (IC50) was calcu-

lated to predict the treatment response to different drugs, significant difference was observed between high- and low-risk subgroups.(Fig-

ure S6) We also investigated the levels of expression of immune checkpoint in training cohort, and the expression of checkpoint genes had an

absolute advantage in samples of high-risk subgroup. The TIDE score was significant negatively correlated with the risk score (R =

�0.5,p < 0.001), TIDE score of high-risk subgroup was significantly lower than those of low-risk subgroup, indicating that patients with

high risk score may likely to benefit from immune checkpoint inhibitors (ICI) therapy. (Figures 5F and 5G).

Exploration of seven gene signatures in glioma

Survival analysis showed that there were significant differences in OS and DFS between the two groups when they were grouped by the me-

dian expression of seven gene signatures. (Figure S7) CorHeatmap exhibited the correlation between seven genes and infiltrating immune

cells. (Figure 6A) In addition, ROC curve showed that these 7 genes could better distinguish normal brain samples from glioma samples (all

AUC >0.75), and also better distinguish between high and low risk groups (all AUC >0.6). (Figures 6B–6E and S8) Subsequently, we evaluated

the ability of these genes to predict the 1-, 3-, and 5-year OS of glioma patients. The ROC curve showed that IGFBP2 had the strongest prog-

nostic prediction ability, followed by TNFRSF12A and APOBEC3C. (Figures 6F–6H).

Prognostic and immune analysis of IGFBP2 and TNFRSF12A in pan-cancer

We then performed a pan-cancer analysis of IGFBP2 and TNFRSF12A. The results from the TIMER database showed that IGFBP2 and

TNFRSF12A expression was significantly higher in most cancer type.(Figures 7A and 8A) The results from the SangerBox website showed
iScience 27, 109317, April 19, 2024 5



Figure 3. Construction and validation of a nomogram

(A and B) Forest of univariate (A) and multivariate (B) COX regression analyses for OS of glioma patients in the training cohort.

(C) Establishment of OS nomograms for glioma patients.
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Figure 3. Continued

(D) ROC curves assessing the discriminating ability of the risk score in predicting 1-, 3- and 5-year OS.

(E) ROC curves assessing the discriminating ability of each features in predicting 1-year OS.

(F) 1-, 3- and 5-year calibration plots of OS nomogram model.

(G–I) Thebargraphshows the risk scores indifferentgroups, including (G)GBMandLGG, (H)%65yearsand>65years, (I) immunesubtypes,weresignificantlydifferent.
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that IGFBP2 was significantly upregulated in 20 tumor, and downregulated in 10 tumors, while IGFBP2 was significantly upregulated in 27

tumor, and downregulated in 6 tumors. (Figures 7B and 8B) Subsequently, among ICP genes, strong relationships with IGFBP2 and

TNFRSF12A expression andwere found inmany types of cancer, such as GBMLGG, LGG, Kidney Chromophobe (KICH), and UvealMelanoma
Figure 4. Correlation between TME and risk score

(A) ssGSEA algorithm was used to analyze the proportion of 28 immune cells in high- and low-risk groups.

(B) ssGSEA algorithm was used to analyze the immune-related functions in high- and low-risk groups.

(C) The results of seven other algorithms, including TIMER, CIBERSORT, CIBERSORT�ABS, QUANTISEQ, MCPCOUNTER, XCELL, and EPIC: the immune

infiltration in high- and low-risk groups.

(D) Heatmap illustrating the result of GSVA. Data are represented as mean G SEM.

iScience 27, 109317, April 19, 2024 7



Figure 5. Genomic mutation analysis and Immune status for CIPS signature

(A) Gene mutation frequency in high- and low-risk groups.

(B) The risk score was significantly negatively correlated with the stemness index.

(C and D) Glioma patients with high risk score had lower levels of stemness index (C), and higher TMB (D).

(E and F) The risk score was significantly negatively correlated with (E) TMB, and positive correlated with (F) TIDE.

(G) Glioma patients with high risk score had lower levels of TIDE.
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(UVM), indicating the potential of the two genes in immunotherapy. (Figures 7C and 8C) The associations between IGFBP2 and TNFRSF12A

expression and DNAss was showed that there were strong positive correlations with IGFBP2 and TNFRSF12A expression in GBMLGG, LGG,

Head and Neck squamous cell carcinoma (HNSC), and Lung squamous cell carcinoma (LUSC). (Figures 7D and 8D) The associations between

IGFBP2 and TNFRSF12A expression and ESTIMATE was showed in Figures S9 and S10. The results indicated that there were strong positive

correlations with IGFBP2 expression in GBMLGG, LGG, UVM, and KICH. Moreover, The xCELL results showed that IGFBP2 was significantly

correlated with immune cell infiltration in 44 cancer types, while TNFRSF12A was significantly correlated with immune cell infiltration in 39

cancer types. (Figures 7E and 8E) The above results proved that IGFBP2 and TNFRSF12A play important roles in multiple tumor types,

and may play roles by regulating the immune components, immune cell function and mechanism in TME. In addition, positive correlations

between IGFBP2 and TNFRSF12A expression and RNA modification in many cancers were observed. (Figures 7F and 8F) Next, via TISIDB

website, we found that IGFBP2 and TNFRSF12A expression were related to different immune subtypes. (Figures S11 and S12) What’s

more, TNFRSF12A expression were related to different molecular subtypes of GBM and LGG.(Figure S13) After Bonferroni correction,

IGFBP2 and TNFRSF12A expression were also significantly correlated with characteristic genes and immune cells in many cancer types.

