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Multiparameter squeezing for optimal quantum
enhancements in sensor networks
Manuel Gessner 1✉, Augusto Smerzi2 & Luca Pezzè2

Squeezing currently represents the leading strategy for quantum enhanced precision mea-

surements of a single parameter in a variety of continuous- and discrete-variable settings and

technological applications. However, many important physical problems including imaging

and field sensing require the simultaneous measurement of multiple unknown parameters.

The development of multiparameter quantum metrology is yet hindered by the intrinsic

difficulty in finding saturable sensitivity bounds and feasible estimation strategies. Here, we

derive the general operational concept of multiparameter squeezing, identifying metrologi-

cally useful states and optimal estimation strategies. When applied to spin- or continuous-

variable systems, our results generalize widely-used spin- or quadrature-squeezing para-

meters. Multiparameter squeezing provides a practical and versatile concept that paves the

way to the development of quantum-enhanced estimation of multiple phases, gradients, and

fields, and for the efficient characterization of multimode quantum states in atomic and

optical sensor networks.
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Squeezing of quantum observables is a central strategy to
improve measurement sensitivities beyond classical limits
and has thus become a key concept in quantum metrology,

leading to major theoretical and experimental advancements in
the field1–6. Furthermore, squeezing is a convenient approach to
witness genuine quantum properties such as entanglement7,8 or
nonclassicality9, only requiring knowledge of first and second
moments of suitable linear observables that can be obtained
experimentally with high efficiency. The concept of squeezing is
most useful for the important class of Gaussian states that is
routinely generated in atomic and photonic experiments1,10–13.

While well understood in the framework of single-parameter
estimation1–5, the existing notion of squeezing is insufficient to
characterize the sensitivity of multiparameter estimation. Indeed,
the simultaneous estimation of several parameters can be more
efficient than the optimal estimation of each parameter sepa-
rately14–17. This interesting prediction is under intensive investi-
gation18–23 and can revolutionize many technological applications
such as quantum imaging24, microscopy and astronomy25–28,
sensor networks15,16,23, and atomic clocks29, by enhancing the
estimation sensitivity of inhomogeneous intensity distributions,
vector fields, and gradients30–34. However, the current framework
of multiparameter quantum metrology has developed based on the
notion of the quantum Fisher information matrix35: a figure of
merit that is not straightforward to extract experimentally and is
also generally hard to determine theoretically. Furthermore, the
sensitivity limit defined by the inverse of the quantum Fisher
information matrix, namely, the multiparameter quantum
Cramér–Rao bound35, is, in general, not saturable36,37. Alternative
approaches based on the Holevo bound are in principle asymp-
totically saturable but require, in general, complex measurements
on multiple copies of the state38–42.

In this work, we introduce the general notion of metrological
multiparameter squeezing for continuous and discrete variables.
This concept follows directly from a specific operational approach
to multiparameter estimation based on mean values and variances
of the measured observables. Metrological multiparameter
squeezing thus provides an accessible and saturable lower bound
to the quantum Fisher matrix that is tight for the broad and
experimentally relevant class of Gaussian states. We further use
matrix order inequalities to analytically optimize the measure-
ment observables as a function of accessible observables. Our
framework is neither limited to specific systems nor to a parti-
cular class of observables and provides an efficient characteriza-
tion of useful quantum resources for multiparameter estimation
for any given set of commuting observables that are simulta-
neously measured. For linear spin observables, our method gives
rise to the spin-squeezing matrix as a natural generalization of the
spin-squeezing coefficient introduced by Wineland et al.5 to
multiparameter settings. The spin-squeezing matrix reveals the
role of nonlocal squeezing, i.e., squeezing in a nonlocal super-
position of modes for simultaneous estimations of multiple
parameters that can enhance the sensitivity of specific linear
combinations of parameters. We further identify optimal strate-
gies for displacement sensing in continuous variables, where
nonlocal squeezing overMmodes can reduce the estimation error
up to a factor

ffiffiffiffiffi
M

p
. To address the properties of non-Gaussian

states, we demonstrate that our approach can yield a multi-
parameter sensitivity as large as the classical Fisher matrix (and
even the quantum Fisher matrix, whenever the multiparameter
quantum Cramér–Rao bound is saturable).

Results
Multiparameter method of moments. In multiparameter quan-
tum metrology35 the goal is to estimate a family of unknown

parameters θ ¼ ðθ1; ¼ ; θMÞT . The parameters are imprinted
onto ρ̂ by a unitary evolution

ÛðθÞ ¼ expð�iĤ � θÞ ¼ expð�i
PM

k¼1 ĤkθkÞ, where Ĥ ¼
ðĤ1; ¼ ; ĤMÞ

T
is a vector of Hamiltonians that do not necessa-

rily commute with each other. After the phase imprinting, a
measurement is performed and the experiment is repeated μ

times with the same output state ρ̂ðθÞ ¼ ÛðθÞρ̂ÛðθÞy. The
parameters θk are inferred from a set of estimators θest,k with k=
1, …, M, which are functions of the measurement results. The
multiparameter uncertainty is quantified by the M ×M covar-
iance matrix Σ with elements Σkl= Cov(θest,k, θest,l). The opera-
tional meaning of Σ is that, for an arbitrary M-dimensional real
vector of coefficients n ¼ ðn1; ¼ ; nMÞT , the quantity nTΣn = Δ2

(n1θest,1 +⋯ + nMθest,M) yields the variance of the corresponding
linear combination of estimators.

We introduce here an estimation protocol based on a
multiparameter method of moments. The parameters θ are
estimated from the average values of a set of K measurement

observables X̂ ¼ ðX̂1; ¼ ; X̂KÞ
T
. We consider a commuting set X̂

to ensure simultaneous measurability in a single shot, but our
framework does not formally require this assumption. In the
central limit, we obtain the covariance matrix (see “Methods” for
details).

