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Recently, the overall survival (OS) and progression-free survival (PFS) of patients with
advanced cancer has been significantly improved due to the application of immune
checkpoint inhibitors (ICIs). Low response rate and high occurrence of immune-related
adverse events (irAEs) make urgently need for ideal predictive biomarkers to identity
efficient population and guide treatment strategies. Cytokines are small soluble proteins
with a wide range of biological activity that are secreted by activated immune cells or
tumor cells and act as a bridge between innate immunity, infection, inflammation and
cancer. Cytokines can be detected in peripheral blood and suitable for dynamic detection.
During the era of ICIs, many studies investigated the role of cytokines in prediction of the
efficiency and toxicity of ICIs. Herein, we review the relevant studies on TNF-a, IFN-g, IL-6,
IL-8, TGF-b and other cytokines as biomarkers for predicting ICI-related reactions and
adverse events, and explore the immunomodulatory mechanisms. Finally, the most
important purpose of this review is to help identify predictors of ICI to screen patients
who are most likely to benefit from immunotherapy.

Keywords: cytokines, immune checkpoint inhibitors, predictive factors, adverse events, response
INTRODUCTION

Immune checkpoint inhibitors (ICIs) therapy has shown improved clinical responses and
significant survival benefits in patients with locally advanced or advanced solid tumor types.
Specifically, programmed cell death 1 (PD-1), programmed cell death ligand 1 (PD-L1), and
monoclonal antibodies against cytotoxic T lymphocyte antigen 4 (CTLA-4) have been approved in
org July 2021 | Volume 12 | Article 6703911
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the first-line and second-line treatment of various malignant
neoplasms, including non-small cell lung cancer (NSCLC),
melanoma, renal cell carcinoma (RCC), etc. (1–4). To date,
there are six Food and Drug Administration (FDA)-approved
ICIs for PD-1/PD-L1/CTLA-4, including pembrolizumab and
nivolumab (anti-PD-1) and atezolizumab, durvalumab and
avelumab (anti-PD-L1). However, the first-line objective
response rate (ORR) of NSCLC treated by ICIs plus
chemotherapy was approximately 48-58% (5, 6), and ICI
monotherapy was only approximately 27-46% (7, 8). Thus, a
large number of patients did not receive beneficial effects.
Additionally, immune-related adverse events (irAEs), which
occurs mostly in derma, digestive system, endocrine organs
and lungs. The response rate of any grade of irAEs was 30%
and ≥grade 3 was 5-10%, even 1% death rate (9, 10). Hence,
biomarkers are pressing needed for identification patients who
will benefit most from ICIs and avoid over treatment.

Predictive biomarkers for prognosis and adverse reactions of
ICI treatment received more attention and have been widely
explored in recent years. According to the simple being test,
current biomarkers are mainly including tumor tissue
biomarkers [e.g. PD-L1 expression (11, 12), tumor mutation
burden (TMB) (13), MHC molecule expression (14, 15)],
circulating immune cells biomarkers [e.g. CD4+T cells (16, 17),
myeloid-derived suppressive cells (MDSCs) (18)] and soluble
systemic immune/inflammatory biomarkers [e.g. lactate
dehydrogenase (LDH) (19, 20), cytokines (21, 22)]. However,
definite conclusions have not been reached. So far, PD-L1
expression based on assays on tumor cells is the only
biomarker that is approved and extensively used for selecting
patients for PD1/PD-L1 immunotherapy (23, 24). However,
response was observed in PD-L1 negative patients and not all
PD-L1 positive patients benefit (25). In addition, PD-L1
detection requires tissue samples obtained by an invasive
means and local tissue may provide an incomplete insight of
TME. Circulating biomarkers based on plasma offer an
alternative non-invasive solution to address these weaknesses.

Cytokines (CK) are a series of low molecular weight soluble
proteins, including interleukin (IL), interferon (IFN), tumor
necrosis factor (TNF) superfamily, colony stimulating factors
(CSF), chemokines, and growth factors (GF), secreted by
immune cells (such as monocytes, macrophages, T cells, B
cells, and NK cells) and some nonimmune cells (endothelial
cells, epidermal cells, and fibroblasts) after induction by
immunogens, mitogens, or other stimulants (26). Autocrine,
paracrine, or endocrine cytokines bind to the receptors on the
target cell membrane to trigger intracellular signals and change
specific cellular functions (27, 28). Changes of cytokines levels
regulate tumor microenvironment, change the proliferation and
differentiation of immune cells, and even influence the metastasis
of cancer cells (29, 30).

