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ABSTRACT

Objectives This study investigated the usefulness
and performance of a two-stage attention-aware
convolutional neural network (CNN) for the automated
diagnosis of otitis media from tympanic membrane
(TM) images.

Design A classification model development and
validation study in ears with otitis media based on
otoscopic TM images. Two commonly used CNNs were
trained and evaluated on the dataset. On the basis of a
Class Activation Map (CAM), a two-stage classification
pipeline was developed to improve accuracy and
reliability, and simulate an expert reading the TM
images.

Setting and participants This is a retrospective
study using otoendoscopic images obtained from the
Department of Otorhinolaryngology in China. A dataset
was generated with 6066 otoscopic images from 2022
participants comprising four kinds of TM images, that
is, normal eardrum, otitis media with effusion (OME)
and two stages of chronic suppurative otitis media
(CSOM).

Results The proposed method achieved an overall
accuracy of 93.4% using ResNet50 as the backbone
network in a threefold cross-validation. The F1 Score
of classification for normal images was 94.3%, and
96.8% for OME. There was a small difference between
the active and inactive status of CSOM, achieving
91.7% and 82.4% F1 scores, respectively. The results
demonstrate a classification performance equivalent
to the diagnosis level of an associate professor in
otolaryngology.

Conclusions CNNSs provide a useful and effective tool for
the automated classification of TM images. In addition,
having a weakly supervised method such as CAM can help
the network focus on discriminative parts of the image and
improve performance with a relatively small database. This
two-stage method is beneficial to improve the accuracy of
diagnosis of otitis media for junior otolaryngologists and
physicians in other disciplines.

Strengths and limitations of this study

» The two-stage approach for model development at-
tempts to replicate the human visual attention sys-
tem and the procedure of clinical judgement made
by an experienced otolaryngologist undertaking
examination of the tympanic membrane from whole
view to partial image.

» The prediction results of the two models, each hav-
ing different functionality and strength, were aver-
aged to use the advantages of each.

» Non-medical history and hearing information were
provided to the deep learning model and the oto-
laryngologists, which may have compromised the
diagnosis accuracy.

» All the otoscopic images were taken after cerumen
removed if needed.

INTRODUCTION

Otitis media (OM) is a common otological
disease with a number of forms; acute otitis
media (AOM), otitis media with effusion
(OME) and chronic suppurative otitis media
(CSOM), that appropriate medical care can
treat. It is a primary cause for people to
seek medical care, antibiotic prescription
and surgery.® Without early diagnosis and
appropriate treatment, deterioration and
even irreversible complications may occur.”
History taking, otoscopy and otoendoscopy
examination are essential first steps in the
evaluation of patients with OM in Ear, Nose
and Throat and Audiology Clinics. The clear
view or visual image obtained from otoscopy
or otoendoscopy provides important infor-
mation for initial diagnosis of otological
diseases.'™
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Misdiagnosis is most likely to occur if the medical
doctor lacks experience in the use of otoscopy or otoen-
doscopy.*” For example, Sorrento and Pichichero® found
that the correct diagnosis rate of OM by paediatricians
was only 50%, in comparison with 73% by otolaryngolo-
gists. Poor diagnostic accuracy leads to misdiagnosis and
delay in treatment, which may cause preventable compli-
cations.?”® A new diagnostic strategy for patients with OM
needs to be developed in order to improve diagnostic
accuracy.

In recent years, Artificial Intelligence has been applied
to medical image analysis to help clinical interpretation
and medical diagnosis by image classification, segmenta-
tion and matching.”"" In particular, convolutional neural
networks (CNNs) have been widely used and demon-
strate good performance in the automated classifica-
tion of medical images, including diabetic retinopathy
detection,” '’ skin cancer classification'' '* and congen-
ital cataract detection.”” However, few machine-learning
studies have been conducted in the field of otology for
the automated diagnosis of ear diseases from otoscopic
images. Myburgh et al'* built up a neural network using
389 images to classify five categories of video-otoscopic
image, including normal tympanic membrane (TM),
obstructing wax or foreign body in the external ear
canal, AOM, OME and CSOM, achieving a classification
accuracy of 86.84%. Recently a machine-learning model
was generated by combining two of the best performing
models (Inception-V3 and ResNethl).7 The model used
10544 otoendoscopic images to classify six categories of
ear disease; normal, attic retraction, tympanic perfora-
tion, otitis externa with myringitis, otitis externa without
myringitis and tumour. This learning model achieved
an accuracy of 93.67%. However, the reliability of the
combined classification method appears questionable
since the simple aggregation of two independent models
to illustrate reliability and interpretability is hard to justify
with no effective underlying rationale. Somewhat differ-
ently, Lee et al' developed a heat map using a CNN model
to distinguish between the normal middle ear condition
and ears with chronic OM in an inactive phase to detect
the presence of perforation. The accuracy was 91.0%,
however the CNN model had poor consistency in deter-
mining the perforated area of the TM, which might be
due to the relatively small sample. In addition, the model
has not been improved through validation.

