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Abstract

Most predictive models based on gene expression data do not leverage information related

to gene splicing, despite the fact that splicing is a fundamental feature of eukaryotic gene

expression. Cigarette smoking is an important environmental risk factor for many diseases,

and it has profound effects on gene expression. Using smoking status as a prediction target,

we developed deep neural network predictive models using gene, exon, and isoform level

quantifications from RNA sequencing data in 2,557 subjects in the COPDGene Study. We

observed that models using exon and isoform quantifications clearly outperformed gene-

level models when using data from 5 genes from a previously published prediction model.

Whereas the test set performance of the previously published model was 0.82 in the original

publication, our exon-based models including an exon-to-isoform mapping layer achieved a

test set AUC (area under the receiver operating characteristic) of 0.88, which improved to

an AUC of 0.94 using exon quantifications from a larger set of genes. Isoform variability is

an important source of latent information in RNA-seq data that can be used to improve clini-

cal prediction models.

Author summary

Predictive models based on gene expression are already a part of medical decision making

for selected situations such as early breast cancer treatment. Most of these models are

based on measures that do not capture critical aspects of gene splicing, but with RNA

sequencing it is possible to capture some of these aspects of alternative splicing and use

them to improve clinical predictions. Building on previous models to predict cigarette

smoking status, we show that measures of alternative splicing significantly improve the

accuracy of these predictive models.
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Introduction

Smoking is the most important environmental risk factor for a wide range of diseases includ-

ing cardiovascular disease, lung cancer, and chronic obstructive pulmonary disease (COPD).

Smoking increases the risk for these diseases through a variety of mechanisms including selec-

tive activation and repression of distinct aspects of the inflammatory response [1].

A meta-analysis of blood gene expression arrays from >5,000 current and never smokers

identified 1,270 smoking-associated differentially expressed genes that were significantly

enriched in immune-related processes including T-cell activation [2]. However, it is difficult

to characterize the effects of cigarette smoking on splicing and differential isoform usage due

to technical challenges in measuring isoform expression levels. Using RNA-seq combined with

novel isoform reconstruction algorithms, we have shown that smoking causes widespread dif-

ferential isoform and exon usage in addition to overall gene-level expression changes [3].

A five gene expression-based predictive model for smoking was previously proposed by

Beineke et. al [4] with an AUC of 0.82, indicating that there is still room for improvement in

predictive performance for expression-based prediction tools for current smoking status. High

throughput measurements of gene expression in biological samples have been shown to cap-

ture information relevant to complex biological processes such as cell cycle [5], stress response

[6], and medical disease states [7]. Gene expression-based multigene predictive models have

achieved a level of performance that has resulted in their regular use in medical decision mak-

ing, most notably in early stage breast cancer [8], but this level of precision has not yet been

attained in many other areas of clinical practice. More recent research has applied neural net-

works to gene expression data in biomedical domains [9], achieving superior performance rel-

ative to other machine learning methods in some cases [10], though this is not a universal

finding [11]. While gene expression microarrays were first used for genomewide transcrip-

tomics profiling, massively parallel high-throughput RNA sequencing (RNA-seq) is now the

standard, and one of the benefits of RNA-seq is that it can directly measure exon expression

and detect junctional reads (i.e. RNA-seq reads spanning exons) which allows for estimation

of transcript isoforms. It has been shown that the additional information that RNA-seq pro-

vides on alternative splicing allows for more sensitive detection of transcriptomic differences

between cancer subtypes, but this information did not necessarily lead to improved prediction

of clinical outcomes [12], suggesting that there may be latent information in RNA-seq data

related to splicing that may require novel modeling approaches to better utilize this

information.

Using blood RNA-seq data from 2,557 subjects in the COPDGene Study, we explored the

relative utility of expression measures at the gene, exon, and isoform level using deep learning

models [13] tailored specifically to account for patterns of alternative splicing induced by

smoking. We hypothesized that since smoking alters patterns of exon and isoform usage,

greater predictive accuracy could be obtained by using exon and isoform-level quantifications

to predict smoking status.