A series of studies have evaluated the level of baseline and
changes of cytokines in various tumors patients treated with
ICIs. Several preclinical model studies have shown that a
combination of certain cytokine drugs and ICIs can improve
the prognosis (31, 32). In this review, we retrospect the potential
Frontiers in Immunology | www.frontiersin.org 2
value of cytokines in predicting the efficacy and adverse reactions
of immune checkpoint therapy (ICT) and intends to identify
patients who will benefit from ICIs.
TNF-a

Tumor necrosis factor (TNF) was named in 1975 by Carswell
because TNF caused tumor bleeding and necrosis (33). TNF-a is
mainly produced by monocytes and macrophages. Additionally,
TNF-a is detected in tumor tissue and secreted by malignant
tumor tissues or interstitial tumor cells. Soluble TNF-a (sTNF)
and transmembrane TNF-a (tmTNF) are two forms of TNF-a.
TNF-a binds to two receptors including TNFR1 and TNFR2.
TNFR1 is ubiquitously expressed, and TNFR2 is expressed only
in immune cells, neurons, and endothelial cells (34, 35). After
binding to the receptors, TNF-a recruits death domain (DD)
proteins, such as Fas-associated death domain (FADD) and
TNFR associated DD (TRADD), activates apoptotic signal
transduction pathways, and recruits TRAF family proteins,
such as NF-kappa B and JNK, which accelerate cell
proliferation and differentiation (36, 37). Moreover, TNF-a
plays a key role in a number of systemic inflammatory
diseases. Anti-TNF-a drugs are effective in the treatment of
inflammation associated with a variety of autoimmune diseases,
such as rheumatoid arthritis (RA), inflammatory bowel disease
(IBD) (38), ankylosing spondylitis, and Behcet’s disease (39).

The associations of TNF-a with a response to ICIs was
investigated in several studies. Tanaka et al. (40) showed serum
levels of TNF-a were decreased in 6/9 malignant melanoma
(MM) patients with complete remission (CR), partial remission
(PR) or long-term stable disease (long SD), and elevated in six
patients with progressive disease (PD) (P<0.05). It agrees with
the preclinical study results that TNF induced resistance of
immunotherapy (41). Several studies demonstrated the
mechanism that TNF-a may acted as a negative biomarker.
TNF-a upregulates the expression of PD-L1 in tumor cells and T
cell immunoglobulin and mucin domain 3 (TIM-3) in CD8+ TIL
(41, 42). TIM-3 has been reported as secondary immune
checkpoints which limit the function of tumor reactive T cells
(31, 43) and trigger TIL exhaustion (44). Additionally, TNF was
shown to trigger CD8+ T cell activation-induced cell death
(AICD) (45, 46). Blocking TNF and PD-1 increased the
number and activity of tumor-infiltrating CD8+ TIL (31, 47)
and enabled to achieve 75% survival versus 20% survival in the
case of treatment with anti-PD-1 alone. In addition, Lim et al.
found that TNF-a upregulates the expression of ubiquitin
enzyme CSN5, which reduces the ubiquitination of PD-L1 and
stabilizes its expression (41).

Different results have been reported in studies. Boutsikou
et al. (21) reported increased TNF-a levels at the time before and
3 months after anti-PD-1 was correlated with improved response
and prolonged survival (P=0.009) in 26 NSCLC patients treated
with PD-1 inhibitors, while not association with PFS.
Additionally, Ozawa et al. (45) showed no significant difference
of TNF-a levels at time of before and 7 days anti-PD-1 in 10
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NSCLC patients. However, no serious adverse effects were
observed in patients with normal TNF-a levels. Baseline
TNF-a may not act as an ideal biomarker for ICI treatment.
Correlation between survival and non-synonymous TNF
pathway mutations was not discovered in any cancer type (48).
Changed TNF-a levels and suitable time for detecting plasma
was needed further explored. A brief summary of clinical studies
of the association of ICT response and irAEs with cytokines is
respectively shown in Tables 1, 2.