In the present study, an algorithm that combined results
from two CNNs used in two separate stages was devel-
oped for the classification of: normal eardrum, OME and
CSOM in an active or inactive phase. The network in the
first stage dealt with the whole image, while in the second
stage the network made its decision based on a discrimi-
native segment of the TM image. Instead of using manual
annotation to locate the discriminative part, an interpre-
tation method called Class Activation Maps (CAMs) " was
used to identify the discriminative segment automatically
and without extra annotation. The rationale underlying
the two-stage approach was based on the human visual

attention system together with the procedure of clinical
judgement made by an experienced otolaryngologist
when they undertake examination of the TM from whole
view to partial image. The human visual attention system
selectively concentrates on parts of the visual space to
capture salient information rather than processing the
whole scene.'® Otolaryngologists can easily identify the
salient lesion areas in an otoscopic image, mainly due to
the attention mechanism of the human visual perception
system.'”'® Lesions in otoscopic images always attract most
of the otolaryngologist’s attention during the physical
examination on patients. This strategy of attention-based
CNN has been previously applied to several other medical
image analyses.'” '** Therefore, it is logical to incorpo-
rate the lesion attention mechanism into the otoscopic
image classification models.

MATERIALS AND METHODS

Otoendoscopic image data acquisition

Images were collected retrospectively from 2022 patients
who had attended the Department of Otorhinolaryn-
gology, Sun Yat-sen Memorial Hospital, University of Sun
Yat-sen, China between 2015 and 2019. The anonymous
images were identified and categorised by using the clin-
ical diagnostic information. The four conditions of the
middle ear included in this study were: normal middle
ear; OME; CSOM in active phase (CSOMa); CSOM in
inactive phase (CSOMi).

Normal TM images were obtained from healthy ears
in subjects with normal hearing thresholds determined
by pure tone audiometry and a type A tympanogram. All
patients with OME were confirmed by a type B tympa-
nogram. CSOMa was further confirmed if the patient
reported increased otorrhoea at the time the images were
taken.

TM image data acquisition

TM images were taken by otolaryngologists using a 4mm
STORZ 0° endoscope (KARL STORZ, Germany) and a
video-recording system. All images were taken before
any surgery. Images were saved as JPEG graphic files with
pixels in the range 500x500-700x700. For each of the
2022 patients, 3 images were chosen from each patient,
and a total of 6066 images were included and catego-
rised to four conditions: 1040 images of normal TM, 2613
images of OME, 1662 images of CSOMa and 751 images
of CSOMi. Figure 1 shows examples of the TMs in each
category together with a clear definition.

Labelling of images

All CSOM images were labelled according to surgical
findings of TM perforation and postoperative patholog-
ical reports if available. CSOMa was further confirmed if
the patient reported increased otorrhoea at the time the
images were taken. OME was labelled if tympanocentesis
found fluid in the tympanic cavity.
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Figure 1 Classification tree for the four diagnostic classes.

A total of 6066 images are included and categorised to four
conditions: 1040 images of normal tympanic membrane,
2613 images of otitis media effusion, 1662 images of chronic
suppurative otitis media in active phase and 751 images of
chronic suppurative otitis media in inactive phase.

Two-stage model for classification

One commonly used strategy for classifying TM images
is to first pretrain a CNN model on a large-scale natural
image dataset, such as the most popular ImageNet,**
which includes over 1 million images, and then fine tune
the model on the target training dataset. However, a vital
disadvantage with such a strategy is that the images in the
target dataset have to be downsampled to a much lower
resolution in order to fit the mandatory input size of the
CNN model, for instance, a 224x224 pixel resolution is
required for ResNet. The downsampling can cause severe
information loss and thereby performance degradation.

In order to boost performance and make full use of
all discriminative parts in the input image, a two-stage
pipeline for classification was used in the present study,
that resembles the attention mechanism of a human
being. The pipeline involved two separated CNN models,
called the main model and the focal model, providing a
predicted result based on the whole image and important
parts of the image.