Materials and methods

Ethics statement

Informed consent was obtained for all study subjects. The COPDGene Study received institu-

tional approval from the Institutional Review Boards of all participating institutions as

included in S2 Text.
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Subject enrollment and data collection

This study includes 2,557 subjects from the COPDGene Study. COPDGene has been previ-

ously described [14]. Self-identified non-Hispanic whites (NHW) and African Americans

(AA) between the ages of 45 and 80 years with a minimum of 10 pack-years lifetime smoking

history were enrolled at 21 centers across the United States. COPDGene conducted two study

visits approximately five years apart, and the ten-year visits are being completed. Starting at

the second study visit, complete blood count (CBC) data and PAXgene RNA tubes were col-

lected. Smoking history was ascertained by self-report. Participants defined as current smokers

answered yes to the question “Do you smoke cigarettes now (as of one month ago?)”. Institu-

tional review board approval and written informed consent were obtained.

Total RNA extraction

Total RNA was extracted from PAXgene Blood RNA tubes using the Qiagen PreAnalytiX

PAXgene Blood miRNA Kit (Qiagen, Valencia, CA). The extraction protocol was performed

either manually or with the Qiagen QIAcube extraction robot according to the company’s

standard operating procedure.

cDNA library construction and sequencing

Globin reduction and cDNA library preparation for total RNA was performed with the Illu-

mina TruSeq Stranded Total RNA with Ribo-Zero Globin kit (Illumina, Inc., San Diego, CA).

Library quality control included quantification with picogreen, size analysis on an Agilent

Bioanalyzer or Tapestation 2200 (Agilent, Santa Clara, CA), and qPCR quantitation against a

standard curve. 75 bp paired end reads were generated on Illumina sequencers. Samples were

sequenced to an average depth of 20 million reads. All sequenced samples had RNA integrity

number (RIN) > 6.

Sequencing read alignment, quality control and expression quantification

Reads were trimmed of TruSeq adapters using Skewer with default parameters [15]. Trimmed

reads were aligned to the GRCh38 genome using the STAR aligner in 2-pass mode [16]. We

used these arguments for the first pass: STAR –runThreadN 8 –outSAMunmapped Within –

outSAMstrandField intronMotif –outSJfilterReads Unique –outSJfilterCountUniqueMin 100

1 1 1. For the second pass, we provided splice junctions from the first pass with these addi-

tional arguments: –outSAMtype BAM SortedByCoordinate –limitSjdbInsertNsj 10000000 –

chimSegmentMin 10 –sjdbFileChrStartEnd SJ.out.tab. Quality control was performed using

the FastQC and RNA-SeQC programs [17]. Samples were included for subsequent analysis if

they had >10 million total reads, >80% of reads mapped to the reference genome, XIST and Y

chromosome expression was consistent with reported gender,<10% of R1 reads in the sense

orientation, Pearson correlation� 0.9 with samples in the same library construction batch,

and concordant genotype calls between variants called from RNA sequencing reads and DNA

genotyping.

Gene and transcript gene transfer file (GTF) annotation was downloaded from Biomart

Ensembl database (Ensembl Genes release 94, GRCh38.p12 assembly) on October 21, 2018.

We further derived exonic parts GTF annotation by breaking exons into disjoint parts sharing

a common set of transcripts within a single gene. Sequencing read counts on gene and exonic

part level genomic features were obtained from featureCounts function in Rsubread package

(v1.32.2). Isoform level expression quantifications were derived using the Salmon program
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(v0.12.0) and the tximport package (v1.10.0). The gene, isoform, and exon count data used for

this analysis are available in GEO [26, 27] (GSE 158699).

Filtering, normalization and covariates adjustment

Genomic features (genes, isoforms or exonic parts) were filtered for both features that had

very low and very high expression. The filter used to remove low expressed features was to

remove features where the average counts per million (CPM) was< 0.2 or the feature was not

expressed at a CPM > 0.5 in at least 50 subjects. Extreme highly expressed features were

defined as features attaining a CPM> 50,000 in at least one but fewer than 50 subjects. Differ-

ences in sequencing depth and RNA library composition between subjects were normalized

using the TMM procedure from edgeR package (v3.24.3). Counts were transformed to log2

CPM values and quantile-normalized to further remove systematic noise. To avoid overfitting,

we limited our set of genes to those contained within a set of 1,270 smoking-associated differ-

entially expressed genes that had been identified in a previous study using samples that did not

overlap with this study [2].

To assess the impact of demographic covariates of age, sex and body mass index, we gener-

ated covariates-adjusted expression data for reevaluating our model performance. Specifically,

we fitted a linear model of the expression data using the demographic covariates and smoking

status as explanatory variables, and removed the covariates effect while retaining the main

effect of smoking. The adjustment procedure was performed using removeBatchEffect func-

tion from the limma package (v3.38.3).