(Figures S14 and S15).
8 iScience 27, 109317, April 19, 2024
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Figure 6. Exploration of seven gene signatures in glioma

(A) Correlation analysis among 7 gene signatures and immune cells.

(B and C) ROC curve of IGFBP2 used for predicting the glioma (B) and OS (C).

(D and E) ROC curve of TNFRSF12A used for predicting the glioma (D) and OS (E).

(F–H) ROC curves assessing the discriminating ability of risk and 7 gene signatures in predicting 1- (F), 3- (G) and 5- (H) year OS.
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Validation of the transcription levels of 7 signature genes in glioma tissues and normal brain tissues

qRT-PCR further verified that significant differential mRNA expression for the 7 signature genes between glioma tissues and normal brain

tissues. the ABCA5 and RGS14 were significantly downregulated in glioma tissues compared with normal brain tissues (all p < 0.05), while

the APOBEC3C, EEPD1, HEY1, IGFBP2, and TNFRSF12A were significantly upregulated in glioma tissues compared with normal brain tissues

(all p < 0.05), as predicted by the bioinformatics analysis. (Figures 9A–9G).
TNFRSF12A is highly expressed in glioma

The expression level of TNFRSF12A protein was determined by IHC. As shown in Figure 9H, TNFRSF12A positive staining was mainly located

in the cytoplasm and was mainly brown in color. Semi-quantitative analysis showed that the expression rate of TNFRSF12A in glioma was

higher than that in non-cancerous brain tissues, and the difference was statistically significant (Figure 9I, p % 0.001). As shown in Figures

9J and 9K, TNFRSF12A was highly expressed in glioma tissues compared to the corresponding para-tumor tissues. Also, TNFRSF12A was

highly expressed in glioma cells compared to normal human astrocytes. (Figures 9L and 9M).
Knockdown of TNFRSF12A suppresses glioma cells proliferation, migration, and invasion in vitro and in vivo

In order to further explore the function of TNFRSF12A in glioma, a shRNA system was designed to inhibit the TNFRSF12A endogenous

expression. Because TNFRSF12A was expressed highest in U87 cells relative to other glioma cells, U87 cells were selected for subsequent

experiments. Western blot result showed TNFRSF12A expression was lower in U87-Sh-TNFRSF12A cells than U87-Ctrl cells. (Figures 10A

and 10B) The CCK-8 assays indicated that the proliferation of U87-Sh-TNFRSF12A cells was significantly inhibited at 24h, 48h and 72h

post-transfection. (Figure 10C) In addition, transwell migration and invasion experiments showed that knock-down of TNFRSF12A weakened

the migration and invasion abilities of U87 cells compared with the controls. (Figures 10D–10F).

To further gain insight into the proliferation behavior of TNFRSF12A-modulated glioma cells in vivo. As shown in Figures 10G–10I, knock-

down of TNFRSF12A expression inhibits glioma growth in the subcutaneous tumormodel. In addition, IHCwas performed to validate the role

of TNFRSF12A in the proliferation of glioma xenografts. The expression level of Ki67, MMP9, andMMP2, some sign of proliferation for tumor

malignancy, was higher in control xenografts than that in Sh-TNFRSF12A-xenografts (p < 0.05, Figures 10J and 10K). Importantly, it is crucial to

note that all experiments were conducted in two groups, including a control group and a TNFRSF12A knockdown group, to ensure the reli-

ability of the findings.
DISCUSSION

The new classification of gliomas by CNS5 combined with internal grading, histological grading andmolecular grading has made great prog-

ress in the diagnosis and treatment of gliomas.1 However, due to the huge molecular heterogeneity of gliomas, prognosis and response to

therapy still vary considerably from patient to patient. In addition, TME plays an important role in glioma development and treatment resis-

tance. The interaction between TME and tumor cells (including cancer stem cells) further affects the molecular heterogeneity of tumors and

affects the invasion and metastasis of tumors.8,13,14 Therefore, exploring the molecular heterogeneity of glioma, discovering new molecular

subtypes and their relationship with TME are very important for finding new therapeutic targets, predicting the prognosis of individual pa-

tients, and formulating precise treatment strategies. Worldwide, transcriptional subtyping of glioma has been recognized as a molecular

diagnostic method, but the transcriptional subtyping of glioma still needs to be further studied. Therefore, we screened marker genes in gli-

omas, developed a tumor stratification algorithm, and investigated the association of stratification with TME, patient prognosis, recurrence,

and response to immunotherapy.

Firstly, based on the DEGs between glioma and normal tissues, two clusters were identified using an unsupervised clustering algorithm.

Significant differences in OS and PFS were found between patients in the two clusters. Subsequently, we further obtained DEGs between the

two clusters, and combinedwithWGCNA, 41DEGswith significant prognostic correlationwere identified. In order to further identify themore

valuable signature, we collected 10 widely popularmachine learningmethods and formed 101 groups and algorithms. Finally, Lasso+RSFwas

determined to be the best model with the highest average C-index, although RSF obtained the same average C-index. However, considering

that Lasso+RSF included fewer variables. We finally selected Lasso+RSF model to construct a risk score.