Σ ¼ μM½ρ̂ðθÞ; Ĥ; X̂�� ��1
: ð1Þ

The moment matrix,

M½ρ̂ðθÞ; Ĥ; X̂� ¼ C ρ̂ðθÞ; Ĥ; X̂
� �T

Γ ρ̂ðθÞ; X̂� ��1
C½ρ̂ðθÞ; Ĥ; X̂�;

ð2Þ
depends on the covariance matrix ðΓ½ρ̂ðθÞ; X̂�Þkl ¼ hX̂kX̂liρ̂ðθÞ �
hX̂kiρ̂ðθÞhX̂liρ̂ðθÞ and the commutator matrix

ðC½ρ̂ðθÞ; Ĥ; X̂�Þkl ¼ �ih½X̂k; Ĥl�iρ̂ðθÞ. Equation (2) provides a
lower bound to the classical and quantum Fisher information
matrix, i.e.,

M½ρ̂ðθÞ; Ĥ; X̂�≤ F½ρ̂ðθÞ; X̂�≤ FQ½ρ̂ðθÞ; Ĥ�; ð3Þ
expressing, e.g., that F �M is a positive semidefinite matrix43.
The classical Fisher matrix F½ρ̂ðθÞ; X̂� determines the multi-
parameter sensitivity limit35,44 attainable by a measurement of
the observables X̂ and consists of elements

ðF½ρ̂ðθÞ; X̂�Þkl ¼
P

xpðxjθÞ ∂
∂θk

log pðxjθÞ
� �

∂
∂θl

log pðxjθÞ
� �

, where

pðxjθÞ ¼ TrfΠ̂xρ̂ðθÞg is the probability to obtain the result x ¼
ðx1; ¼ ; xKÞT and the Π̂ ¼ fΠ̂xgx denote the projectors onto the
common eigenstates of the X̂k. For any fixed basis, defined by the
projectors Π̂, the bound (Eq. (3)) can be saturated by an optimal
choice of the measurement observables X̂ (e.g., by measuring
directly the projectors X̂ ¼ Π̂), leading to

max
X̂2spanðΠ̂Þ

M½ρ̂ðθÞ; Ĥ; X̂� ¼ F½ρ̂ðθÞ; X̂�: ð4Þ

The short-hand notation X̂ 2 spanðΠ̂Þ expresses that each of the
X̂k is a linear combination of the elements of Π̂. Moreover, the
bound F½ρ̂ðθÞ; X̂�≤ FQ½ρ̂ðθÞ; Ĥ� holds for all X̂, where
ðFQ½ρ̂; Ĥ�Þ

kl
¼ Trfρ̂ðL̂kL̂l þ L̂lL̂kÞ=2g is the quantum Fisher

information35,45 and �i½Ĥk; ρ̂� ¼ ðL̂kρ̂þ ρ̂L̂kÞ=2 defines the
symmetric logarithmic derivative operators. The Fisher informa-
tion matrix equals the quantum Fisher matrix only under certain
conditions36,37. Equations (3) and (4) and their saturation
conditions are derived in Supplementary Note 2. The bounds
(Eq. (3)) show that the moment matrix (Eq. (2)) approximates the
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state’s multiparameter sensitivity by means of first and second
moments of the chosen measurement observables X̂. For linear
observables X̂ (e.g., collective spins or quadratures), this can be
interpreted as a Gaussian approximation of the (quantum) Fisher
matrix, but through the measurement of nonlinear observables
the method is also able to efficiently characterize non-Gaussian
states.

In the following, we present an analytical method for
identifying the optimal choice of X̂. We consider here the case

of a predefined family of accessible operators Â ¼ ðÂ1; ¼ ; ÂLÞ
T

with L ≥M and K that may be chosen as the experimentally
available observables. The optimization will be realized under the
constraint that only linear combinations of the operators Â can be
measured. We thus assume that X̂, as well as the Hamiltonians Ĥ,
can be expressed as linear combinations Ĥk ¼

PL
i¼1 rk;iÂi and

X̂k ¼
PL

i¼1 sk;iÂi. The real-valued coefficients rk,i and sk,i define
the M × L and K × L transformation matrices R and S,
respectively. We may write

Ĥ ¼ RÂ; and X̂ ¼ SÂ; ð5Þ
and henceforth we assume RRT= 1M and SST= 1K. We first
optimize the choice of the matrix S, i.e., the measurement
observables, for any fixed phase encoding transformation
specified by the matrix R. The optimization of the moment
matrix (Eq. (2)) is given by

Mopt½ρ̂; Ĥ; Â� :¼ max
X̂2spanðÂÞ

M½ρ̂; Ĥ; X̂� ¼ R ~M½ρ̂; Â� RT ; ð6Þ

where

~M½ρ̂; Â� ¼ ~C ρ̂; Â
� �T

Γ ρ̂; Â
� ��1~C½ρ̂; Â� ð7Þ

is the L × L moment matrix of operators Â, which is defined on
the basis of the covariance matrix ðΓ½ρ̂; Â�Þkl ¼
1
2 hÂkÂl þ ÂlÂkiρ̂ � hÂkiρ̂hÂliρ̂ and the commutator matrix

ð~C½ρ̂; Â�Þkl ¼ �ih½Âk; Âl�iρ̂. The result (Eq. (6)) is proven in
Supplementary Note 2 and follows from the matrix inequality

M½ρ̂; Ĥ; X̂�≤R ~M½ρ̂; Â�RT ; ð8Þ
which holds for arbitrary X̂. Saturation in Eq. (8) is achieved by
the observables defined in Eq. (5) if and only if there exists a real-
valued K ×M matrix G such that

GS ¼ R~C ρ̂; Â
� �T

Γ ρ̂; Â
� ��1

: ð9Þ
This result generalizes the analytical optimization discussed in
ref. 46 to the multiparameter case. Moreover, the choice of
parameter-encoding Hamiltonians, i.e., R can be optimized by
considering the spectrum of ~M½ρ̂; Â� (see “Methods”). In
practice, the optimal moment matrix (Eq. (6)) can only be
achieved by a direct measurement if the elements of an optimal X̂,
defined by Eq. (9), can be measured simultaneously.