Data usage and model validation

We analyzed blood RNA-seq data from 2,557 subjects in the COPDGene Study. We randomly

split the data into training, validation, and testing sets containing 1637, 407, 513 subjects

respectively. Model optimization and hyperparameter tuning was performed in the training

data using 5-fold cross-validation. A small set of high-performing models were further evalu-

ated in the validation dataset, and the testing data were used only for evaluation of the final set

of models after all parameters and hyperparameters were fixed. The testing data was held by a

separate analysis group using a different computer system to avoid any possibility of inadver-

tent use of test data in the model building process.

Model training

For all experiments, we train each model for 40 epochs with batch size 256 using Adam opti-

mizer [18] with learning rate 0.0003, β1 = 0.9, β2 = 0.999 and a dropout [19] rate of 0.2. We

employ the early stopping strategy during training. Specifically, we stop training and get the

best performing model on the validation set so far when there is no increase in validation accu-

racy for 10 epochs. We set the weight of the L1 constraint used in the Feature Selection layer to

be 0.0005. Unless otherwise specified, model layers were fully connected and ReLU nonlinear

activation function were used. All the deep learning models were implemented in TensorFlow

(v12.0.0) and Keras (v2.2.4.). A visualization of all network architectures can be found in S4

Fig. All network definitions, network weights and code, as well as additional files required for

reproducing our experiment results are available at https://doi.org/10.5281/zenodo.5136729.

All experiments are conducted on a single NVIDIA GTX 1080Ti GPU. The training process

related to Beineke models ranged from 13 seconds to 17 seconds for 40 epochs. The training

process related to a larger feature set ranged from 58 seconds (the base model) to 252 seconds

(model with IML and FSL) for 40 epochs.
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To identify high-performing model architectures, we adopted a layer-by-layer incremental

search strategy. We first explored the optimal number of nodes for a single layer network by

performing grid search. We evaluated from 2 to 512 nodes in the first layer, increasing by a fac-

tor of 2 at each step, i.e., 2, 4, 8, . . ., 512. The number of nodes at each layer was selected based

on cross-validation performance, and then an additional layer was added using the same grid

search strategy for node number with the constraint that each subsequent layer would have

fewer nodes than the preceding layer. Note that we reinitialize the weights of the previous lay-

ers when searching for the current layer. This process was repeated until no further gain in

performance was achieved.

Implementation of isoform map and feature selection layers

To incorporate prior knowledge regarding the relationship of exons to transcript isoforms, we

implemented an Isoform Map Layer (IML) which takes exon features as input and outputs

estimated isoform features. This specially-designed layer is based on a standard fully-con-

nected layer with weight W. This layer encodes known exon to isoform relationships in a

binary relationship matrix R such that if exon i is contained within isoform j, we set Rij = 1,

otherwise Rij = 0. This layer takes the relationship matrix to perform element-wise multiplica-

tion with the learnable weight matrix W. Thus, only canonical exon to isoform relationships

can contribute to the final model. Exon to isoform relationships were obtained from the

Ensemble v94 GTF file. Analogously, we can devise an exon-to-gene mapping layer, where

exons are connected to the genes they are associated with, in the same way. We refer to this as

the Gene Map Layer (GML).

To enhance interpretability, we included in some models a Feature Selection Layer (FSL)

that associates every input feature with a non-negative learnable weight using an L1 constraint

and outputs a reweighted feature vector of the same size as the input feature vector. Since the

weights are non-negative, they can be considered to represent each feature’s importance with

respect to smoking status prediction, and the L1 constraint is meant to improve the generaliz-

ability of the model.

Baseline models, model comparisons and interpretation

To assess the effectiveness of our method, we compared our method against the current

method proposed by Beineke et al., which is a logistic regression model using the following

five genes: CLDND1, LRRN3, GOPC, LEF1, MUC1. We apply the Beineke model on our data

by exploring logistic regression with exon, isoform and gene inputs considering only these five

genes. For models evaluating the full set of genes, we trained elastic net models as a baseline

for comparison with the weights for the L1 and L2 norms set at 0.0005. We obtain the optimal

set of parameters of elastic net by conducting grid search and find out the best performance on

the validation set. All statistical tests of model performance were analyzed using data from the

test set and performed using R version 3.6. Direct comparisons between models were per-

formed using the deLong test implemented in the pROC package. Gene set functional enrich-

ment analysis was performed for genes ranked in the top 20% of feature importance scores

generated by the DeepExplain [20] framework with saliency maps [21]. We used the TopGO

package [22] to compute the gene set enrichment p-values for Gene Ontology pathways using

the ‘weight01’ algorithm with Fisher’s exact test statistic.