In 2021, WHO CNS5 updated the molecular markers for different tumor types, which brought more benefits for evaluating patient prog-

nosis and formulating treatment strategies. In addition, TMB, MSI and stem cell index can also be used as a reference for prognosis evalu-

ation.37,44,45 It is worth noting that our constructed model was predictive independently of these factors. Combined with clinical features, we

constructed a Nomogram with high accuracy to predict the 1-, 3-, and 5-year OS of glioma patients. In addition, risk scores were not only

significantly correlated with OS and PFS of glioma, but also with TIME, TMB, stem cell index and TIDE, indicating that individual risk scores

can predict the prognosis of patients, evaluate the TME and predict the response to immunotherapy. Previous studies have also established
10 iScience 27, 109317, April 19, 2024
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Figure 7. Prognostic and immune analysis of IGFBP2 in pan-cancer

(A) Expression levels of IGFBP2 in different tumor types in the TCGA database analyzed via TIMER database.

(B) Expression levels of IGFBP2 in different tumor types in the TCGA and GTEx database analyzed via SangerBox website.

(C) The correlation between IGFBP2 expression and immune checkpoint genes in pan-cancer.

(D) The associations between IGFBP2 expression and DNAss in pan-cancer.

(E) The associations between IGFBP2 expression and immune cell infiltration in pan-cancer.

(F) The associations between IGFBP2 expression RNA modification in pan-cancer. *p < 0.05, **p < 0.01, ***p < 0.001. Data are represented as mean G SEM.

ll
OPEN ACCESS

iScience
Article
prognostic models for glioma. For example, Shi et al. constructed a prognostic model based on nine ferroptosis-related lncRNAs via the

LASSO and Cox analysis.46 Qu et al. performed univariate and multivariable Cox regression analysis to identified nine m6A-related genes

signature to predict the survival probability of glioma patients.47 Fan et al. used WGCNA and Cox regression analysis to establish an auto-

phagy signature consisting of MUL1, NPC1, and TRIM13.48 These models facilitate the identification of gliomamolecular subtypes. However,

we note that thesemodels are not well generalized, our study usedmoremachine learning algorithms for model construction, fromwhich the

most accurate one was selected for model construction, and our validation set used multiple cohorts, all of which obtained high C-index

values. Therefore, our signature is expected to be a biomarker for evaluating prognosis and guiding the development of treatment strategies

for glioma.

In addition, our signature contained seven genes. ABCA5gene is relatively conserved in evolution,49,50 which plays an important role in the

occurrence of diseases, cholesterol metabolism, and drug resistance.51–55 ABCA5 can be used as a diagnostic or prognostic biomarker for a

varietyof diseases, includingmelanoma,prostate cancer, osteosarcoma, ovarian cancer andchildhoodacutemyeloid leukemia.56–60Our study

found that high expression of ABCA5 is associated with worse OS and PFS. APOBEC enzymes play an important role in immunity and may

contribute to tumorigenesis.61 Qian et al.62 found that APOBEC3C was associated with higher kataegis counts and was significantly upregu-

lated in PDAC, and cellular experiments demonstrated the effect of APOBEC3C on PDAC genomes. In addition, they found that APOBEC3C

overexpression predicted shorter survival and was associated with CD4 + and CD8 + T lymphocyte invasion, indicating that APOBEC3C

enhanced immuneactivity and validating the utility of APOBEC3C-guided immunotherapy.54Our study also confirmed thepositive correlation

between APOBEC3C and immune cells. EEPD1 is a struct-specific nuclease that promotes the repair of double-ended DSB,63 which is

frequently overexpressed in cancer cells, contributing to the response of tumor cells to oncogenic stress or the development of therapeutic

resistance.64 We found that overexpression of EEPD1 was associated with better OS and DFS in gliomas. HEY1 is an effector gene of Notch

signaling pathway.65 Via immunohistochemistry and immunoblot analysis, Tsung et al.66 showed that HEY1was highly expressed in specimens

from GBM patients, and HEY1 silencing reduced cell invasion, migration, and proliferation. Moreover, their study provides evidence of a po-

tential positive regulatory loop between HEY1 and p53.66 A large number of previous studies have shown that IGFBP2 is upregulated in solid

tumors, integrates a variety of tumor signaling pathways, and promotes several key carcinogenic processes, such as angiogenesis, transcrip-

tional activation, epithelial-mesenchymal transition, epigenetics, cell migration, cell invasion, tumor stemness and reprogramming, and has

become a potential target for tumor therapy.67–71 Li et al.67 confirmed the correlation between IGFBP2 and PD-L1, and the combination of

IGFBP2 and PD-L1 expression can accurately predict the response to anti-PD-1 therapy in malignant melanoma, and the high expression of