Preclinical studies targeted the combination of TNF and ICIs
have received improved prognosis. For instance, compared to
anti-PD-1 alone, the combination of anti-PD-1 and a TNF/
TNFR1 gene defect or TNF blockade had better therapeutic
benefit (75% survival versus <20% survival) in melanoma and
lung cancer mouse models (31). Moreover, TNF inhibitor
Frontiers in Immunology | www.frontiersin.org 3
enalapril or anti-TNF monoclonal antibody decreased the risk
of hepatitis and colitis induced by double checkpoint inhibition
(44, 46). Anti-TNF antibodies, such as etanercept and infliximab,
have been used in clinic to treat serious irAEs (65, 66).
IFN-g

Interferon-g (IFN-g) is a soluble cytokine dimer named for its ability
to interfere with the growth of live viruses (67). IFN-g is mainly
produced by NK cells (68), activated T cells (69, 70), B cells (71, 72),
and antigen-presenting cells [macrophages (73), monocytes (74),
and dendritic cells (75)]. JAK/STAT is the main signaling pathway
that mediates interferon-induced gene expression. IFN-g binds to
the cell surface receptors and triggers phosphorylation of JANUS
TABLE 1 | Clinical studies of the association of ICT response with cytokines.

Cytokine Authors N= Tumors Immunotherapy Results

TNF-a Tanaka 2017 (40) 30 M nivolumab decreased levels of TNF-a associate with better reactivity
Boutsikou 2018 (21) 26 NSCLC pembrolizumab/nivolumab increased TNF-a levels was correlate with improved response and prolonged

survival
Ozawa 2019 (45) 10 NSCLC nivolumab/pembrolizumb no relationship

IFN-g Yamazaki 2017 (49) 37 M nivolumab higher levels of IFN associate with improved response
Boutsikou 2018 (21) 26 NCSLC PD-1 increased levels of IFN-g correlate with improved response and prolonged

survival
Hirashima 2019 (50) 29 NSCLC PD-1/CTLA-4 low baseline IFN-g level (<10 IU/ml)and decreased IFN-g level associate with

progression disease
McNamara 2016 (51) * M PD-1/PD-L1 ability of IFN-g production by peripheral blood lymphocyte correlate with

survival
Costantini 2018 (52) 43 NSCLC nivolumab no correlation with baseline or variation IFN-g levels

IL-6 Yamazaki 2017 (49) 35 M nivolumab higher IL-6 levels associate with improved response
Hardy-Werbin 2019 (53) 84 SCLC ipilimumab+chemotheray baseline IL-6 levels lower than cut-off(3.65pg/ml) associate with higher OS
Laino 2020 (54) 1296 M nivolumab/ipilimumab higher baseline IL-6 levels associate with shorter survival
Ozawa 2019 (45) 10 NSCLC nivolumab/pembrolizumb elevated IL-6 or CRP associate with higher response rate
Tsukamoto 2018 (55) * M nivolumab increased IL-6 levels associate with tumor progression

IL-8 Boutsikou 2018 (21) 26 NSCLC nivolumab/pembrolizumab increased levels of IL-8 correlate with prolonged OS
Agullo-Ortuno 2020 (56) 27 NSCLC nivolumab increased levels of IL-8 associate with poor OS
Sanmamed 2017 (57) 29 M nivolumab/pembrolizumab early increased IL-8 levels (2-4 weeks after anti-PD-1) associate with lower

response rate
Hardy-Werbin 2019 (53) 84 SCLC chemotherapy plus

ipilimumab
high level of IL-8 (≥13.82pg/mL) correlate with worse OS

Yuen 2020 (58) 1445 UC, RCC atezolizumab high baseline levels of IL-8 correlate with poor efficiency
Schalper 2020 (59) 1344 NSCLC,

RCC
Nivolumab/nivolumab
plus ipilimumab

high baseline levels of IL-8 associate with poor efficiency, cut-off (23pg/mL)

TGF-b Feun 2019 (60) 24 HCC Pembrolizumab TGF-b≥200pg/mL assign as a poor indicator of response
Mariathasan 2018 (61) * MUC atezolizumab increased TGF-b ligand1 (TGF-b1) and TGF-b receptor2 (TGF-bR2) levels

correlate with poor response
TNF, tumor necrosis factor; IFN, interferon; IL, interleukin; TGF, transforming growth factor; M, melanoma; NSCLC, non-small cell lung cancer; UC, urothelial carcinoma; RCC, renal cell
carcinoma; HCC, hepatocellular carcinoma; PD-1, programmed cell death protein 1; PD-L1, programmed cell death ligand 1; CTLA-4, cytotoxic T-lymphocyte antigen 4.
*mouse model.
TABLE 2 | Clinical studies of the association of ICT irAEs with cytokines.