The main model acted as a main classifier of images
as well as a filter to remove irrelevant parts of an image
for the focal model. By fine tuning a network pretrained
on ImageNet to the task, we produced the main classi-
fier for decision-making based on the whole image. It was
then feasible to find important parts in the input image
using manual annotation such as boundary boxes to train
a detection network.

We were able to extract information from the trained
classification network to provide weak clues as to the
location of important parts automatically. The CAM" is
a simple but effective method to visualise parts of interest
from a network by projecting back the weights of the
output layer onto convolutional feature maps obtained
from the last convolutional layer. By calculating CAMs
from input images, the location of important parts could
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Figure 2 Every patch in the same image. The sliding-
window strategy for patch selection is to take a window to
scan throughout the whole image by a fixed step size, (eg, 16
pixels in both row and column directions). At each location, a
patch can be cropped from the image and a score assigned
to this patch according to the binarised heat map. The

score of this patch is calculated by averaging the intensity
values of pixels within the corresponding window in the heat
map. Several different window sizes are predefined. Then,
the image patches cropped at various sizes and locations
(eg, the red and green boxes are ordered according to their
scores, and the top ones with high scores are selected, eg,
the green box). CAM, Class Activation Map.

P = (x0,Y0, W, H)

be highlighted. After upsampling the CAMs to the same
size as the original image, a discriminative patch with a
higher resolution could be cropped from the original
image. This contained more information and improved
the classification greatly. In summary, for each input
image, the main model outputs a series of scores indi-
cating the classification result while at the same time
providing a heat map from CAMs to help locate discrim-
inative patches.

The secondary model acts as the focal classifier of images
by focusing on the discriminative patches. From a single
image, it was possible to extract many patches simply by
random cropping, a widely used scheme for data augmen-
tation in CNN models.? 2° However, patches selected
under guidance have a higher confidence for relevance
and discrimination, leading to a better performance. This
model was fine tuned to a series of patches selected by a
sliding window of different size adopted from the CAM.
As shown in figure 2, the sliding-window strategy for patch
selection is to use a window to scan through the whole
image by a fixed step size, for example, 16 pixels in both
row and column directions. At each location, a patch can
be cropped from the image and a score assigned to this
patch according to the binarised heat map. The score of
this patch was calculated by averaging the intensity values
of pixels within the corresponding window in the heat
map. Several different window sizes were predefined.
Then, the image patches cropped at various sizes and
locations were ordered according to their scores with the
top ones with high scores selected. To avoid the window
sliding out of the image, locations very close to the image
boundaries were not considered. In the test phase, the
maximum point of the heat map indicated the most
possible location of an object and a patch was selected
around it.

As discussed above, the two models have different
functionality and strength due to difference in scale they
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Figure 3 The complete classification pipeline of the method.
The main classifier provides a global result and the focal
model works on patches containing discriminative and local
features. The prediction results of the two models are merged
by averaging the classification output scores obtained from
these two models. CAMs, Class Activation Maps.

handled. The main model provides a global result, while
the focal model works on patches containing discrimina-
tive and local features. We merged the prediction results
of the two models to use the advantage of each by aver-
aging the classification output scores. The complete clas-
sification pipeline of the method is shown on figure 3.

Experiment settings and procedure

All experiments were performed using the Intel Xeon
E5-2620 CPU and NVIDIA TITAN Xp GPU. Python 3.6 in
Keras was used as the programming language for devel-
oping the deep learning framework based on TensorFlow.

To evaluate the method, two common backbone
networks, that is, ResNet?” and Inception-VS,26 were used
in the experiments. More specifically, both networks were
trained using the Adam optimiser, which runs for 30
epochs. The learning rate is initially set to be 0.0001 and
decays with a factor of 0.1 for every 10 epochs.

During the training phase, some methods of online
data augmentation were adopted including; random
shifting, shearing, zooming and flipping. The input size
of ResNet is 224x224 while Inception-V3 uses 299x299.
The input image was resized to fit the input size of
networks using bilinear interpolation. In addition, all the
experiments were conducted using patient-level threefold
cross-validation. Three images were chosen at the same
time from each patient. When splitting the dataset for
cross-validation based on patients rather than images, no
samples from the same patient appeared in both training
and testing sets. All the images chosen for further anal-
ysis were conducted in the same way. Overall accuracy was
calculated as the number of correctly classified images
divided by the total number of considered images. All
results were the average performance of three folds. The
F1 Score was used to evaluate the performance in each
type of TM image with the advantage of considering both
precision and recall.