IGFBP2 is associated with worse OS and better immune status, which is consistent with our study. More importantly, they revealed a im-

mune-related tumor function in which IGFBP2 promotes EGFR intranuclear accumulation in melanoma cells with subsequent activation of

the EGFR/STAT3/PD-L1 signaling pathway.68 Another study reported that IGFBP2 induced TRIM33 to regulate nuclear b-catenin, which sta-

bilized thebindingof cytoplasmicb-catenin to the30utr ofOct4RNA to induce stemness ingliomacells.69Our findings showedthat IGFBP2was

significantly highly expressed inmost cancer types, and these results suggested that IGFBP2 indeed promotes tumorigenesis and tumor pro-

gression in humancancer. In addition, IGFBP2expressionwas significantlydifferent indifferent immunesubtypesofmost cancer types, and this

may prove that IGFBP2 is a promising diagnostic pan-cancer biomarker and involved in immune regulation. Our study also found that IGFBP2

was significantly but not always positively correlated with the ESTIMATE score of TME and RNA editing genes in most human cancer types,

suggesting that IGFBP2 plays different regulatory roles in various cancer types and is closely related to TME. However, its function needs to

be confirmed by further experimental studies. RGS14 can regulate the postsynaptic plasticity of neurons and is crucial for learning, memory

and emotion, but its role in glioma has not been studied.72 Our results suggested that high expression of RGS14 in gliomas may cause

poor prognosis. Zhang et al.73 used CGGA database and GSE43378 dataset to finally identify TNFRSF12A as a biomarker for predicting

theprognosisof gliomapatients and related to immunecell infiltration. Immunohistochemical staining results verified that TNFRSF12Aexpres-

sionwas the lowest in normalbrain tissue, followedby low-gradeglioma, and thehighest in high-gradeglioma. To further verify the reliability of

our findings, we first verified mRNA expression levels of seven gene signatures in GBM and normal brain tissues by q-PCR, which results are

consistent with those of bioinformatic analysis. Subsequently, we focused on the function of TNFRSF12A in glioma. IHC and WB analysis

showed that TNFRSF12A protein expression levels in GBM was significantly higher than that of normal brain tissues. In addition, knockdown

of TNFRSF12A suppresses glioma cells proliferation, migration, and invasion in vitro and in vivo.

Although ourmodel has important clinical implications in glioma, its limitations also exist. First of all, all the samples in this study are from a

retrospective study, which needs to be further verified by a well-designed prospectivemulticenter study in the future. Secondly, our data were

derived frompublic databases, andmolecular and clinical information about the samples tested and the patientsmay have beenmissing, so it

is possible that some critically important characteristics were not considered. Third, the mechanism of action of the seven genes in the model

in glioma has not been fully studied, and further in vitro and in vivo studies are needed to elucidate their functions in the future. Finally, other

omics features were not considered in our model, and multi-omics combination may help to build more powerful models.
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Figure 8. Prognostic and immune analysis of TNFRSF12A in pan-cancer

(A) Expression levels of TNFRSF12A in different tumor types in the TCGA database analyzed via TIMER database.

(B) Expression levels of TNFRSF12A in different tumor types in the TCGA and GTEx database analyzed via SangerBox website.

(C) The correlation between TNFRSF12A expression and immune checkpoint genes in pan-cancer.

(D) The associations between TNFRSF12A expression and DNAss in pan-cancer.

(E) The associations between TNFRSF12A expression and immune cell infiltration in pan-cancer.

(F) The associations between TNFRSF12A expression RNAmodification in pan-cancer. *p < 0.05, **p < 0.01, ***p < 0.001. Data are represented as meanG SEM.
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In summary, based on bioinformatics and machine learning algorithms, we systematically explored and developed a clinically meaningful

signature that can accurately assess the prognosis, recurrence and immunotherapy benefit of glioma patients. This CIPS model has clinical

potential to optimize the precision treatment of glioma patients, assist clinical decision-making and find therapeutic targets. In addition, we

found that TNFRSF12A promote glioma cells proliferation, migration, and invasion. We also found that the potential of TNFRSF12A and

IGFBP2 as a target for anti-tumor immunotherapy.

Limitations of the study

While our study provides valuable insights into glioma subtyping and prognosis prediction, there are notable limitations. The reliance on bio-

informatics analyses warrants caution in generalizing findings to diverse datasets or clinical settings. Lack of independent clinical validation,

functional experiments, and specific drug response assays limits the immediate translational impact. Heterogeneity within glioma subtypes,

potential biases in patient cohorts, and statistical considerations should be acknowledged. Moreover, caution is advised in interpreting pre-

dictions related to immunotherapy response without robust experimental validation. These limitations underscore the need for further

research and validation to enhance the reliability and clinical applicability of our findings.
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Figure 9. Validation the expression of 7 signature genes and TNFRSF12A protein in glioma tissues and normal brain tissues

(A) ABCA5, (B) APOBEC3C, (C) EEPD1, (D) HEY1, (E) IGFBP2, (F) RGS14, (G) TNFRSF12A expression in normal brain and glioma tissues. *p < 0.05; **p < 0.01;

***p < 0.001.

(H and I) IHC result of TNFRSF12A expression was higher in GBM tissues (GBM) compared to brain tissues (Normal).

(J and K) Western blot result of TNFRSF12A expression was higher in GBM tissues (T) compared to the corresponding para-tumor tissues (N).

(L and M) Western blot result of TNFRSF12A expression in Normal human astrocytes (NHA) and 4 glioma cell lines (U118, U87, U251, T98). (*p < 0.05, **p < 0.01,

***p < 0.001). Data are represented as mean G SEM.
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Figure 10. Knockdown of TNFRSF12A suppresses glioma cells proliferation, migration, and invasion in vitro and in vivo

(A and B) Western blot analysis of the TNFRSF12A expression in U87-Ctrl cells and U87-Sh-TNFRSF12A cells.