Cytokine Authors N= Tumors Immunotherapy Results

IL-6 Tanaka 2017 (40) 30 M Nivolumab increased levels of IL-6 associate with psoriasiform dermatitis
Okiyama 2017 (62) 20 M Nivolumab/Pembrolizumab increased levels of IL-6 associate with psoriasiform dermatitis
Ozawa 2019 (45) 10 NSCLC Ipilimumab increased IL-6 level correlate with SAE rate
Chaput 2017 (63) 26 M ipilimumab low baseline IL-6, IL-8, and sCD25 associate with colitis
Valpione 2018 (64) 140 M ipilimumab low baseline IL-6 level act as independent predicted factor
IL, interleukin; M, melanoma; NSCLC, non-small cell lung cancer.
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family kinases JAK1 and JAK2. This phosphorylation activates
signal transducer and transcriptional activator (STAT) protein.
Response genes (e.g., IRF1) induced by STAT1 signaling enhance
the transcription of the secondary response genes (76). IFN-g is a
multipotent cytokine with antiviral, proinflammatory, and
immunomodulatory functions (77–79).

Recently, the role of IFN-g in the prediction of the efficacy of
immunotherapy was evaluated. A phase II clinical trial (49) of
MM patients treated with nivolumab indicated that serum IFN
levels in patients with responders (CR/PR were significantly
higher than those in non-responders (PD) (P<0.0001). And a
study reported increased levels of IFN-g after 3 months of anti-
PD-1 inhibitors treatment in 26 NSCLC patients was correlated
with improved response and prolonged survival(P=0.002) (21).
Another study of NSCLC patients who received ICIs showed low
baseline IFN-g level (<10 IU/ml)and decreased IFN-g level after
ICI treatment was associated with progression disease and
immunotherapy-induced pneumonitis (50). Above all,
increased levels of IFN-g may acted as a positive biomarker for
ICI therapy response. In fact, IFN-gmodulated the tumor micro-
environment of ICI therapy (80). Damage of IFN-g stimulus
response is correlated with both primary and acquired resistance
to ICI therapy (81, 82). In a mouse model, the ability of IFN-g
production by peripheral blood lymphocyte was significantly was
a potent biomarker for survival of double PD-1/CTLA-4
blockade (51). However, Costantini et al. reported no
correlation between baseline or variation IFN-g level with 43
advanced NSCLC patients treated with nivolumab (52).

In addition, several clinical studies have shown that IFN-g
gene signature is related to prognosis. Brandon et al. showed that
in advanced NSCLC, patients with four genetic IFN-g+ signatures
(interferon g, CD274, LAG3, and CXCL9) had longer median OS
(18.1-22.7m vs 6.5-7.7m) and six-fold higher objective remission
rate (ORR) regardless of the immunohistochemical (IHC) PD-L1
status (83). In Keynote-012 clinical trial (84, 85), the average
levels of six interferon-gamma-related genes (CXCL9, CXCL10,
IDO1, IFNG, HLA-DRA, and STAT1) were associated with OS
(p=0.0047) and PFS (p=0.0009) in patients with head and neck
squamous cell carcinoma and gastric cancer treated with
pembrolizumab. Moreover, the results of a phase II
randomized controlled trial (86) showed high levels of the
expression of IFN-g-associated genes had longer survival in
patients treated with atezolizumab. Thus, high expression of
IFN-g gene may predict a good prognosis of ICIs.

The potential mechanism of the relationship between IFN-g
and the response to ICIs has been demonstrated. ICIs promote
the production of IFN-g; then, IFN-g increases tumor
immunogenicity, inhibits tumor cell proliferation, and enhances
the cytotoxic function of NK cells and CTL (87–90). Additionally,
IFN-g induces the secretion of CXCL9 and CXCL10 chemokines
that recruit additional tumor-reactive T cells (83, 90). Moreover,
IFN-g released by T cells stimulates neighboring dendritic cells
(DCs) to produce IL-12, which in turn promotes the production of
IFN-g and forms a positive feedback loop (91). Moreover, IFN-g
induces the expression of inhibitory receptor LAG3 (lymphocyte-
activation gene 3), which mainly expressed on dysfunctional or
Frontiers in Immunology | www.frontiersin.org 4
depleted T cells and induces immunosuppression. Regulatory T
cells (Tregs) are a functional subset of suppressor T cells that
suppress anti-tumor immunity. IFN-g produced by Nrp1-deficient
(Nrp1-/-) Tregs decreases the stability of surrounding wild-type
Tregs and enhances anti-tumor immunity (92) (Figure 1).
IL-6