Serum cotinine measurement

Cotinine measurements were obtained from plasma through metabolomic profiling using the

Metabolon Global Metabolomics Platform (Durham, NC, USA). The data were further
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normalized to remove batch effects. Samples with undetectable cotinine levels were assigned a

value of zero. COPDGene metabolomic data is available at the NIH Common Fund’s National

Metabolomics Data Repository website, the Metabolomics Workbench, https://www.

metabolomicsworkbench.org (Study ID ST001443). Predictive accuracy of serum cotinine for

smoking status was assessed with ROC curves applied to measured cotinine values.

Results

RNA-seq data from 2,557 current and former smokers in the COPDGene Study were used to

develop and test the predictive models. Data were randomly split into training, validation, and

testing data. The use of data for model training, selection, and testing are described in Fig 1.

The characteristics of the subjects in these datasets are shown in Table 1.

Fig 1. Visual abstract. (a) Dataset split and usage. The number in each cell represents the number of subjects. The training set is equally split into 5 folds for

deep learning model optimization (cross-validation for tuning the hyperparameters and architecture search in a deep learning model). The validation set is

used to select the optimal model and the testing set is held out for performance evaluation. (b) Model overview. Our model consists of a Feature Selection Layer

(FSL), an Isoform Map Layer (IML) (if the input feature is exon) and standard fully connected layers. FSL associates each input feature with a non-negative

learnable weight, which represents the importance of features with respect to smoking status. IML encodes exon to isoform relationships via a binary matrix R,

such that if exon i is contained within isoform j, we set Rij = 1, otherwise Rij = 0. By (element-wise) multiplying Rij with corresponding learnable weights W, we

only consider canonical exon to isoform relationships.

https://doi.org/10.1371/journal.pcbi.1009433.g001
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Validation and further development of the Beineke model using exon and

isoform level data

A microarray and RT-PCR based five gene expression model for smoking has been previously

developed and shown to have a test set AUC of 0.82 [4]. To externally validate this model and

establish a performance benchmark in our dataset, we constructed an initial set of models

using gene, exon, and isoform expression from this set of genes. One of the genes, MUC1 was

expressed in our data at levels below our filtering threshold. We confirmed that this gene is

also expressed in very low levels in whole blood RNA samples from the Genotype Tissue

Expression Project, and subsequently based our models on the other four gene expression val-

ues. A logistic regression model using these four genes had an AUC of 0.76 and 0.78 in our val-

idation and testing data (Table 2). We then trained two additional logistic regression models

using exon counts and Salmon estimated isoform quantifications from these genes. As shown

in Fig 2, the prediction performance in both validation and testing datasets was improved

using both isoform (p = 0.002) and exon level (p<0.001) quantifications, and exon data out-

performed Salmon estimated isoform data (p = 0.002). Notably, the best performing models

Table 1. Characteristics of subjects.

Training Validation Testing P-value

Number of subjects 1637 407 513

Age, years 65.4 (58.6, 71.9) 65.6 (58.4, 71.3) 65.4 (58.6, 71.7) 0.2

Sex, %males 51.1% 55.8% 49.9% 0.2

Race, %non-Hispanic whites 74.3% 74.9% 77.8% 0.3

BMI 28.1 (24.5, 32.3) 28.1 (25.0, 32.1) 27.9 (25.1, 32.2) 0.4

Smoking pack-years 40.0 (28.0, 54.8) 40.0 (26.9, 52.7) 40.0 (28.0, 57.9) 0.8

Current smokers, % 35.4% 35.4% 35.5% 0.9

FEV1, %predicted 81.5 (62.7, 95.2) 84.1 (66.8, 97.3) 82.2 (63.7, 96.2) 0.08

FEV1/FVC 0.71 (0.61, 0.78) 0.72 (0.62, 0.78) 0.72 (0.62, 0.79) 0.7

COPD case status, % 31.7% 28.6% 29.3% 0.3

All values are from the COPDGene visit 2. BMI: Body mass index; FEV1: Forced expiratory volume in 1 second; FVC: Forced vital capacity; GOLD: Global Initiative for

Chronic Obstructive Lung Disease; COPD case status defined as subjects with GOLD spirometric grade� 2. Variables are expressed as medians and interquartile ranges

(25th to 75th percentiles) for continuous variables, and percentages for categorical variables. P-values are obtained using the Kruskal-Wallis test for the continuous

variables and chi-square test for the proportions.

https://doi.org/10.1371/journal.pcbi.1009433.t001

Table 2. Predictive performance of modified Beineke models using gene, isoform and exon-level expression data.