(C) CCK8 assay of knockdown of TNFRSF12A suppresses glioma cell proliferation.

(D–F) Transwell migration and invasion assay of knockdown of TNFRSF12A suppresses glioma cell migration and invasion. (**p < 0.01, ***p < 0.001).

(G) Xenografts produced by U87-Ctrl cells and U87-Sh-TNFRSF12A cells.

(H and I) Knockdown of TNFRSF12A expression inhibits glioma growth in the subcutaneous tumor model.

(J and K) IHC shows knockdown of IGFBP2 suppresses Ki67, MMP9 and MMP2 expression in glioma. (**p < 0.01, ***p < 0.001). Data are represented as meanG

SEM.
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STAR+METHODS

KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

TNFRSF12A Abcam ab109365; RRID: AB_1858463

MMP9 Abcam ab76003; RRID: AB_854905

MMP2 Abcam ab92536; RRID: AB_854897

Ki67 Abcam ab16667; RRID: AB_2722785

b-actin Abcam ab8226; RRID: AB_2750915

HPR-conjugated secondary antibodies CST #58802; #5127; RRID: AB_2371065

Chemicals, peptides, and recombinant proteins

DMEM Gibco C11995500BT

FBS Gibco #12664025C

Penicillin/streptomycin Beyotime # C0222

Polybrene Solarbio # C0351

pLKO.3G Addgene # 14748

RNAiso Plus TaKaRa # 9108Q

RIPA Lysis Buffer Beyotime # P0013B

Polyvinylidene difluoride membrane Millipore # 3010040001

BSA Beyotime # ST025

Crystal violet Beyotime # C0121

Matrigel BD # 354234

24-well Transwell chambers Corning # 3473

Critical commercial assays

Primescript RT reagent Kit TaKaRa # RR047Q

Chemiluminescent detection kit Millipore #WBAVDCH01

CCK-8 assay Beyotime # C0046

Experimental models: Cell lines

T98 cell line Procell Life Science &Technology # CL-0583

U251 cell line Procell Life Science &Technology # CL-0237

U118 cell line Chinese Academy of Sciences Cell Bank # TCHu216

U87 cell line Chinese Academy of Sciences Cell Bank # TCHu138

Experimental models: Organisms/strains

BALB/c nude mice Tengxin N/A

Oligonucleotides

ABCA5 Sangon Biotech N/A

F: 50-GCTTCCAGAACCACCAGACA-30

R: 50- TCACAACACTGGCAACCCAT-30

APOBEC3C Sangon Biotech N/A

F: 50- CAGGCACAGCAACGTGAATC-30

R: 50- GGAGCCCCTCCTGGTAACAT-30

EEPD1 Sangon Biotech N/A

F: 50- GGGAGGTTCAAGGTGGGAAG-30

R:50- TAGGGTCTGTGCAAAGCTCG-30

HEY1 Sangon Biotech N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

F: 50- GGCTGGTACCCAGTGCTTTT-30

R: 50- GGTCATCTGCAGGATCTCGG-30

IGFBP2 Sangon Biotech N/A

F: 50- GCTGGTCATGGGCGAGG-30

R: 50-CCAGCTCCTTCATACCCGAC-30

TNFRSF12A Sangon Biotech N/A

F:50-CTCTGAGCCTGACCTTCGTG-30

R: 50-GTCTCCTCTATGGGGGTGGT-30

GAPDH Sangon Biotech N/A

F: 50-TTCCAGCCTTCCTTCCTGGG-30

R: 50-TTGCGCTCAGGAGGAGCAAT-30

Software and algorithms

GraphPad Prism 9 GraphPad https://www.graphpad.com/

SPSS 23.0 SPSS http://www.spss.com.cn

Image J National Institutes of Health https://imagej.nih.gov/ij

R(v4.1.3) The R Project https://www.r-project.org

sva (Leek JT et al.) https://bioconductor.org/packages/

release/bioc/html/sva.html

limma (Ritchie et al.) https://bioconductor.org/packages/

release/bioc/html/limma.html

ConsensusClusterPlus (Wilkerson et al.) https://bioconductor.org/packages/

release/bioc/html/ConsensusClusterPlus.html

GSVA (Hänzelmann et al.) https://bioconductor.org/packages/

release/bioc/html/GSVA.html

clusterProfiler (Wu et al.) https://bioconductor.org/packages/

release/bioc/html/clusterProfiler.html

WGCNA (Langfelder et al.) https://horvath.genetics.ucla.edu/html/

CoexpressionNetwork/Rpackages/WGCNA/

survivalROC (Heagerty et al.) https://rdocumentation.org/packages/

survivalROC/versions/1.0.3.1

ML Data S2
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Ying Tan

(tanyinggz5055@163.com).

Materials availability

This study did not generate new unique reagents.

Data and code availability

Data

Public data used in this work can be acquired from the UCSC Xena (https://tcga.xenahubs.net), CGGA website (http://www.cgga.org.cn/),

GLIOVIS database (http://GLIOVIS.bioinfo.cnio.es/), and GEO databases (https://www.ncbi.nlm.nih.gov/geo/).

Code

This study does not report original code. Most codes were used in this study in alignment with recommendations made by authors of R pack-

ages in their respective user’s guide, which can be accessed at https://bioconductor.org. Other code is available in this paper’s supplemental

information.
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Additional information requests

Any additional information required to reanalyze the data used in this study is available from the lead contact upon request.