The training process included three steps as follows:

First, a CNN model pretrained on ImageNet was fine
tuned with the training dataset of TM images to obtain
the main model. Second, a couple of local patches were
located in each image by using CAM" derived from the
main model. The aggregation of all patches acquired

3

over the whole dataset was then taken to train another
focal model, which had the same network structure as the
main model. Since CAMs are class specific, and the true
class labels of images in the testing phase were unavail-
able, we average all the CAMs of various classes to get a
general attention map.

It is noteworthy that there were differences in the way
we selected patches between the training and testing
phases. The original heat map was continuously valued
so we turned it into a binary image, that is, pixels taking
the value 0 or 1 by picking up a value as threshold, and
turning all pixels over this value to be 1, while those under
this value to be 0. During the training phase, the general
attention maps were binarised with a threshold of 0.5.
A series of sliding windows were adopted selecting two
patches for the size of 300, 400 and 500 pixels, in order
to keep all useful information. However, in the testing
phase, considering the heavy computation cost, we only
selected a 400x400 patch with the centre located on the
maximum point of the general attention map.

Third, a pretrained network used as the focal model
was fine tuned on the selected patches, helping to achieve
a better performance. The patches for training the focal
model were selected from each image in the corre-
sponding training set.

Patient and public involvement

Due to the retrospective nature of this study, patients
and the public were not involved in the study design and
research analysis.

RESULTS

The classification results are shown in table 1. Although
the accuracy of the focal classifier was lower in both back-
bones, the focal classifier can help the main classifier
achieve better performance. The consistent performance
achieved by using two different backbones indicates that
our method is robust and insensitive to the choice of the
backbone network.

To provide a comparison with human experts, five
doctors with a variety of experience were invited to label
a subset of the test dataset. A total of 270 images from 90
subjects were randomly selected for each type of image,
in total 1080 images were used in this evaluation. Two
associate chief doctors achieved an accuracy of 91.02%
and 87.50%, while two attending doctors achieved an
accuracy of 86.57% and 79.44%, respectively. A primary
doctor achieved an accuracy of 79.07%. Figure 4 displays
the confusion matrices of our method using ResNet50
and three doctors with differing accuracies. Confusion
matrices were consistent with clinical experience, indi-
cating that it is more difficult to distinguish between cases
of: normal versus OME and CSOMa versus CSOMi than
normal versus pathological images, or OME versus CSOM.
Using our method and experts, it was difficult to distin-
guish the slight differences between normal images and
OME or CSOMa and CSOM.i. The results obtained from
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Table 1 Comparison results of various methods on our dataset

F1 Score
Method Backbone Normal OME CSOMa CSOMi Overall accuracy
Main classifier ~ Inception-V3  0.9178+0.0224  0.9613+0.0032 0.9028+0.0085 0.8103+0.0062 0.9219+0.0068
Focal classifier 0.9294+0.0085 0.9589+0.0031 0.8793+0.0113  0.7583+0.0444 0.9078+0.0117
Our pipeline 0.9485+0.0065 0.9470+0.0017 0.9099+0.0104 0.8180+0.0295 0.9330+0.0081
Main classifier =~ ResNet50 0.9033+£0.0189  0.9500+0.0141  0.9133+0.0047 0.8133+0.0170 0.9162+0.0056
Focal classifier 0.9333+0.0047 0.9633+0.0094 0.8900+0.0082  0.7500+0.0283  0.9126+0.0045
Our pipeline 0.9433:0.0125 0.9684+0.0132 0.9167+0.0047 0.8237+0.0171  0.9337+0.0051

The best results in each set of experiment are in bold. All results are reported as an average with an SD of the results of three folds. We
used the F1 Score to measure the performance in each type of image in order to consider both precision and recall. The overall accuracy is
calculated as the ratio of the number of correct classified images and the number of total images in test set.

CSOMa, chronic suppurative otitis media in active phase; CSOMi, chronic suppurative otitis media in inactive phase; OME, otitis media with

effusion.

each stage of the experimental method were combined
with the three folds, that is, all the datasets were consid-
ered in calculating the confusion matrices.