Val—Accuracy Val—AUC Test—Accuracy Test—AUC

Gene 0.698 0.758 0.743 0.780

Isoform 0.757 0.827 0.774 0.828

Exon 0.801 0.859 0.808 0.869

Exon, GML-GTF 0.771 0.807 0.789 0.811

Exon, GML-GTF, FSL 0.776 0.805 0.741 0.796

Exon, IML-GTF 0.828 0.876 0.825 0.870

Exon, IML-GTF, FSL 0.828 0.889 0.838 0.875

Val: validation data. AUC: area under the receiver operating characteristic. IML-GTF: Isoform Map Layer containing information from Ensembl GTF file. GML-GTF:

Gene Map Layer containing information from Ensembl GTF file. FSL: Feature Selection Layer. Best results are shown in bold.

https://doi.org/10.1371/journal.pcbi.1009433.t002
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used exon level data combined with an (exon-to-)Isoform Map Layer based on curated iso-

form data (i.e. Ensembl GTF) and a Feature Selection Layer, as described later.

Model optimization using a larger feature set

Having obtained improved prediction performance using exon and isoform data from four

genes in the Beineke model, we then constructed models using a much larger set of features.

Of the 1,270 genes that were significantly associated with current smoking from the meta-anal-

ysis by Huan et al. [2], 1,079 were expressed at levels high enough to be analyzed in our RNA-

seq data. These genes contained 6,196 isoforms and 19,027 exons present in our data, and we

constructed separate deep learning models using gene, isoform, and exon level data. As

expected, the best models for isoform and exon data had a larger number of nodes

Fig 2. ROC curves in test data for the 4-gene modified Beineke model using gene (black), isoform (blue), and exon-level (red)

quantifications. Isoform and exon-level data outperform gene-level data (Delong p = 0.002 and<0.001, respectively).

https://doi.org/10.1371/journal.pcbi.1009433.g002
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(256-128-64) than the gene level model (128-64-32). Maximal accuracy was observed with

three layers, and the best performance was achieved with exon level quantifications (Fig 3).

Improved prediction through isoform map and feature selection layers

We hypothesized that the performance of exon-based prediction models would be improved

by incorporating relationships between exons and isoforms. Using known exon to isoform

relationships from the Ensembl version 94 GTF file, we introduced a deep learning layer

(IML) that encoded these connections between exons and isoforms (Fig 1), and we observed

improved predictive performance in cross-validation and in test data (Table 3). For compari-

son, we also compared these models to models that incorporated a fully connected layer

between exons and isoforms, but this model was far more complex and failed to converge. A

full summary of the network architectures can be found in S4 Fig.

We then explored whether the addition of an integrated feature selection layer (FSL) would

further improve performance by introducing an additional layer that assigns a non-negative

weight for each input feature, and we observed an incremental increase in performance. When

we compared the performance of this model to the base exon model, the performance was sig-

nificantly improved (p = 0.02 in test data, Fig 4). However, there was no improvement from

the Gene Map Layer or from providing exon and isoform quantifications directly to the Elastic

Net model without any exon-to-isoform relationship information.

Fig 3. Cross-validation accuracy calculated during model optimization for exon-level data.

https://doi.org/10.1371/journal.pcbi.1009433.g003
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Comparison of exon-level model to serum cotinine

Cotinine is a metabolite of nicotine and the most commonly used biomarker for current

smoking status. Out of 513 subjects in the test dataset, 106 had SOMAscan serum metabolite

measurements available for analysis in which we could compare the performance of predic-

tions from the exon, IML-GTF, FSL model to the discrimination performance of serum cotin-

ine values. Interestingly, in these data the predictions from the exon-level model significantly

outperformed serum cotinine (DeLong p-value = 0.01, Fig 5). The distribution of cotinine lev-

els and exon predicted values in current and former smokers is shown in S1 and S2 Figs.