Availability of data and materials

Publicly available datasets were analyzed in this study. These data can be found here: UCSC Xena; CGGA website; GLIOVIS database; GEO

databases.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Tissue preparation

For immunohistochemistry, twelve glioblastomas (GBM) and twelve brain were obtained from the Guizhou Provincial People’s Hospital. For

western blot analysis, 4 GBM tissues and the corresponding para-tumor tissues were also obtained. The study was approved by the Ethics

Committee of Guizhou Provincial People’s Hospital, China. All patients approved informed consents.

Cell culture and transfections

Two GBM cell lines (U118 and U87) were purchased from the Chinese Academy of Sciences Cell Bank (Shanghai, China), while GBM cell lines

T98 and U251 from Procell Life Science &Technology (Wuhan, China). Above four GBM cell lines were cultured in DMEM (Gibco, USA) sup-

plemented with 10% fetal bovine serum (FBS, Gibco, USA) and 1% penicillin/streptomycin (Beyotime, China) at 37�C with 5% CO2. For trans-

duction, U118 cell lines were maintained at 60% confluence in six-well plates, and viral solutions were added into a cell culture medium that

contains 8 mg/mL polybrene (Solarbio, China), then selected using neomycin (Beyotime, China). Endogenous TNFRSF12A was knocked down

using an shRNA system (pLKO.3G from Addgene). The target sequence is GAAGTTCACCACCCCCATAGA.

Xenograft tumor model

Male nude mice (4 weeks old) sourced from the Experimental Animal Center of Guizhou provincial people’s hospital were employed in this

study, following approval by the Ethics Committee of Guizhou provincial people’s hospital for all animal-related procedures. Glioma cells, re-

suspended in DMEM at a density of 23 106 cells per 50 ml, were subcutaneously injected into the nude mice. Following a 28-day period, the

mice were euthanized, and the tumor tissues were excised and weighed. Subsequently, the excised tumor tissues were utilized for immuno-

histochemistry analysis.

METHOD DETAILS

Data preparation

The RNA-Seq (RNA SeqV2 RSEM) and clinical annotations for 153 GBM and 509 LGG samples from TCGA and 1152 normal brain samples from

GTEx project were obtained from a combined set of TCGA and GTEx samples in UCSC Xena (https://tcga.xenahubs.net), which were set as a

training cohort. Normalizedgene expressionwasmeasured as transcripts per kilobasemillion (TPM) values.74 TheChineseGliomaGenomeAtlas

(CGGA) platform were choiced to acquire CGGA-325 and CGGA-693 with detailed transcriptomic data and clinical information (http://www.

cgga.org.cn/). Microarray data and clinical information of glioma samples of Gravendeel cohort, Rembrant cohort, and Gravendeel cohort

were obtained from GLIOVIS database (http://GLIOVIS.bioinfo.cnio.es/). The samples from CGGA and GLIOVIS database were merged as a

meta data to be validation cohorts by utilizing sva R package for the normalization of RNA expression profiles and removal of batch effect.75

In addition, GSE7696, GSE42670, GSE43378, GSE50021, GSE72951, and GSE83300 including glioma data were retrieved from GEO databases

(https://www.ncbi.nlm.nih.gov/geo/), which were merged as a meta data to be test cohorts by utilizing sva R package. We plotted PCA plots of

the data before and after normalization and batch effect removal to visually demonstrate the treatment effect.76

Identification of the glioma subtypes

First, limma R packages was used to analyze differentially expressed genes (DEGs) between the glioma and normal brain samples in training

cohort (adjusted P-values < 0.05 and |log2-FC| >1).77 Then, we performed k-means consensus clustering to distinguish different molecular

subtypes based on the mRNA expression profiles of all DEGs by using ConsensusClusterPlus R package with 1000 repetitions.78 Kaplan-

Meier (K-M) plot was draw to reveal differences in OS and PFS of glioma between subtypes with a log-rank significance test.

Estimation of TIME of glioma subtypes

Single-sample gene set enrichment analysis (ssGSEA) implemented was employed to quantify the relative infiltration of 28 immune cells in

training cohorts using GSVA R package.79 To verify the stability and robustness of the ssGSEA results, seven other algorithms including

TIMER, CIBERSORT, CIBERSORT�ABS, QUANTISEQ, MCPCOUNTER, XCELL, and EPIC, were further performed to quantify infiltration of

immune cells in the training cohorts. GSVAwas performed to explore the activity variation of pathways in each subtype by usingGSVAR pack-

age, while the ‘‘c2.cp.kegg.v7.2.symbols. gmt" gene sets were used as the reference gene set. Then Gene ontology (GO)80 and Kyoto Ency-

clopedia of Genes and Genomes (KEGG)81 enrichment analyses were completed based on the DEGs between glioma subtypes using clus-

terProfiler R package.82
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Construction of weighted correlation network analysis (WGCNA) co-expression network

Co-expression gene networks of glioma patients were constructed via WGCNA by using WGCNA R package.83 Using the scale-free topo-

logical model, the soft threshold parameter b was the best to meet the criteria of scale-free network when it was fitted to 0.9. Then, the

weighted adjacency matrix is transformed into topological overlap measure (TOM) to calculate the degree of association between genes

and generate the distTOM (1-TOM). The dynamic tree cutting method was used for module identification. After gene modules were estab-

lished, different modules were distinguished by color, and modules with high similarity were merged. The module feature genes were clus-

tered and merged after the completion of clustering.