Squeezing matrix. We define the squeezing matrix by comparing
the moment-based sensitivity Σ of Eq. (1) to the multiparameter
shot-noise limit ΣSN, i.e., the sensitivity limit of classical mea-
surement strategies. While this approach can be applied to arbi-
trary multiparameter estimation scenarios, in the following we
focus mostly on the experimentally relevant cases of distributed
sensor networks or multimode interferometers15–17: The para-
meters are encoded in M different modes by local Hamiltonians
satisfying ½Ĥk; Ĥl� ¼ 0 for all k, l and we measure one observable

in each mode (K=M). In these cases, the shot-noise limit ΣSN ¼

ðμFSN½Ĥ�Þ�1
can be explicitly determined from the quantum

Cramér–Rao bound (see “Methods”). For evolutions generated by
Ĥ and measurement observables X̂, we define the squeezing
matrix as

Ξ2½ρ̂; Ĥ; X̂� :¼ FSN Ĥ
� �1

2M ρ̂; Ĥ; X̂
� ��1

FSN Ĥ
� �1

2: ð10Þ

By expressing Eq. (1) as Σ ¼ Σ
1
2
SNΞ

2½ρ̂; Ĥ; X̂�Σ1
2
SN, we observe that

the squeezing matrix Ξ2½ρ̂; Ĥ; X̂� directly quantifies the quantum
gain in a saturable, moment-based multiparameter estimation
protocol. Any quantum state with the property

Ξ2½ρ̂; Ĥ; X̂�≥ 1M ð11Þ
can only yield multiparameter shot-noise sensitivity or worse, i.e.,
Σ≥ΣSN. Inserting Eq. (6) into Eq. (10), we obtain the optimized
squeezing matrix:

Ξ2
opt½ρ̂; Ĥ; Â� :¼ min

X̂2spanðÂÞ
Ξ2½ρ̂; Ĥ; X̂�

¼ FSN Ĥ
� �1

2R ~M ρ̂; Â
� ��1

RTFSN Ĥ
� �1

2:

ð12Þ

A violation of the matrix inequality (Eq. (11)) signals
multiparameter squeezing (with respect to the phase-imprinting
Hamiltonians Ĥ and the measurement observables X̂): it implies
that there exists at least one vector n 2 RM for which
nTΣn<nTΣSNn holds. In this case, sub-shot-noise sensitivity is
achieved for the estimation of nTθ, which describes a particular
linear combination of the parameters. The number 0≤ rSN ≤M of
negative eigenvalues of the matrix Σ� ΣSN defines the shot-noise
rank17 that is achieved by the multiparameter method of
moments. Equivalently, rSN corresponds to the number of
eigenvalues of Ξ2 that are smaller than one. When rSN ¼ M,
the stronger condition Ξ2½ρ̂; Ĥ; X̂�< 1M for full multiparameter
squeezing is satisfied. In this case, Σ<ΣSN holds, and sub-shot-
noise sensitivity is achieved for the estimation of arbitrary nTθ.

The observation of multiparameter squeezing implies that the
state is nonclassical (see “Methods”). To increase the quantum
enhancements, it is thus beneficial to reduce the squeezing matrix
as much as possible by using nonclassical states.

Multiparameter discrete-variable (spin) squeezing. Discrete-
variable multiparameter estimation provides the theoretical fra-
mework to model a series of M local Ramsey or Mach–Zehnder
interferometers that operate in parallel, each with a fixed number
of particles Nk, with k= 1, . . . , M; see Fig. 1. Here each mode is
modeled by a collective spin of length Nk/2, for k= 1, …, M,
summing up to a total number of N ¼ PM

k¼1 Nk spin-1/2
particles.

The multimode interferometer is described by a family of local

parameter-encoding Hamiltonians Ĥ ¼ Ĵr ¼ ðĴr1;1; ¼ ; ĴrM ;MÞ
T
,

where r= (r1, …, rM), Ĵrk;k ¼ rTk Ĵ?;k, Ĵ?;k ¼ ðĴx;k; Ĵ y;kÞ
T
, and

Ĵα;k ¼
PNk

i¼1 σ̂
ðiÞ
α;k=2 is a collective spin operator on mode k with

Pauli matrices σ̂ðiÞα;k for α= x, y, z and k= 1, . . . , M. Without loss
of generality, we label the axes such that the mean spin direction
n0;k ¼ ĥJkiρ̂=jĥJkiρ̂j defines the z axis. By considering a family of

local measurement observables X̂ ¼ Ĵs, we obtain the spin-
squeezing matrix with elements

Ξ2½ρ̂; Ĵr; Ĵs�
� �

kl ¼
ffiffiffiffiffiffiffiffiffiffiffi
NkNl

p
Cov Ĵsk;k; Ĵsl ;l

� �
ρ̂

Ĵ z;k
D E

ρ̂
Ĵ z;l

D E
ρ̂

; ð13Þ

where we used Eq. (10) with FSN ½̂Jr�
1
2C½ρ̂; Ĵr; Ĵs�

�1 ¼
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diagð ffiffiffiffiffiffi
N1

p
=hĴ z;1iρ̂; ¼ ;

ffiffiffiffiffiffiffiffi
NM

p
=hĴ z;Miρ̂Þ and we assumed that the rk

and sk are orthonormal vectors in the xy-plane, such that
hĴ z;kiρ̂ ¼ �ih½̂Jsk;k; Ĵrk;k�iρ̂ is the length of spin k with mean spin

direction along the z axis. On its diagonal, this matrix contains
the local spin-squeezing coefficients5 for each of the modes k=
1,…,M. It is well known that these coefficients reveal the number
of entangled spins within the local modes1,7,8. In addition to these
single-parameter contributions, the multiparameter spin-
squeezing matrix (Eq. (13)) includes off-diagonal terms that are
due to mode correlations, i.e., entanglement between the
individual interferometers.

Atomic multiparameter spin squeezing. A locally squeezed state
can be created by subjecting spatially separated ensembles of
atoms to local, nonlinear evolutions, e.g., by means of the one-
axis twisting Hamiltonian6. It is easy to see from the squeezing
matrix that local squeezing is sufficient to attain full multi-
parameter sub-shot noise; see Supplementary Note 3 for details.
However, atomic experiments are not limited to the generation of
local squeezing: recently, spatially distributed entanglement was
observed by splitting squeezed atomic spin ensembles into two or
more external modes47–49.