Interleukin-6 (IL-6) is produced by fibroblasts, monocytes/
macrophages, T lymphocytes, B lymphocytes, epithelial cells,
and a variety of tumor cells (93, 94). IL-6 is involved in cell
survival, growth, immune regulation, and inflammation via the
JAK/STAT signaling pathway (95). Moreover, IL-6 signaling
plays a key role in carcinogenesis, inhibition of antitumor
immunity, and promotion of tumor transmission in tumor
environment (96–100). An increase in IL-6 is detected earlier
than that in other cytokines and lasts for a long time during
inflammatory reactions. Therefore, IL-6 can be used in early
diagnosis of acute infection to evaluate the severity of an
infection and prognosis. Drugs targeting IL-6, IL-6 receptors,
or JAK have been approved by the FDA for the treatment of
multicentric Casterman disease (siltuximab), arthritis
(tocilizumab), and CART-induced CRS.

Several studies demonstrated associations between baseline
IL-6 level and ICI response. Yamazaki et al. showed the IL-6 level
pretreatment in responders (CR/PR) was remarkably higher than
those in non-responders (PD) in 35 advanced MM patients
treated with nivolumab (P=0.0007) (49). However, a study by
Hardy-Werbin et al. reported the baseline IL-6 level lower than
cut-off (3.65pg/ml) was significantly associated with higher OS
compared with those with lower level (18.5m vs 9.5m) in patients
treated with ipilimumab and chemotherapy (P=0.026) (53). And
another study showed a similar result in which higher baseline
IL-6 levels was associated with shorter survival (54). Overall,
baseline IL-6 level was a strong prognostic marker of ICI
treatment. In view of the limitations of small number patients
and different types of ICI, the relationship between them needed
further prospective clinical exploration. Furthermore,
association between changes of IL-6 were also studied. Ozawa
et al. (45) investigated the early changes in the cytokines (0-7
days before the treatment and after the treatment) with response
in NSCLC patients treated with nivolumab. The response rate in
patients with elevated IL-6 or CRP was 46%, which was
significantly higher than that in patients with no increase (0%).
A study by Tsuka-moto et al. reported that increased IL-6 levels
were associated with tumor progression in melanoma patients
treated with nivolumab (55). These findings suggest that
increased level of IL-6 was a negative biomarker of prognosis
with ICI treatment. Notably, combined anti-IL-6 and ICI
treatment showed synergistic anti-tumor activity and improved
prognosis, which helps to confirm the negative role of IL-6 in
immunotherapy (55, 101, 102). And studies reported that IL-6
induced production of myeloid-derived suppressor cells
(MDSCs) and resulted in immunosuppressive, which may
explain the above phenomenon (103).
July 2021 | Volume 12 | Article 670391
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Associations of IL-6 with irAEs were also been studied
extensively. Two studies reported increased level of IL-6 after
nivolumab treatment was associated with psoriasiform
dermatitis in patients with malanoma (40, 62). Tanaka et al.
reported increased level of IL-6 was associated with higher
incidence of psoriasis (p=0.018) in melanoma patients treated
with nivolumab (40). SAEs rate in NSCLC patients treated with
PD-1 inhibitors was 43% vs 0% in the group with increased IL-6
level compared to the normal IL-6 level group (45). Notably, a
case report by Yoshino et al. showed decreased level of IL-6 and
CRP accompanied with the clinical remission of colitis after
corticosteroid treatment (104). In summary, the increased IL-6
Frontiers in Immunology | www.frontiersin.org 5
level after ICIs treatment was an efficient biomarker for irAEs.
Additionally, low baseline IL-6 level may use as a predictor for
irAEs. Chaput et al. reported low baseline IL-6, IL-8, and sCD25
was associated with colitis related to ipilimumab treatment in
melanoma patients (63). And another study by Valpione et al.
showed low baseline IL-6 level act as independent predicted
factor for irAEs (P=0.007) (64). In summary, high baseline level
of IL-6 was a risk marker for irAEs, but the cut-off of high level
needed further definition by more clinical trials. The elevation of
IL-6 after ICI application may indicate the immune-sensitive
individuals and play a predictive role before the occurrence
of irAEs.
FIGURE 1 | Potential mechanisms of IFN-g predicting the prognosis of ICIs. The production of IFN-g induces the increase of chemokine CXCL9 and CXCL10, which
recruits more tumor reactive T cells and increased the level of IFN-g. IFN-g released by T cells stimulates neighboring dendritic cells (DCs) to produce IL-12, which in
turn promotes the production of IFN-g and forms a positive feedback loop. IFN- g induces LAG3 which mainly express on dysfunctional or depleted T cells and
induce immunosuppression. The fragility of Treg driven by IFN-g produced by intratumoral Nrp1-/- treg limits the activity of CD4+Treg cells.
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Interestingly, the association of irAEs and response was
investigated by several studies (105–108). ORR in NSCLC
patients with irAEs was reported higher than that in patients
without irAEs (63.6% versus 7.4%, p <0.01) (109). Another study
showed that patients with AE after nivolumab treatment had
better ORR (37% versus 17%, p=0.17) and longer median PFS
(6.4 versus 1.5 months, p=0.01) than those with no irAEs (108).
The mechanism of associations of irAEs with response are
unclear and need further investigation. Similar to cytokine
release syndrome (CRS) after adoptive T cell therapy, ICIs may
lead to hyper-physiological levels of proinflammatory cytokines,
especially IL-6, resulting in irAEs.
IL-8