To identify the modules with the strongest correlation with tumor subtypes, Pearson correlation analysis was used. Finally, gene signifi-

cance (GS) and module membership (MM) values were obtained to select genes highly related to tumor immune subtypes.

Establishment of signature by machine learning-based integrative approaches

The intersection of DEGs between glioma subtypes and hub genes screenedbyWGCNAwas obtained for Univariate Cox analysis. The genes

possessing an adjusted P < 0.05 were selected for further investigation. Subsequently, we combined 10machine learning algorithms,included

Lasso, Ridge, CoxBoost, stepwise Cox, random survival forest (RSF), partial least squares regression for Cox (plsRcox), elastic network (Enet),

survival support vector machine (survival-SVM), generalised boosted regression modelling (GBM), and supervised principal components

(SuperPC), to generate a consensus model. And then, 101 algorithm combinations were performed on prognostic genes to fit prediction

models based on the 10-fold cross-validation framework in training cohort to develop a consensus signature with stability performance

and high accuracy. The validation cohorts, including CGGA-325, CGGA-693, Gravendeel, Rembrant, and Gravendeel cohort were used to

detect all models. For each model, the C-indices across all datasets were calculated. Finally, The most optimal signature was screened

out in the model with the highest average C-index.

Prognostic value of the signature

The risk score for each glioma patients was calculated based onoptimalmodel. The glioma patients in the all cohorts were classified into low-risk

subgroup and high-risk subgroup based on the median of risk score calculated in training cohort. Moreover, survival analysis for Overall Survival

(OS) and Progression Free Survival (PFS) was conducted to explore the prognostic value of the risk score. Next, combining clinical annotation

information and risk scores, we identified independent prognostic factors by univariate and multivariate Cox regression analyses. A nomogram

predicting the probability of overall survival at 1, 3, 5 years was draw by rms R package. The time-dependent receiver operating characteristic

(ROC) curve analysis was performed, and 1-, 3-, 5- years the area under the curve (AUC) was calculated to verify the prognosis of glioma patients

by using survivalROC R package.84 Moreover, the calibration plot was used to determine the prediction accuracy of our model.

To rigorously compare the prognostic predictive capabilities of our glioblastoma model with other established models at 1, 3, 5, and 8

years, we computed decision curve analysis (DCA) and the concordance index (C-index) based on TCGA data.85 In the ROC curve analysis,

we plotted the sensitivity against 1-specificity at various threshold levels for each model and calculated the AUC at 1, 3, 5, and 8 years to eval-

uate accuracy. The C-index was calculated for eachmodel across these time horizons to assess their predictive discrimination capabilities.We

also evaluated the clinical utility of each model by analyzing the net benefits at different threshold probabilities at the specified time points

through DCA.

Correlation analysis between TIME and our signature

Eight algorithms including ssGSEA, TIMER, CIBERSORT, CIBERSORT�ABS, QUANTISEQ, MCPCOUNTER, XCELL, and EPIC, was employed

to quantify the difference of relative infiltration of immune cells between high-risk and low-risk subgroups. The expression of checkpoints be-

tween high-risk and low-risk subgroups was also calculated. To demonstrate that risk scores could reflect heterogeneity among tumors, we

investigated whether risk scores differed among previously defined tumor immune subtypes. The six distinct immune subtypes include: C1

(wound healing); C2 (IFN-gamma dominant); C3 (inflammatory); C4 (lymphocyte depleted); C5 (immunologically quiet); C6 (TGF-b dominant).

To further explore the immunological relevance of the gene signature, we also drew a heatmap of the correlation between each gene used to

construct the model and immune cells.

TMB, drug sensitivity analysis and immunotherapy response

TMB have been proved to be important biomarkers of the TME.45 Thus, the correlations between the TMB of TCGA cohort and riskscore was

evaluated.ThenKaplan–Meieranalysiswasused tocomparedOSbetweenhigh-TMBand low-TMBgroup,whichwereclassiffiedbymedianvalue

ofTMB,and tocomparedOSamongthe fourgroups, includinghigh-TMB-high-risk, high-TMB-low-risk, low-TMB-high-riskand low-TMB-low-risk.

In addition,weused thepRRopheticRpackage toassesseddrug-responsepredictionbypredictinghalf-maximuminhibitory concentration (IC50)

of drugs in each sample.86 Furthermore, we performedTumor ImmuneDysfunction andExclusion (TIDE) algorithm (http://tide.dfci.harvard.edu/)

to predict potential response to immunotherapy of glioma patients. The higher TIDE score, the worse response to immunotherapy.