Model interpretation

We explored the interpretation of our best performing model, (the Exon, IML-GTF, FSL

model), and we generated corresponding feature importance scores for each exon using the

DeepExplain [20] framework with saliency maps [21]. 48.5% of exons had non-zero scores,

and the distribution of the non-zero scores was bimodal (S3 Fig). We selected the exons in the

top 20% of saliency scores for gene pathway enrichment analysis using the TopGO method

[22] with the 1,079 analyzed genes as the background for comparison, and 43 Gene Ontology

pathways had nominally significant p-values with the most enriched pathways related to

GTPase activity and protein ubiquitination/degradation. The top 10 pathways are shown in

Table 4.

The most significantly enriched pathways did not have much overlap with the pathways

identified in the largest previous gene-level analysis of smoking [2] or with the pathway enrich-

ment identified in an earlier gene-level differential expression analysis in COPDGene data [3].

The most enriched pathways in these studies were primarily related to immune response,

wound healing, and platelet activation. This difference is expected since the enrichment analy-

ses performed for this study was geared to identify genes whose exon-level information was

important for predicting smoking status relative to our background set of genes which con-

sisted of the smoking-associated genes from the gene-level study of Huan et al.

Sensitivity analyses with covariate-adjusted data

To test whether the high performance of the RNA-seq models might be tied to specific demo-

graphic characteristics of the COPDGene study population such as age, sex, or body mass

index, we fitted a linear model of the expression data using these demographic covariates

Table 3. Predictive performance of various models using exon-level data, including elastic net for comparison.

Val—Accuracy Val—AUC Test—Accuracy Test—AUC

Exon, Elastic Net 0.821 0.861 0.774 0.903

Exon + Iso, Elastic Net 0.808 0.894 0.766 0.884

Exon Base 0.813 0.886 0.842 0.913

Exon, GML-GTF 0.833 0.899 0.842 0.913

Exon, GML-GTF, FSL 0.850 0.903 0.838 0.919

Exon, IML-GTF 0.843 0.905 0.854 0.924

Exon, IML-GTF, FSL 0.860 0.916 0.869 0.935

Val: validation data. AUC: area under the receiver operating characteristic. Exon + Iso: Concatenation of exon and isoform data. IML-GTF: Isoform Map Layer

containing information from GTF file. GML-GTF: Gene Map Layer containing information from Ensembl GTF file. FSL: Feature Selection Layer. Best results are shown

in bold.

https://doi.org/10.1371/journal.pcbi.1009433.t003
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together with smoking status as explanatory variables, and generated an adjusted version of

the expression data by removing the effects of these covariates while retaining the main effect

from smoking. We observed in the adjusted expression data a small but non-significant

decrease in predictive performance for the exon-level model (AUC 0.91 versus 0.94, DeLong

p-value = 0.09). These results are reported in S1E Table in S1 Text.

Discussion

Deep learning models applied to blood RNA-seq data provide more accurate prediction of cur-

rent smoking status than previously published models. In testing data, our models achieved an

AUC>0.9 compared to a previously reported replication AUC of 0.81 for an established

5-gene model. Much of this improvement is due to the use of exon rather than gene expression

Fig 4. ROC curves in test data for the deep learning base exon model (black) and the model including the isoform map layer and

feature selection layer (red) which has significantly better performance (Delong test p = 0.02).

https://doi.org/10.1371/journal.pcbi.1009433.g004
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levels coupled with the use of a neural net layer encoding exon to isoform relationships. These

findings improve our ability to identify environmental exposures from RNA-seq data, and

they suggest that latent isoform information in RNA-seq data can be used to improve clinical

predictions.

This paper describes for the first time how exon and isoform-level data from RNA-seq

improve the accuracy of clinical prediction models, demonstrating a general approach by

which gene expression predictive models may be improved. Eukaryotic genomes are charac-

terized by complex gene structure and extensive alternative splicing that greatly expands the

protein repertoire. Over 90% of human genes have multiple transcribed isoforms [23], isoform

variability is clearly observable across tissues within the same individual [24], and isoform vari-

ability is an important contributor to human diseases [25, 26]. Focusing first on the previously

Fig 5. ROC curves in test data for the serum cotinine (black) and the exon model including the (Exon-to-)isoform map layer and

feature selection layer (red) which has significantly better performance (Delong test p = 0.01).

https://doi.org/10.1371/journal.pcbi.1009433.g005
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published Beineke gene expression model, we demonstrate a notable increase in performance

by substituting exon or isoform quantifications for the same set of genes used in the original

model (AUC increase from 0.76 to 0.86). The best performance was achieved with exon data,

not estimated isoform quantifications, which is likely due to inaccuracy in the estimation of

full length isoforms from short-read RNA-seq.