The performance of the two challenging binary clas-
sification problems was further evaluated, including
normal versus OME and CSOMa versus CSOMi. The
receiver operating characteristic (ROC) curve is an effi-
cient tool to evaluate the comprehensive quality of classi-
fication models in all different situations. Figure 5 shows
the average ROC curves of our method with ResNet50
as backbone. True positive and false positive rates were
calculated for each doctor and marked on the figure. As
figure 5A shows, in assessing the images of the normal TM
and OME, the performance of an inexperienced primary
doctor was significantly different from the judgements
reported by relatively experienced attending doctors and
associate chief doctors. Moreover, in regards to assessing

Normal OME CSOMa CSOMi Normal OME

the more challenging task of distinguishing the two stages
of CSOM, the performance of only one associate chief
doctor was better than the methods proposed in this
paper.

Figure 6 shows the intermediate results of typical
samples using the methods proposed in this study. The
green box indicates the patch used in the test phase,
and the translucent mask shows the areas used to select
patches during the training phase. The core areas of TM
were successfully detected with the weakly supervised
approach.

DISCUSSION

In this study, we propose a two-stage CNN method for
otoscopic image classification. To the best of our knowl-
edge, this is the first time that an attention-based model

CSOMa CSOMi Normal OME CSOMa CSOMi

880 (0.85) 30(0.01) 1(0.00) 1(0.00) 950 (0.91) 32(0.01) 3 (0.00) 11.(0.01) 944 (0.91) 18 (0.01) 1(0.00) 2(0.00)

160 (0.15) 2542 (0.97) 22(0.01) 4(0.01) 84 (0.08) 2544 (0.97) 29 (0.02) 16 (0.02) 93 (0.09) 2571 (0.98) 21(0.01) 4(0.01)

0(0.00) 26 (0.01) 1539 (0.93) 151 (0.20) 3(0.00) 27(0.01) 1515 (0.91) 196 (0.26) 1(0.00) 13 (0.00) 1549 (0.93) 146 0.19)

CSOMa  OME  Normal
CSOMa  OME  Normal
CSOMa  OME  Normal

0(0.00) 15 (0.01) 100 (0.06) 595 (0.79) 3(0.00) 10 (0.00) 115 (0.07) 528 (0.70) 2(0.002) 11 (0.00) 91 (0.05) 599 (0.80)

CSOMi
CSOMi
CSOMi

(A) Main Classifier (B) Focal Classifier (C) Our Pipeline

Normal OME CSOMa CSOMi Normal OME CSOMa CSOMi Normal OME CSOMa CSOMi

177 0.66) 12 (0.04) 0(0.00) 1(0.00) 220(0.81) 2(0.01) 0(0.00) 1(0.00) 264(0.98) 7(0.03) 0(0.00) 0(0.00)

89.(0.33) 247 (0.94) 4(0.01) 1(0.00) 49(0.18) 267 (0.99) 1(0.00) 2(0.01) 5(0.02) 263 (0.97) 0(0.00) 0.(0.00)

2(0.01) 3(0.01) 204 (0.76) 42 (016) 0(0.00) 1(0.00) 200 (0.74) 19(0.07) 0(0.00) 0(0.00) 206 (0.76) 20(0.07)

CSOMa  OME  Normal
CSOMa  OME  Normal
CSOMa  OME  Normal

62(0.23) 226 (0.84) 0(0.00) 69 (0.26) 248 (0.92) 250 (0.93)

CSOMi

1(0.00) 0.(0.00) 64(0.24)

CSOMi

2(0.01) 8(0.03)

CSOMi

1(0.00)

(D) Primary Doctor (E) Attending Doctor (F) Associate Chief Doctor

Figure 4 Confusion matrices for each stage in our method with ResNet50 and three human experts. The row axis indicates
the prediction while the column axis represents for the ground truth. Results among test sets of three folds are combined to
report a performance of the whole dataset. (A, B) show result of the two major classifiers of our method, while (C) reports the
result of average assembling. In addition, the overall accuracies of these three experts are 79.07%, 86.57% and 91.02% (D, E,
F). CSOMa, chronic suppurative otitis media in active phase; CSOMi, chronic suppurative otitis media in inactive phase; OME,
otitis media with effusion.
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Figure 5 Receiver operating characteristic curve for
classification of two challenging situations, comparing the
method in ResNet50 with human experts. The red curve is
the average of three folds’ performance and the other curves
show the result for each fold. Our method can achieve a
performance similar with the associate chief doctor. AUC,
area under the curve; CSOMa, chronic suppurative otitis
media in active phase; CSOMi, chronic suppurative otitis
media in inactive phase; OME, otitis media with effusion.
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CSOMa vs CSOMi