In order to identify the metrological potential of nonlocal
squeezing, we compare two different spin-squeezing strategies.
We consider an even number of N spin-1/2 particles initialized in
the polarized state Ψ0j i ¼ "j i�N , where "j i is an eigenstate of the
Pauli z matrix. Local squeezing (namely, local in each atomic
ensemble) corresponds to

ΨlocðtÞj i ¼ e�ið̂J2y;1þĴ
2
y;2Þχt Ψ0j i; ð14Þ

where Ĵ y;1 and Ĵ y;2 are collective spin operators for particles
1, 2, …, N/2 and N/2 + 1, …, N, respectively, i.e., we have
separated the particles into two ensembles of equal size. The
nonlinear evolution generates entanglement between the N/2
particles in each ensemble, e.g., by describing interactions among
the particles in the same ensemble for the dimensionless time χt
but does not entangle the two ensembles. Nonlocal squeezing is

instead described by the collective one-axis-twisting evolution

ΨnlðtÞj i ¼ e�i Ĵy;1þĴ y;2ð Þ2χt Ψ0j i; ð15Þ

which creates particle entanglement between the N spins and
mode entanglement between the two ensembles.

Our goal is to estimate linear combinations nTθ= n1θ1 + n2θ2
of locally encoded parameters, generated by the rotations Ĵr1;1 and

Ĵr2;2 via the transformation ÛðθÞ ¼ expð�îJr1;1θ1 � îJr2;2θ2Þ. A
particular case of interest is the estimation of a magnetic field
gradient30–33 based on the differential measurement of the field at
two spatially separated locations, which corresponds to the
difference n� ¼ ð1;�1ÞT= ffiffiffi

2
p

. A related task is the estimation of
the average field, i.e., the sum of parameters nþ ¼ ð1; 1ÞT= ffiffiffi

2
p

.
We assume that the local rotation axes r1 and r2 (and their
corresponding optimal measurement directions) can be adjusted
to optimize the local squeezing parameters, i.e., to minimize the
diagonal entries of the squeezing matrix (Eq. (13)). Such a change
of the rotation axis can effectively be realized through local
rotations of the respective spin states before the interferometric
measurement1.

The resulting sensitivities for nT
± θ are compared in Fig. 2 for an

ensemble of N= 100 atoms as a function of the nonlinear
evolution time t. We observe that an estimation of, e.g., nT

þθ can
be enhanced by nonlocal squeezing (blue continuous line). As a
consequence, the sensitivity for nT

�θ is reduced below the classical
limit (blue dashed line). However, a local π-rotation of the state
can effectively change the sign of r2 and transform the sum into
the difference and vice-versa. Hence, nonlocal squeezing can be
used to reduce the uncertainty of a specific linear combination of
parameters. The state cannot be optimal for arbitrary linear
combinations at the same time, but local operations can be used
to adjust the state prior to the measurement in order to optimally
harness the nonlocal squeezing and beat the sensitivity of local
squeezing. Nonlocal squeezing further improves the estimation of

H1

H2

HM

X1

X2

XM

�1

�1

�
2

e–iH1�1

e–iH2�2

e–iHM�M

�
2

Trap potential

S
pa

tia
l c

oo
rd

in
at

e

�2

�
2

� �

�
2

�M
�
2

�
2

�2

�M

Fig. 1 Quantum-enhanced parallel interferometers. In each mode k=
1, …,M of a set of Mach–Zehnder (left) or Ramsey interferometers (right), a
single parameter θk is imprinted by a local Hamiltonian Ĥk , and a local
observable X̂k is measured. The multiparameter sensitivity is quantified by
the moment matrix (Eq. (2)). The multiparameter quantum gain is captured
by the squeezing matrix (Eq. (10)), which contains both local (single-
parameter) enhancements and nonlocal (multiparameter) squeezing. The
sensitivity can be optimized analytically using Eq. (6) and the maximum is
achieved when Eq. (9) is fulfilled for a set of commuting observables
X̂1; ¼ ; X̂M.
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Fig. 2 Local vs nonlocal atomic spin squeezing. For a local parameter
encoding with N= 100 particles, nonlocal squeezing, described by Eq. (14),
leads to a larger quantum sensitivity gain for either the sum
10log 10ðnTþΣSNnþ=n

T
þΣnþÞ (continuous blue line) or the difference of two

spatially distributed parameters 10log 10ðnT�ΣSNn�=n
T
�Σn�Þ (dashed blue

line) than local squeezing, Eq. (15). Since the spin-squeezing matrix is
diagonal when squeezing is local, both combinations of parameters, as well
as their uncorrelated average, yield the same sensitivity (red dashed line).
Nonlocal squeezing yields a lower quantum gain for the uncorrelated
average 10log 10ðTrΣSN=TrΣÞ (dashed–dotted line). The plot shows data for
local directions r1 and r2 chosen to maximize the gain for the sum. A local
rotation transforms the sum of parameters into the difference and
vice versa.
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nonlocally encoded parameters, as we discuss in Supplementary
Note 3.

Multiparameter continuous-variable squeezing. Continuous-
variable multiparameter estimation studies the sensitivity to a
multimode displacement described by phase space operators
q̂ ¼ ðx̂1; p̂1; ¼ ; x̂M ; p̂MÞT , where x̂k ¼ 1

2 ðâk þ âykÞ and p̂k ¼
1
2i ðâk � âykÞ and ½âk; âyk0 � ¼ δkk0 . These observables are accessible
by homodyne measurement techniques, i.e., by mixing the signal
with a strongly populated local oscillator—a well-established
technique in optical10–13,50,51 and atomic systems52,53.

The 2M × 2M moment matrix, Eq. (7), for Â ¼ q̂ reads

~M½ρ̂; q̂� ¼ 1
4
ΩTΓ ρ̂; q̂½ ��1Ω ð16Þ

and provides the maximally achievable sensitivity for multimode
displacements via Eq. (6). The 2M × 2M covariance matrix Γ½ρ̂; q̂�
contains complete information on non-displaced Gaussian states.
The commutator matrix ~C½ρ̂; q̂� ¼ 1

2Ω is independent of the
quantum state, where Ω¼ LM

k¼1ω is the symplectic form with

ω ¼ 0 1
�1 0

	 

11–13. Furthermore, the explicit evaluation of the

quantum Fisher matrix of Gaussian states ρ̂G
54–56 (i.e., states

whose Wigner function is Gaussian11–13) reveals that it coincides
with Eq. (16). We thus obtain the exact equality ~M½ρ̂G; q̂� ¼
FQ½ρ̂G; q̂� for arbitrary Gaussian states ρ̂G, whereas for arbitrary
quantum states ρ̂, Eq. (16) represents a Gaussian lower bound to
the quantum Fisher matrix, see Eq. (3). Making use of upper
bounds on the quantum Fisher matrix for specific classes of
separable states17,57,58, the moment matrix can reveal detailed
information about the multimode entanglement structure59.