We were able to further improve our model by encoding known exon-isoform relationships

in one of the layers of the neural network, which we refer to as the Isoform Map Layer. This is

in line with other applications of machine learning to biological data that have found improved

performance for algorithms that can incorporate prior biological knowledge, such as the use of

known gene-interaction networks to improve the performance of clustering methods [27, 28].

Since our current catalog of human isoform variability is incomplete, as this knowledge

increases the value of the Isoform Map Layer is expected to increase as well. In addition, with

the growing use of long read sequencing, these more accurate isoform quantifications can be

used directly as inputs to predictive models. Our data suggest that this will lead to further

improvements in predictive accuracy for models based on RNA expression.

Gene expression prediction models for current smoking status are useful for multiple rea-

sons. First, existing smoking biomarkers have good but not ideal predictive performance. In

clinical practice, determination of smoking status is primarily done by patient self-report, and

in instances where biochemical validation is necessary this is done via measures of nicotine

metabolites, such as cotinine, in blood, urine, or saliva. While it may seem straightforward to

determine smoking status, in practice it is difficult to ascertain smoking status with complete

certainty for multiple reasons. Individuals may not accurately report their smoking behavior,

and biochemical tests can yield false positives when individuals are exposed to nicotine in the

absence of cigarette use, as can occur with the use of nicotine replacement therapy or elec-

tronic nicotine delivery devices (e-cigarettes). A systematic review of the performance of vari-

ous cotinine cutoffs with respect to self-report of smoking status reported performance in the

range of 70–90% sensitivity with specificity levels between 73–99% [29]. In our dataset, predic-

tions from exon expression using an isoform mapping layer achieved a sensitivity 83% with a

specificity of 89%, and when compared directly to serum cotinine levels in a subset of subjects

from COPDGene, our exon expression predictive model significantly outperformed serum

cotinine. However, cotinine values were only available for 106 of the test samples, and these

observations may be sensitive to the method of cotinine measurement. These exploratory

results require further investigation in additional datasets with standard cotinine

measurements.

Table 4. Top 10 enriched GO pathways.

Go.ID Term Annotated Significant Expected p-value

GO:0032092 positive regulation of protein binding 9 6 1.87 0.0036

GO:0043547 positive regulation of GTPase activity 24 11 4.99 0.005

GO:0031397 negative regulation of protein ubiquitination 9 5 1.87 0.0076

GO:0006892 post-Golgi vesicle-mediated transport 5 4 1.04 0.0076

GO:0006998 nuclear envelope organization 5 4 1.04 0.0076

GO:0015696 ammonium transport 5 4 1.04 0.0076

GO:0032722 positive regulation of chemokine production 5 4 1.04 0.0076

GO:0010950 positive regulation of endopeptidase activity 17 8 3.53 0.0086

GO:0032885 regulation of polysaccharide biosynthetic process 3 3 0.62 0.0089

GO:0048199 vesicle targeting, to, from or within Golgi 3 3 0.62 0.0089

https://doi.org/10.1371/journal.pcbi.1009433.t004
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Another important application for transcriptome-based predictive models is to infer smok-

ing status when only gene expression data are available. This is important because smoking

has a strong effect on gene expression and therefore can be a confounder of gene expression

studies, particularly in situations where smoking is confounded with specific disease states. In

this scenario, use of a previously defined model to infer smoking status may allow for more

accurate detection of disease-related gene expression signals, even when the smoking status of

subjects has not been directly measured.

The strengths of this study are the large sample size of subjects with blood RNA-seq data,

and the ability to assess our predictive models in two sets of independent test data. We assessed

deep learning based methods which have provided superior predictive performance in multi-

ple contexts, and we assessed the predictive utility of novel aspects of RNA expression which

have not been extensively studied in the prediction context. Limitations of this study are that

smoking status was determined by self-report only. While our models performed well in held-

out test data, further validation and replication of these results in other cohorts with similar

RNA isolation and sequencing protocols is necessary prior to clinical translation. Our RNA-

seq libraries were generated for total RNA with globin and ribosomal RNA reduction, thus our

results may not translate directly to RNA-seq data generated with poly-A selection protocols.