Inter leukin-8 (IL-8) , a l so known as CXCL8, i s a
proinflammatory chemokine whose function was mediated by
binding to two cell-surface G protein coupled receptors, termed
CXCR1 and CXCR2 (110, 111). lL-8 was produced by immune
cells (including macrophages, neutrophils and T cells) and non-
immune cells (including epithelial and endothelial cells) (112,
113). IL-8 is identified as a neutrophil-activating cytokine and
stimulated by hypoxia/anoxia, death receptors (Fas, DR5), and a
variety of cellular stresses (114). Literatures reported IL-8
expression was higher in various tumor than healthy tissues
(115). In addition, IL-8-CXCR1/2 pathway play an important
role in tumor progression and metastasis (116), and activating
proliferation of endothelial cells in tumor vasculature and
induced vascular building was mainly mechanism (117).

Boutsikou et al. reported that increased level of IL-8 (3
months after immunotherapy) was correlated with prolonged
OS (P=0.015) in 26 NSCLC patients treated with first or second
line anti-PD-1 (nivolumab or pembrolizumab) (21). With
controversial result, A study showed the increased level of IL-8
(2 months after immunotherapy) was associated with poor OS
(P=0.025) (56). Sanmamed et al. analyzed early increased IL-8
level(2-4 weeks after anti-PD-1) was associated with lower
response rate in patients with MM (P<0.001) and NSCLC
(P=0.001) with high sensitivity and specificity (57).
Significantly, IL-8 level maintains a level below the baseline
when tumor with pseudo-progression, but progressively
increased when tumor with a real progression. These findings
consist with the conclusion that IL-8 level reflect the tumor
burden (118).

The relationship between baseline IL-8 levels have also been
discussed. Higher baseline levels of IL-8 were associated with
poor OS in SCLC patients whatever treated with chemotherapy
alone (n=47) or chemotherapy plus ipilimumab (n=37). In
ipilimumab cohort, patients with high level of IL-8 (≥13.82pg/
mL) had a worse median OS (5.3m vs 17m) (53). In the study by
Yuen et al. demonstrated that high baseline levels of IL-8 were
correlated with poor efficiency by evaluating 1445 patients in
metastatic urothelial carcinoma (mUC) and metastatic renal cell
carcinoma (mRCC) from three large atezolizumab trails (58).
Similar results were acted by assessing 1344 patients (NSCLC
Frontiers in Immunology | www.frontiersin.org 6
and RCC) treated with nivolumab or nivolumab plus ipilimumab
and determined cut-off (23pg/mL) may guide clinical application
of ICIs (59). High baseline and early increased IL-8 levels may act
as a strong negative biomarker for ICI therapy.
TGF-b

Transforming growth factor-b (TGF-b) induces transformation
and growth of certain fibroblasts in combination with epidermal
growth factor (EGF) (119). In addition to TGF-b, the TGF-b
superfamily includes activin, inhibin, bone morphogenetic
protein (BMP), and growth and differentiation factor (GDF).
Cells with active differentiation often contain high levels of
TGF-b, including osteoblasts, kidney, bone marrow, and fetal
liver hematopoietic cells. Activated T cells, B cells, and numerous
types of tumor cells can secrete TGF-b. TGF-b receptors
(TGF-bR), including types I, II, and III, are involved in signal
transduction. Typical TGF-b signal transduction includes TGF-b
binding to TGF-bRII, which recruits and phosphorylates TGF-
bRI. Then, these receptors phosphorylate smad2, smad3, and
smad4 to induce gene transcription and expression (120, 121).
TGF-b signal can be transduced by the MAPK, PI3K, and Rho-
GTP pathways (122, 123). The TGF-b pathway plays an
important role in the regulation of cell proliferation, growth,
differentiation, apoptosis, and autoimmunity (124). Due to the
diversity of TGF-b functions, dysfunctions of the TGF-b signal
transduction are associated with many diseases, including
systemic sclerosis, fibrosis, hereditary diseases, and cancer
(125–129).