The continuous-variable squeezing matrix, optimized over the
measurement observables X̂, is given by Eq. (12) and reads:

Ξ2
opt½ρ̂; Ĥ; q̂� ¼ 4RΩTΓ½ρ̂; q̂�ΩRT : ð17Þ

Let us first revisit the general squeezing condition for the particular
case of the multimode continuous-variable system at hand. A
violation of Eq. (11) implies that (see Supplementary Note 4)

λminðΓ½ρ̂; q̂�Þ<
1
4
; ð18Þ

where λmin denotes the smallest eigenvalue. The condition Eq.
(18) was originally proposed in ref. 60 as a definition of squeezing
in multimode continuous-variable systems that is invariant under
passive transformations, i.e., beam splitter operations and phase
shifters that leave the number of photons constant. Conversely, if
Eq. (18) holds, one can find Ĥ and X̂ such that the condition
Eq. (11) is violated.

Hence, our general metrological definition of squeezing in
multimode systems is equivalent to a well-established definition60

in the continuous-variable case when considering quadrature
operators. The shot-noise rank rSN, i.e., the number of eigenvalues
of Ξ2

opt½ρ̂; Ĥ; q̂� that are smaller than one, provides a step-wise
characterization of the multiparameter quantum gain up to full
multiparameter squeezing (namely, rSN=M). This establishes a
natural multiparameter extension of the single-parameter condi-
tion (Eq. (18)), which merely implies that rSN > 0.

Multimode squeezed vacuum states. The class of pure Gaussian
continuous-variable states is given by multimode squeezed
vacuum states Ψ0j i10–13. As a consequence of the Williamson
theorem and the Bloch–Messiah decomposition61, any such state
can be generated by a combination of local squeezing and a series
of passive operations11,13. Consequently, there always exists a

2M × 2M orthogonal symplectic matrix O and a corresponding
passive operation described by ÛO that yields
Γ½ÛO Ψ0j i; q̂� ¼ OΓ½ Ψ0j i; q̂�OT ¼ 1

4

LM
k¼1diagðe2rk ; e�2rkÞ, where

r1, …, rM quantify the squeezing in each of the modes.
The choice of phase-encoding Hamiltonians and measurement

observables Ĥ ¼ UPMOΩq̂ and X̂ ¼ PMOq̂, where U is an
arbitrary M ×M orthogonal matrix and PM is a M × 2M projector
that picks one quadrature per mode, is optimal (see “Methods”
and Supplementary Note 4 for details) and leads to

Ξ2
opt½ Ψ0j i; Ĥ; q̂� ¼ U

e�2r1 ¼ 0

..

. . .
. ..

.

0 � � � e�2rM

0
B@

1
CAUT : ð19Þ

These operators can be interpreted (see Fig. 3) as a phase-
imprinting evolution that first disentangles the state and then
implements local phase shifts along the respective squeezed
quadrature in each mode. The measurement is realized in the
corresponding conjugate quadrature. If all rk > 0, we have full
multiparameter squeezing, enabling sub-shot-noise estimation of
arbitrary linear combinations of the parameters θ encoded via the
evolution UðθÞ ¼ e�iðĤ1θ1þ���þĤMθMÞ.

For O= 12M and U= 1M, the parameter encoding realized by
the Hamiltonians Ĥ is local in the modes q̂. The result (Eq. (19))
shows that the multiparameter sensitivity of local transformations
is maximized by a mode-local product state. Similarly, for any
other choice of O, we can define new modes Oq̂ as nonlocal linear
combinations of the original q̂, and for transformations that are
local in Oq̂, the sensitivity is maximized by states that are
uncorrelated in the modes Oq̂. These states will generally be
mode entangled in the original set of modes q̂. We conclude that
mode entanglement with respect to the modes q̂ is not necessary
to optimize the overall multiparameter sensitivity if the parameter
encoding is done locally in q̂. Conversely, given a transformation

e–ip1�1

x1

x2

xM

Local oscillator

Uo

�1

�2

�M

e–ip2�2

e–ipM�M

�

e–iH�

Fig. 3 Optimal multimode displacement sensing with squeezed vacuum
states. The passive transformation ÛO decouples the initial multimode
squeezed vacuum state into local squeezed states. A displacement
generated by the anti-squeezed variance (here depicted as p̂) and a
measurement of the squeezed variance (x̂) is implemented in each mode
with the aid of a local oscillator.
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that is nonlocal in q̂, the optimal sensitivity is achieved by a mode
entangled state.

Maximum enhancement due to mode entanglement. Recall that
the multiparameter covariance matrix contains information
equivalent to the sensitivity of arbitrary linear combinations
of parameters. For any specific linear combination, local
squeezing is still suboptimal (an analog observation was discussed
above for the case of spins). In this case, we are interested in
minimizing a single matrix element rather than all eigenvalues of
the squeezing matrix. Let us now identify the maximum gain that
can be achieved by making use of mode entanglement.

We consider a fixed family of phase-imprinting Hamiltonians
(hence U= 1M) and an estimation of nTθ with an arbitrary,
fixed unit vector n that has non-zero overlap with all the
participating modes k= 1, …, M. Our goal is to distribute a finite
total amount of squeezing (determined by the total average
particle number) over all modes in order to minimize
μnTΣn ¼ nTΞ2

opt½ Ψ0j i; Ĥ; q�n. We compare the optimized
mode-separable and mode-entangled strategy (see “Methods”
for details), giving rise to the respective sensitivities ðΔθm�sepÞ2
and ðΔθm�entÞ2: For a uniform average over all parameters,
nk ¼ 1=

ffiffiffiffiffi
M

p
, the optimal mode-separable strategy consists in

equal squeezing in all modes, rk= r, for k= 1, …, M, while the
optimal mode-entangled strategy concentrates all squeezing into a
single mode. As soon as r > 0, we have ðΔθm�entÞ2=ðΔθm�sepÞ2<1,
see Fig. 4: the mode-entangled strategy outperforms the mode-
separable one. In the limit r � 1=

ffiffiffiffiffi
M

p
, we obtain

ðΔθm�entÞ2=ðΔθm�sepÞ2 � e�2ð ffiffiffiffi
M

p �1Þr . In the opposite limit, r≫
1, we have e�2r0 � Me�2r and we obtain

ðΔθm�entÞ2
ðΔθm�sepÞ2

¼ 1
M

ðr � 1Þ: ð20Þ

We thus recover the gain factor 1/M that has been identified as
the maximal gain due to mode entanglement14–17,23. Here the
factor 1/M is obtained by comparing optimal Gaussian states
based on the analysis of the multimode squeezing matrix. We
further show in Supplementary Note 4 that, among all possible

states with fixed average particle number, squeezed vacuum states
optimize the sensitivity of multiparameter displacement sensing,
generalizing the single-parameter results of refs. 62,63.