combining global and local information has been used in
the field of otoscopic image analysis. This deep learning
model adopts attention mechanisms to focus on salient
lesion areas in the TM with correcting image alignment
to reducing the impact of noise. The results show the
classification performance to reach the diagnostic level
of an associate professor in otolaryngology in identifying
normal, OME, CSOMa, CSOMi from otoscope images.
Previous studies have built up machine-learning models
for ear disease diagnosis and achieved high diagnostic
accuracy.' 71" A recent study has compared nine models
of transfer learning and assembled two of them (Incep-
tion-V3 and ResNetl101) to build a deep learning model
to automatically diagnose ear disease.” They achieved
an accuracy of 93.67% using a large database of 10544
images. However, only 86% accuracy was achieved when
the number of images for training was reduced to 5000.
In this study, an equivalently high accuracy of 93.37% was

OME  Normal

CSOMa

CSOMi

Figure 6 Typical samples of each situation, including
normal, OME, CSOMa and CSOM.i. From left to right, each
column shows original image, the CAM of normal, the CAM
of OME, the CAM of CSOMa, the CAM of CSOM,i, the
averages of CAM, the selected box and the patch for the
focal classifier. CAM, Class Activation Map; CSOMa, chronic
suppurative otitis media in active phase; CSOMi, chronic
suppurative otitis media in inactive phase; OME, otitis media
with effusion.

achieved using only 6066 images. Two models were assem-
bled in different ways to that reported in a previous study.”
First, a main classifier was tuned on the entire TM images
acquired by otoscope. Second, we calculated CAMs from
the trained main classifier to locate TM details which
could be used to improve performance. Finally, another
pretrained network was tuned on the selected patches as
the focal classifier, enabling the main classifier to perform
better. As table 1 shows, this assembled system improved
the accuracy over the single model method.

The achievement of high accuracy with a relatively small
database may be attributed to the combined use of main
classifier and focal classifier with CAM. CAM highlights
the important area in a trained network,'” which relates
to attention mechanisms. The attention mechanism of
the model was consistent with the experienced otolaryn-
gologist concentrating on the local lesion-related areas in
otoscopic examination. Based on our finding, the signif-
icant spectrum of the images for CSOM by CAM was to
focus on the perforation areas of the TM; while the area
of a shortened or vanished cone of light as well as colour
changes in the eardrum detected by CAM presented the
significant spectrum in OME images. Therefore, CAM
was considered as a guide to select discriminative parts
and fine tune another network to focus on those parts
providing higher resolution and more information.
Consequently, the focal classifier targets more results
from partial images. When considering information from
both whole image and partial image, the performance of
two kinds of backbone networks could be enhanced by
1%~2% in overall accuracy. The further improvement in
accuracy of automated detection of pathological changes
in the otoscopic images is vital to facilitate the capability
in clinical diagnosis of OME for the paediatricians, physi-
cians and junior otolaryngologists.

Itis of note that there are a few limitations in the present
study. First, non-medical history and hearing informa-
tion were provided to the deep learning model and the
otolaryngologists, which may compromise the diagnosis
accuracy. For example, CSOM is often accompanied by
symptoms of recurrent otorrhoea and hearing loss,” and
doctors can greatly improve their accuracy of diagnosis by
asking for a history. In addition, all the otoscopic images
used in the experiment were taken after cleaning the
external auditory canal. If the model is applied at home
or community hospital, it may be affected by cerumen.
In further studies, more ear disease images should be
collected in order to train a more robust and practical
network. In addition, the current deep learning model
can be improved by training with non-image information
such as hearing audiometry, tinnitus, ear fullness, dura-
tion of history and presence of fever for better diagnosis
accuracy.

CONCLUSION
In this study, the assembled classifier accompanying a
main classifier and a focal classifier with CAMs achieves a

Cai Y, et al. BMJ Open 2021;11:2041139. doi:10.1136/bmjopen-2020-041139



high accuracy in diagnosis of OM with endoscopic images
based on a relatively small database. This deep learning
model is useful in helping junior otolaryngologists and
non-otolaryngologists to diagnose ear disease early.
Further study will consider more ear diseases together
with patients’ information such as medical history,
hearing thresholds obtained from pure tone audiometry
and middle ear function assessed by using tympanometry
to improve diagnostic accuracy.
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