TGF-b has been shown to be associated with ICI response. A
prospective phase II study showed mean TGF-b levels was
higher in non-responders than responders (1071.8 pg/mL vs
141.9 pg/mL) in 24 patients with advanced liver cancer treated
with pembrolizumab. And TGF-b≥200pg/mL was assigned as a
poor indicator of response with pembrolizumab (60). The
median PFS in patients with TGF-b levels <200 pg/mL
compared with TGF-b level ≥200 pg/mL was 2 months
versus >25 months. Mariathasan et al. reported increased
TGF-b ligand1 (TGF-b1) and TGF-b receptor2 (TGF-bR2)
levels was correlated with non-response (P=0.00011) and OS
(P=0.0096) in patients with metastatic urothelial cancer (MUC)
treated with atezolizumab (61). To sum up, increased TGF-b
level acted as a negative biomarker of response of ICIs treatment.
In general, TGF-b plays an inhibitory role in normal cells and
early cancer cells, including cell cycle arrest and apoptosis (122).
However, in advanced cancer, TGF-b can be used as a cancer-
promoting factor to enhance tumorigenesis, including
immunosuppression, tumor metastasis, and drug resistance
(128, 129). Several studies have shown that the abnormal TGF-
b signaling pathway may affect immune regulation, including
antigen presentation, differentiation of CD4 Th1 cells,
infiltration and proliferation of CD8+ T cells, and production
of long-term memory T cells (130–134). These effects may result
in low response and poor prognosis of ICT.
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A combination of anti-PD-L1 and TGF-b antibody was
studied to determine the negative effects of TGF-b on ICT in
several studies. In a mouse model of urothelial cancer (UC) (61),
combined application of anti-PD-L1 and TGF-b antibody
reduced TGF-b signal transduction in stromal cells and
promoted T cell into the tumor. An increased number of
infiltrating CD8+ T cells resulted in tumor suppression. In
addition, ICI monotherapy produce unsatisfactory results in
phase II and III trials (135, 136). However, Jiao et al. (137)
demonstrated that anti-CTLA-4 combined with anti-TGF-b
therapy enhances the response to ICI therapy in a bone
metastasis model of CRPC. Similarly, ICI combined with TGF-
b antibody resulted in improved prognosis compared to that in
ICI monotherapy in the experiments (22, 138). Interestingly, Lan
et al. (139) designed a novel bifunctional drug M7824 which
composed of PD-L1 monoclonal antibody and the extracellular
domain of human TGF-bRII. M7824 is anti-PD-L1 and promote
the activation of CD8+T cells and NK cells resulting in a higher
OS and PFS (139, 140).
OTHER IL FAMILY MEMBERS

The relationships between IL family members, including IL-1b,
IL-2, IL-4 and IL-10, and ICT response were evaluated in a
number of studies. Boutsikou et al. assayed cytokines by flow
cytometry in patients with NSCLC receiving pembrolizumab or
nivolumab before treatment and 3 months after the treatment.
The results showed that an increase in the levels of IL-1b
(p=0.038), IL-2 (p=0.011), IL-4 (p=0.018), IL-6 (p=0.014),
IFN-g (p=0.00), and TNF-a (p=0.006) was associated with
increased response rate (RR) (21). In another study, 65
cytokines were profiled in patients with unresectable stage III
or IV melanoma treated with anti-PD-1 monotherapy (cohort 1)
or anti-PD-1 plus anti-CTLA-4 (cohort 2). The results showed
that the expression levels of IL-2 (p=0.041) in cohort 1 and
TNF-a (p=0.0189) in cohort 2 were associated with OS (22).
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Additionally, several studied validated that high baseline levels of
IL-2 and IL-4 are correlated with higher OS (53, 57). Studies
summary is in Table 3. Increased cytokines mentioned after ICT
related to better response and OS. Generally elevated levels of
cytokines may reveal extensive immune activity, therefore,
predicting good prognosis. Moreover, depletion of TILs is one
of the possibly reason for patients with ICIs ineffectiveness (142).
A study reported that IL-10–Fc enhanced immunotherapies by
accelerating oxidative phosphorylation (OXPHOS) to reactive T
cells and directly expand terminally exhausted CD8+ TILs (143).
And in microsatellite stable (MSS) colorectal cancer (CRC)
mouse models, IL-17A blocking combined with ICIs showed
improved efficiency (144).