Non-commuting generators and non-Gaussian states. To
illustrate how our methods can lead to efficient and saturable
strategies in more general scenarios, we now discuss an example
dedicated to the estimation of parameters that are generated by
non-commuting operators using a non-Gaussian state.

We consider the estimation of the two angles θ1,2 of a SU(2)

rotation ÛðθÞ ¼ e�iðθ1 Ĵxþθ2 Ĵ yÞ with non-commuting generators

Ĥ ¼ ðĴ x; Ĵ yÞ
T
in a single mode. As probe, we use the twin-Fock

state TFj i, i.e., eigenstates of Ĵ z with eigenvalue zero and a
total spin length of N/2, and we denote TFθj i ¼ ÛðθÞ TFj i.
Having zero mean spin length, TFj i cannot be characterized
by spin squeezing64 and Gaussian measurements are unable to
fully harness its metrological potential. We consider the two
commuting nonlinear observables X̂1 ¼ Ĵ x TFj i TFh ĵJx and
X̂2 ¼ Ĵ y TFj i TFh ĵJy : as a consequence of hTFĵJxĴyjTFi ¼ 0, we

have ½X̂1; X̂2� ¼ 0. Let us indicate with

Q ¼ hTFĵJ2xjTFi ¼ hTFĵJ2y jTFi ¼ NðN þ 2Þ
8 . To the leading order

in θ1,2, we obtain the inverse covariance matrix Γ½ TFθj i; X̂��1 ¼
Q�3diagðθ�2

1 ; θ�2
2 Þ and the commutator matrix

C½ TFθj i; Ĥ; X̂� ¼ 2Q2diagðθ1; θ2Þ. In the limit θ→ 0, this leads
to the moment matrix (Eq. (2))

M½ TFj i; Ĥ; X̂� ¼ NðN þ 2Þ
2

12; ð21Þ

which coincides with the quantum Fisher matrix FQ½ TFj i; Ĥ�.
This shows that, through the measurement of nonlinear
observables, our method can extract the full sensitivity of non-
Gaussian states and that it can achieve the ultimate multi-
parameter sensitivity limit even when the generators do not
commute.

Discussion
We introduced metrological multiparameter squeezing as a
practical framework to characterize the sensitivity and quantum
gain of multiparameter estimation. Our optimization technique
can be adapted to any set of accessible observables and thereby
allows to adjust the level of complexity to the problem at hand.
For example, the multiparameter sensitivity of Gaussian states
can be fully captured by a squeezing matrix only containing first
and second moments of linear observables. The analysis of the
squeezing matrix reveals optimal strategies for the design and
analysis of atomic and photonic experiments where Gaussian
states still represent the best-controlled and most efficiently
generated class of states for metrology. Metrological multi-
parameter squeezing thus lays the foundation for the develop-
ment of atomic clocks and electromagnetic field sensors,
enhanced by non-local quantum correlations in atomic ensembles
with spatially distributed and accessible entanglement47–49,65–69.
Furthermore, optical systems provide an established platform
with access to entangled multimode photonic quantum
states50,51,70 that can be combined with squeezing71,72. Our the-
ory of multiparameter squeezing provides a common framework
to characterize these experiments and to interpret and optimize
them for multiparameter quantum-sensing applications.

By extending the set of accessible observables, the squeezing
matrix can be generalized to yield more powerful quantifiers of
multiparameter sensitivity that are able to cope with highly sen-
sitive features of non-Gaussian multimode states. This method
can also be applied in non-commuting scenarios, where, however,
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Fig. 4 Quantum gain from nonlocal mode entanglement. We plot the ratio
between the sensitivity to an uniform average of parameters (Δθ)2= nTΣn
for optimal mode-entangled and mode-separable states (thick black line),
as a function of the squeezing parameter r. The solid red lines are the small-
r approximation e�2ð ffiffiffi
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approximation 1/M. Different sets of lines refer to different values of M.
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further studies are needed to explore the full potential of our
approach. Such developments are important, e.g., in optical sys-
tems where one aims to estimate the coordinates of an ensemble
of emitters to reconstruct an image24–28,71. The identification of
fundamental resolution limits for quantum imaging requires
experimentally and theoretically accessible measures of multi-
parameter sensitivity for arbitrary emitters.

Methods
Multiparameter method of moments. We base our multiparameter method of
moments on the knowledge of the mean values of a family of commuting obser-

vables, hX̂iρ̂ðθÞ ¼ ðhX̂1iρ̂ðθÞ; ¼ ; hX̂K iρ̂ðθÞÞ
T
, obtained from the calibration of the

experimental apparatus as a function of the M parameters θ ¼ ðθ1; ¼ ; θMÞT . If X̂
is measured μ≫ 1 times, each of its components X̂k yields a sequence of results

xð1Þk ; ¼ ; xðμÞk where the xðiÞk are picked from the eigenvalues of X̂k . Each mea-

surement of X̂ thus yields a vector of results xðiÞ ¼ ðxðiÞ1 ; ¼ ; xðiÞK ÞT that is randomly
distributed with mean value hX̂iρ̂ðθÞ and covariance matrix ðΓ½ρ̂ðθÞ; X̂�Þkl ¼
hX̂kX̂liρ̂ðθÞ � hX̂kiρ̂ðθÞhX̂liρ̂ðθÞ . From these measurements, we obtain the sample

average �XðμÞ ¼ ð�XðμÞ
1 ; ¼ ; �XðμÞ

K ÞT with �XðμÞ
k ¼ 1

μ

Pμ
i¼1 x

ðiÞ
k for k= 1, …, K. We

estimate the parameters θ as the values for which hX̂kiρ̂ðθÞ ¼ �XðμÞ
k holds for all k=