While our study expands upon gene-level quantification studies by demonstrating the addi-

tional utility of exon-level quantification, future improvements might be obtained by consider-

ing novel, unannotated isoforms and exon junctions, rather than restricting to known

transcript models as we have done here.

Conclusion

In summary, the use of exon-level quantifications in combination with the Isoform Map Layer

produced predictive models with superior ability to predict current smoking status relative to

previously published models from gene expression data. These models represent the current

state-of-the-art for smoking status prediction from blood RNA-seq data, and these findings

are proof-of-concept that incorporating isoform level information into predictive models

improves the ability to predict clinical outcomes. As the quality of isoform quantification

improves from isoform inference algorithms and long-read sequencing, it is reasonable to

expect that the performance of RNA-based predictive models will also improve.
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S1 Text. Supplemental results. Supplemental experiment results on upper-quartile normal-

ized dataset and results after removing the 5 genes from the Beineke model and correlated

gene partners. S1A Table: Predictive performance of modified Beineke models using gene,

isoform and exon-level expression data, with MUC1 included and upper-quartile normal-

ized. Val: validation data. AUC: area under the receiver operating characteristic. IML-GTF:

Isoform Map Layer containing information from Ensembl GTF file. FSL: Feature Selection

Layer. Best results are shown in bold. S1B Table: Predictive performance of modified Bei-

neke models using gene, isoform and exon-level expression data, with MUC1 included and

TMM normalized as in the main paper. Val: validation data. AUC: area under the receiver

operating characteristic. IML-GTF: Isoform Map Layer containing information from Ensembl

GTF file. FSL: Feature Selection Layer. Best results are shown in bold. S1C Table: Predictive

performance of various deep learning models using exon-level data processed with upper-

quartile normalization. Val: validation data. AUC: area under the receiver operating charac-

teristic. IML-GTF: Isoform Map Layer containing information from Ensembl GTF file. FSL:

Feature Selection Layer. Best results are shown in bold. S1D Table: Predictive performance
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of deep learning models using all 1079 genes, and 1020 genes with genes used in the Bei-

neke model and their correlated genes (correlation coefficient� 0.4) removed, and TMM

normalized as in the main paper. Val: validation data. AUC: area under the receiver operat-

ing characteristic. Base: the base architecture for gene input, Input-128-64-32-Output. Best

results are shown in bold. S1E Table: Predictive performance of modified Beineke models

using gene, isoform and exon-level expression data, with MUC1 included and covariate sig-

nals removed from the data. Val: validation data. AUC: area under the receiver operating

characteristic. IML-GTF: Isoform Map Layer containing information from Ensembl GTF file.

FSL: Feature Selection Layer. Covariates removed: age, sex, body-mass index, and batch. Best

results are shown in bold. S1F Table: Predictive performance of various deep learning mod-

els using the full set of exon-level data, with covariates signals removed from the data. Val:

validation data. AUC: area under the receiver operating characteristic. IML-GTF: Isoform

Map Layer containing information from Ensembl GTF file. FSL: Feature Selection Layer.

Covariates removed: age, sex, body-mass index, and batch. Best results are shown in bold.
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S2 Text. Institutional review board approval protocol numbers. IRB protocol numbers at all

participating COPDGene study sites are included as a separate Word document.

(DOC)

S1 Fig. The distribution of cotinine levels in current and former smokers. Plasma levels of

cotinine are higher in current smokers (N = 21) compared to former smokers (N = 85) in sub-

jects from COPDGene at the second study visit.

(TIF)

S2 Fig. The distribution of exon predicted values in current and former smokers. Predicted

values from the exon model with the isoform map and feature selection layer are higher for

current smokers (N = 21) than for former smokers (N = 85) in a subset of subjects from

COPDGene with concurrent plasma cotinine values also available.

(TIF)

S3 Fig. Distribution of exon feature importance scores. The distribution of log of feature

importance scores for each exon using the DeepExplain [20] framework with saliency maps

[21] on the trained Exon, IML-GTF, FSL model. 48.5% of exons had non-zero scores, and the

distribution of the 243 non-zero scores was bimodal. The red line in the figure indicates the

top 20% of exons.

(TIF)

S4 Fig. Summary of network architectures. IML: Isoform Map Layer containing information

from GTF file. GML: Gene Map Layer containing information from GTF file. FSL: Feature

Selection Layer.

(TIF)
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