Exploration of seven gene signatures in glioma

The GEPIA database (http://gepia2.cancer-pku.cn/) were used to explore the prognostic value of seven gene expression in glioma.87 AUC

was calculated to explore the value of seven gene for distinguishing glioma and normal brain tissue, risk of glioma patients. TIMER database
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(https://cistrome.shinyapps.io/timer/), and SangerBox website (http://sangerbox.com/Tool), were used to compare IGFBP2 expression be-

tween human cancers and paired normal tissue.88,89 Correlations between IGFBP2 expression and immune checkpoint (ICP) genes, tumor

stemness score, ESTIMATE score, and xCell scores in the TMEwas explored via the SangerBox website.90–93We also explored the correlation

between IGFBP2 expression and RNAmodification, includingm1A, m5C, andm6A in the TME of human cancer. The TISIDB database (http://

cis.hku.hk/TISIDB/index.php) was used to explore correlations between IGFBP2 expression and immune subtypes of different cancer types.94
Antibodies

TNFRSF12A, MMP9, MMP2, and Ki67 antibodies were obtained from Abcam (UK); HPR-conjugated secondary antibodies were purchased

from Cell Signaling Technology (USA).
CCK8 assay

Cell proliferation ability was determined by CCK-8 assay (Beyotime, China), with each experimental condition replicated five times. Glioma

cells were seeded and cultured in a 96-well microplate at a density of 5000 cells/well. After the addition of 10 mL of CCK-8 reagent in each well,

glioma cells were incubated at 37�C for 1 h. The absorbance was analyzed at 450nm at 0, 24, 48, 72, and 96 hours using an enzyme-linked

instrument.
Transwell migration and invasion experiments

Transwell chamber assays were conducted with each experimental condition repeated five times. The suspension containing 13 104 glioma

cells was added to 24-well Transwell chambers (Corning, USA). The lower chamber was filled with 10% FBS (Gibco, USA) supplemented with

1% penicillin/streptomycin (Beyotime, China). After 24 hours of incubation at 37�C, the migrated glioma cells were fixed with 4% paraformal-

dehyde and stained with 0.1% crystal violet solution (Beyotime, China). Microscopic images were captured to visualize the migrated cells that

passed through the filter. For Transwell invasion assays, the upper chambers were initially coated with Matrigel (BD, USA) and incubated at

37�C for half an hour.
Quantitative real-time PCR

Total RNA innormalbrainandGBMtissueswereextractedusingRNAisoPlus (TaKaRa). TheconcentrationofRNAspecimenswasmeasuredusing

aspectrophotometer andthenreverse-transcribed intocDNAusingthePrimescriptRT reagentKit (TaKaRa).Primer sequences foranalyzedgenes

were: ABCA5 forward 50-GCTTCCAGAACCACCAGACA-30 and reverse 50- TCACAACACTGGCAACCCAT-30, APOBEC3C forward 50- CAGGC

ACAGCAACGTGAATC-30 and reverse50-GGAGCCCCTCCTGGTAACAT-30, EEPD1 forward50-GGGAGGTTCAAGGTGGGAAG-30 and reverse

50- TAGGGTCTGTGCAAAGCTCG-30, HEY1 forward 50- GGCTGGTACCCAGTGCTTTT-30 and reverse 50- GGTCATCTGCAGGATCTCGG-30,
IGFBP2 forward 50- GCTGGTCATGGGCGAGG-30 and reverse 50-CCAGCTCCTTCATACCCGAC-30, RGS14 forward 50-CCACCGTGCAAGC

TCTGG-30 and reverse 50- GGCTGTGGATGCTGAGAGAG-30, TNFRSF12A: forward 50-CTCTGAGCCTGACCTTCGTG-30 and reverse 50-GTCTC

CTCTATGGGGGTGGT-30, andGAPDH forward 50-TTCCAGCCTTCC TTCCTGGG-30 and reverse 50-TTGCGCTCAGGAGGAGCAAT-30. Ampli-

fication conditions were as follows: 95�C for 20 s, followedby 40 cycles at 95�C for 3 s, and 60�C for 30 s. The relative fold changes inmRNA levels

were calculated according to the 2�DDCT method.
Immunohistochemistry (ICH)

For IHC, 8 mmsections from formalin-fixed and paraffin-embeddedbrain tissues were initially subjected to de-waxing and rehydration prior to

antigen retrieval. Endogenous peroxidase activity and non-specific antigens were thoroughly blocked using a solution comprising 3%

hydrogen peroxide and serum. The subsequent incubation involved exposing the tissue sections to TNFRSF12A, Ki67, MMP9, and MMP2

antibodies overnight at a controlled temperature of 4�C. This step was followed by the application of an anti-rabbit secondary antibody,

development using 3,3-diaminobenzidine (DAB) solution, and counterstaining with hematoxylin. Negative controls, meticulously treated

with PBS instead of primary antibodies, consistently exhibited no discernible immunoreactivity. To ensure robustness and precision, two in-

dependent pathologists meticulously reviewed the stained slides, utilizing a microscope (Olympus, Japan). The comprehensive assessment

of TNFRSF12A, Ki67, MMP9, and MMP2 immunohistochemical staining considered both the percentage of positive cells and color intensity.

This thorough evaluation provides a reliable basis for the interpretation and understanding of the immunohistochemical results.
QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analysis and plotting were performed with R software (v4.1.3). Chi-square tests were used for comparisons of categorical vari-

ables, and Wilcoxon rank-sum test or T test were used for continuous variables. Pearson’s correlation coefficient was used to assess the cor-

relation between two continuous variables. Bonferroni correction was used in the correlation analysis to further ensure the reliability of the

results. Kaplan–Meier analyses with a log-rank test applied to compare the outcomes between different subgroups. All p values were

two-tailed, and p < 0.05 was regarded to be statistically significant. *P < 0.05; **P < 0.01; ***P < 0.001.
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