1, …, K. As a consequence of the multivariate central limit theorem (see Supple-

mentary Note 1 for details), for μ≫ 1, this strategy yields Σ ¼ ðμM½ρ̂ðθÞ; X̂�Þ�1
,

where

M½ρ̂ðθÞ; X̂� ¼ D ρ̂ðθÞ; X̂� �T
Γ ρ̂ðθÞ; X̂� ��1

D½ρ̂ðθÞ; X̂� ð22Þ
and

D½ρ̂ðθÞ; X̂�� �
kl ¼

∂hX̂kiρ̂ðθÞ
∂θl

: ð23Þ

In the case of a single parameter estimated by a single observable (M= K= 1), we
obtain a sensitivity described by the familiar error propagation formula

ðΔθestÞ2 ¼ 1
μ ðΔĤÞ2ρ̂ðθÞ

∂hX̂iρ̂ðθÞ
∂θ

��� ����2

, where
∂hX̂iρ̂ðθÞ

∂θ ¼ �ih½X̂; Ĥ�iρ̂ðθÞ5. The result

(Eq. (22)) provides a direct generalization to the multiparameter case.
For a unitary phase imprinting processes UðθÞ ¼ expð�iĤθÞ, generated by the

vector of Hamiltonians Ĥ ¼ ðĤ1; ¼ ; ĤMÞ
T
, as considered in the main text, we obtain

D½ρ̂ðθÞ; X̂�� �
kl ¼ �i ½X̂k; Ĥl �

� 

ρ̂ðθÞ ¼ C½ρ̂ðθÞ; Ĥ; X̂�� �

kl ; ð24Þ
and we recover the moment matrix given in Eq. (1). We have assumed that Γ½ρ̂ðθÞ; X̂�
is invertible and D½ρ̂ðθÞ; X̂� has rankM. This is usually the case for a suitable choice of
the operators X̂ as is illustrated by our application to relevant examples of spin and
continuous-variable systems. Rank deficiency of these matrices may indicate a
redundancy in the information provided by the vector of measurement results that can
be remedied by reducing the number of observables.

Multiparameter shot-noise limit. The classical precision limit of multiparameter
distributed sensor networks, i.e., the multiparameter shot-noise limit, is defined as
the maximal sensitivity that can be achieved by some optimally chosen classical
probe state17,

FSN½Ĥ� :¼ max
ρ̂cl

FQ½ρ̂cl; Ĥ�: ð25Þ
The family of classical probe states ρ̂cl depends on the system at hand. For a

fixed number of particles, the system can effectively be described by discrete
variables and a natural definition of classical states is given by particle-separable
states1,73. Similarly, for continuous-variable systems we consider mixtures of
coherent states as classical9,74. In the single-parameter theory, these families of
classical states yield familiar expressions for the shot-noise limit, i.e., the 1/N-
scaling of the variance when N is the number of particles, or the uncertainty of the
vacuum state for homodyne measurements. These limits can be generalized to the
multiparameter case, where the shot-noise matrix (Eq. (25)) is diagonal for locally
encoded parameters17. The shot-noise limit for evolutions generated by Ĥ is

obtained from the quantum Cramér–Rao bound Σ≥ ðμFQ½ρ̂; Ĥ�Þ�1
by considering

the sensitivity of the optimal classical state:

ΣSN ¼ μFSN½Ĥ�� ��1
: ð26Þ

As a consequence of Eq. (3), we obtain that Eq. (11) holds for all classical states ρcl.
The shot-noise limit in discrete-variable multimode interferometers is attained by

the most sensitive particle-separable state ρ̂p�sep ¼ P
γpγρ̂

ðγÞ
1 � � � � � ρ̂ðγÞN , where pγ is

a probability distribution and the ρ̂ðγÞk are quantum states of particle k. Optimization
over separable states leads to the shot-noise limit (Eq. (26)) defined in terms of a
diagonal quantum Fisher matrix with diagonal elements given by the respective

numbers of particles in each mode17. Specifically, the classical sensitivity limit
as a function of the accessible operators Ĵ? reads FSN ½̂J?� :¼ max

ρ̂p�sep

FQ½ρ̂p�sep; Ĵ?� ¼
diagðN1; ;N1; ¼NM ;NMÞ. For Hamiltonians Ĥ ¼ RĴ? [recall Eq. (5)] that consist
of linear combinations of the elements of Ĵ? this implies FSN½Ĥ� ¼ RFSN ½̂J?�RT .
Further details are provided in Supplementary Note 3. Sensitivities beyond this limit
can be achieved only by employing particle entanglement.

Optimization of the phase-imprinting Hamiltonians. To optimize the choice of
R, i.e., the phase-imprinting Hamiltonians Ĥ, recall that the optimal moment
matrix Mopt½ρ̂; Ĥ; Â� describes an M ×M orthogonal projection of the larger L × L

matrix ~M½ρ̂; Â�. The eigenvectors and eigenvalues of Mopt½ρ̂; Ĥ; Â� both depend

on the M × L matrix R. First, we notice that the basis of Mopt½ρ̂; Ĥ; Â� can be
chosen at will by orthogonal transformations of the generating Hamiltonians: For
any orthogonal M ×M matrix O, we obtain

Mopt½ρ̂;OĤ; Â� ¼ OR ~M½ρ̂; Â�RTOT : ð27Þ
Replacing Ĥ by OĤ does not affect the optimal measurement observables X̂opt

since O can be compensated by the matrix G in Eq. (9) for K=M. Second, the
eigenvalues of Mopt½ρ̂; Ĥ; Â� are determined by the M-dimensional support of R,

which is spanned by M out of the L eigenvectors of ~M½ρ̂; Â�. Since the basis of
Mopt½ρ̂; Ĥ; Â� can be arbitrarily chosen via O, optimality of the R is determined by

the spectrum of Mopt½ρ̂; Ĥ; Â�. We consider the parameter encoding optimal if R

projects onto the subspace corresponding to the M largest eigenvalues of ~M½ρ̂; Â�.
For the common case of a shot-noise matrix FSN½Ĥ� that is proportional to the M-
dimensional identity matrix, the same R that is optimal for Mopt½ρ̂; Ĥ; Â� is also
optimal for Ξ2

opt½ρ̂; Ĥ; Â�. Similarly to the optimization over X̂, the phase-imprinting

Hamiltonians Ĥ must be constrained to physically implementable evolutions.