The associations of the levels of IL and irAEs were also
investigated. Tarhini et al. demonstrated that elevated baseline
IL-17 levels were significantly associated with high risk of grade 3
diarrhea or colitis (p=0.02) in patients with advanced melanoma
receiving neoadjuvant ipilimumab therapy (145). In another
study, increased 11 cytokines (G-CSF, GM-CSF, fractalkine,
FGF-2, IFNa2, IL-12p70, IL-1a, IL-1b, IL-1RA, IL-2, and IL-
13) were all associated with severe toxicity and they integrated a
CYTOX (cytokine toxicity) score which with AUC 0.68 at PRE
(95% CI, 0.51-0.84, p=0.037) and 0.70 at EDT (95% CI, 0.55-
0.85, p=0.017) (141). Additionally, a study reported that
decreased IL-10 level in patients after anti-CTLA-4 treatment
was associated with pancreatitis and uveitis, but the level of
IFN-g was not associated with irAEs (146). Table 4 lists these
studies. To sum up, these studies demonstrated lower baseline
and increased levels of extensively cytokines after ICI treatment
were associated with irAEs.
CONCLUSION

Low efficiency and high irAEs occurrence urgently require
biomarkers to identify patients that benefit from the immune
checkpoint inhibitors therapy. Cytokines produced by immune
TABLE 3 | Clinical studies of the association of ICT response with other cytokines.

Authors N= Tumors Immunotherapy Cytokines

Boutsikou 2018 (21) 26 NSCLC nivolumab/pembrolizumab IL-1b, IL-2, IL-4, IL-6, IL-8, IFN-g, TNF-a
Lim 2019 (141) 147 M PD-1+CTLA-4 IL-2, IL-8, TNF-a
Hardy-Werbin 2019 (53) 84 SCLC chemotherapy plus ipilimumab IL-2, TNF-a, IL-8, IL-4
NSCLC, non-small-cell lung cancer; M, melanoma; SCLC, small-cell lung cancer; IL, interleukin; IFN, interferon; TNF, tumor necrosis factor; PD-1, programmed cell death protein 1;
CTLA-4, cytotoxic T-lymphocyte antigen 4.
TABLE 4 | Clinical studies of the association of ICT irAEs with other cytokines.

Authors N= Tumors Immunotherapy Cytokines

Tarhini 2015 (145) 147 M PD-1+CTLA-4 CYTOX score(G-CSF,GM-CSF,Fractalkine,FGF-2,IFNa2, IL-12p70, IL-1a, IL-1b, IL-1RA, IL-2, IL-13)
Lim 2019 (141) 65 no limit PD-1/PD-L1/CTLA-4 CXCL9, CXCL10, CXCL11, CXCL19
Sun 2008 (146) 16 bladder cancer CTLA-4 IL-10
M, melanoma; G-CSF, granulocyte colony-stimulating Factor; GM-CSF, granulocyte-macrophage colony-stimulating factor; FGF, fibroblast growth factor; IL, interleukin; CXCL, C-X-C
motif chemokine ligand; PD-1, programmed cell death protein 1; PD-L1, programmed cell death ligand 1; CTLA-4, cytotoxic T-lymphocyte antigen 4.
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cells and tumor cells in the tumor microenvironment may acted as
a suitable candidate biomarker due to its no-invasive obtaining, easy
for dynamic monitoring and cost-effective. The investigations of
TNF-a, IFN-g, IL-6, IL-8, TGF-b and other cytokines as predictors
of the responses and adverse events of ICT produced encouraging
results. Increased level of IFN-g and IFN-g pathway genes always
acted as positive biomarkers for response and irAEs, while high
baseline and increased level of IL-8, increased level of IL-6 and
TGF-b was negative biomarkers. TNF-awas generally regarded as
an negative biomarker, but its predictive function is needed further
exploration. Negative cytokines in the tumor microenvironment
induce immunosuppression and even adverse reactions in ICT by
regulating T cells, B cells, and related immune checkpoints. Thus,
the combinations of cytokine drugs and ICIs improved prognosis
and resulted in a number of ongoing clinical trials. However, it is
unlikely a single cytokine will be sufficient to predict
immunotherapy response and irAEs for the complexity of TME
and interaction between cytokines. In future, development of
multifactorial synergistic predictive markers is necessary to
achieve individualized treatment and minimize adverse reactions.
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