Continuous-variable squeezing matrix. Families of phase-space operators can be
constructed from q̂ by means of a canonical transformation O as Oq̂. Canonical
mode transformations are described by 2M × 2M orthogonal symplectic matrices O
satisfying both O−1=OT and OΩOT=Ω11–13. Notice that the elements of Oq̂ are
in general nonlocal linear combinations of those of q̂, but they follow the same
commutation relations.

To discuss the problem of estimating M parameters encoded by the local
generators Ĥ ¼ Rq̂, we choose R= PMO. Here the M × 2M projector PM onto
canonical basis vectors with even labels picks a single operator (some linear
combination of x̂ and p̂) from each of the local modes in Oq̂, and O is an
orthogonal symplectic matrix. This condition ensures that all generators commute:
using the condition R= PMO, we find ~C½ρ̂; Ĥ� ¼ 1

2RΩRT ¼ 1
2PMOΩOTPT

M ¼
1
2 PMΩPT

M ¼ 0M , and analogously, ~C½ρ̂; X̂� ¼ 0M . Since RRT= 1M, this further
implies that the shot-noise limit does not depend on the choice of generators, i.e.,
FSN½Ĥ� :¼ max

ρ̂cl
FQ½ρ̂cl; Ĥ� ¼ 1M for all Ĥ ¼ Rq̂.

Maximal gain due to mode entanglement. We first notice that, if the squeezing
level is identical in all modes, the squeezing matrix becomes proportional to the
identity matrix that leaves no room for further optimizations, i.e., all strategies
perform equally well. In general, the mode-local state with the diagonal squeezing
matrix [U= 1M in Eq. (19)] yields an estimation uncertainty of

μnTΣn ¼ nTΞ2
opt½ Ψ0j i; Ĥ; q̂�n ¼

XM
k¼1

n2ke
�2rk : ð28Þ

To identify the corresponding sensitivity limit in the presence of mode entangle-
ment, we change the eigenvectors of the squeezing matrix by applying a passive
transformation ÛV to the state Ψ0j i. We limit ourselves to passive transformations,
since we consider the amount of initial squeezing a fixed resource61. We show in
Supplementary Note 4 that passive transformations are sufficient to produce
arbitrary basis transformations of the squeezing matrix. Let us denote n1= n and
complete it to a basis fnkgMk¼1. Choosing a transformation ÛV that achieves
Ξ2
opt½ÛV Ψ0j i; Ĥ; q̂� ¼ PM

k¼1 e
�2rknkn

T
k , where r1 ≥… ≥ rM, we obtain

μnTΣn ¼ nTΞ2
opt½ÛV Ψ0j i; Ĥ; q̂�n ¼ e�2r1 ; ð29Þ

which clearly leads to a better precision than (Eq. (28)) as long as the squeezing
level is not identical in all modes. While Eq. (28) makes use of all quadratures and
yields the average squeezing, weighted by the normalized coefficients n2k , Eq. (29)
maps the maximally squeezed quadrature onto the relevant linear combination of
parameters. In other words, we have rotated the state ÛV Ψ0j i such that the
smallest eigenvector of Ξ2

opt½ÛV Ψ0j i; Ĥ; q̂� is given by n. Notice that, in order to

achieve this mapping for a nonlocal n, the state ÛV Ψ0j i becomes mode entangled.
In order to identify the limits of both strategies for a given n, we consider the

optimal distribution of a finite total amount of squeezing that minimizes Eq. (28)
or Eq. (29) for a fixed total average number of particles
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N ¼ PM
k¼1 hâykâki Ψ0j i ¼

PM
k¼1 sinh

2rk . The constrained minimization of Eq. (28) is

done with the method of Lagrange multipliers: we write the Lagrange function

Lðx; λÞ ¼ PM
k¼1

n2k
xk
� λ

Pm
k¼1ðxk4 þ 1

4xk
Þ � M

2 � N
h i

, where xk ¼ e2rk . The solution of

the set of M+ 1 equations dLðx;λÞ
dλ ¼ 0 for k= 1, . . . , M and dLðx;λÞ

dxk
¼ 0 gives

n2k ¼ ðλ=4Þðx2k � 1Þ. Summing over k and imposing
PM

k¼1 n
2
k ¼ 1, we find

e4rk � 1PM
k¼1ðe4rk � 1Þ ¼ n2k; ð30Þ

whose solution gives the optimal squeezing parameters rk.
Clearly, the mode-entangled sensitivity (Eq. (29)) is optimized by concentrating

all available squeezing into the initial mode that will be mapped by ÛV onto the
optimal nonlocal mode, characterized by n, leading to

Δθm�entð Þ2 ¼ e�2r0 ; ð31Þ
where sinh2r0 ¼ PM

k¼1 sinh
2rk for the conservation of the total average particle

number.
In the following, let us consider, for simplicity, the estimation of an equally

weighted linear combination of all parameters, i.e., n2k ¼ 1=M for k= 1,…,M. This
implies that all the rk≡ r are identically chosen and ðΔθm�sepÞ2 ¼ e�2r , where

r ¼ arcsinh
ffiffiffiffiffiffiffiffiffiffiffi
N=M

p
. The entanglement-enabled noise suppression factor is given

by ðΔθm�entÞ2=ðΔθm�sepÞ2 ¼ e�2r0=e�2r . In the case r= 0 (that also implies r0 ¼ 0),

we have ðΔθm�entÞ2=ðΔθm�sepÞ2 ¼ 1: the mode-entangled and mode-separable

strategies perform equally well. When r � 1=
ffiffiffiffiffi
M

p
, we can approximate r0 � ffiffiffiffiffi

M
p

r

(recall that sinh2r � r2 þ Oðr3Þ) and obtain ðΔθm�entÞ2=ðΔθm�sepÞ2 � e�2ð ffiffiffiffi
M

p �1Þr .
When r≫ 1 (that also implies r0 � 1), we have e�2r0 � Me�2r .
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