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Enhancement of the Device 
Performance and the Stability 
with a Homojunction-structured 
Tungsten Indium Zinc Oxide Thin 
Film Transistor
Hyun-Woo Park1,2, Aeran Song1, Dukhyun Choi2, Hyung-Jun Kim3, Jang-Yeon Kwon3 & Kwun-
Bum Chung1

Tungsten-indium-zinc-oxide thin-film transistors (WIZO-TFTs) were fabricated using a radio frequency 
(RF) co-sputtering system with two types of source/drain (S/D)-electrode material of conducting WIZO 
(homojunction structure) and the indium-tin oxide (ITO) (heterojunction structure) on the same WIZO 
active-channel layer. The electrical properties of the WIZO layers used in the S/D electrode and the 
active-channel layer were adjusted through oxygen partial pressure during the deposition process. To 
explain enhancements of the device performance and stability of the homojunction-structured WIZO-
TFT, a systematic investigation of correlation between device performance and physical properties at 
the interface between the active layer and the S/D electrodes such as the contact resistance, surface/
interfacial roughness, interfacial-trap density, and interfacial energy-level alignments was conducted. 
The homojunction-structured WIZO-TFT exhibited a lower contact resistance, smaller interfacial-trap 
density, and flatter interfacial roughness than the WIZO-TFT with the heterojunction structure. The 
0.09 eV electron barrier of the homojunction-structured WIZO-TFT is lower than the 0.21 eV value 
that was obtained for the heterojunction-structured WIZO-TFT. This reduced electron barrier may 
be attributed to enhancements of device performance and stability, that are related to the carrier 
transport.

Amorphous-oxide semiconductor thin-film transistors (AOS-TFTs) have attracted much attention as the 
next-generation transparent and flexible/wearable electronics such as flat-panel displays1, 2, sensors3, smart 
windows4, and photovoltaic cells5, 6 because of superior effective mobility that is more than 10 cm2/Vs, a high 
transparency in the visible-light region that is more than 80%, and a low process temperature that provides per-
formance superior to conventional amorphous silicon TFTs. In addition, they are also a lower-cost process, and 
offer better electrical uniformity than polysilicon TFTs because of their amorphous structure7–9. Despite vari-
ous advantages of oxide semiconductors, an understanding of the interfacial state between the oxide-channel 
layer and the adjacent layers is necessary to design and realize high-performance TFT devices due to the stacked 
structure of actual TFT devices. Especially, one of the essential issues is that it is difficult to form sound electrical 
contacts between an oxide-semiconductor layer and source/drain (S/D) electrodes; to overcome this issue, a 
decreased S/D electrode resistivity is typically required. Accordingly, low-resistivity materials such as Mo10, Cu11, 
Al11, Au/Ti12, Pt/Ti13, indium tin oxide (ITO)14, and indium zinc oxide (IZO)12 are suitable for the S/D electrode. 
In addition, contact resistance between the semiconductor and the S/D electrode are other considerable factors 
for determination of a material and a process for electrodes. High-contact resistance may induce the current 
crowding at the output characteristics, and finally, the signal delay is increased even though the electrode-material 
resistivity is sufficiently low. Recently, several researchers have reported improvement methods regarding contact 
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resistance between the semiconductor and the S/D electrode that include thermal annealing15, UV irradiation16; 
Ar-, He-, and H2-plasma treatment, and other treatments17–19. Unfortunately, these processes are complicated, 
and in particular, plasma treatment produces collision damage while hydrogen is diffused to the semiconductor 
layer, and both effects may adversely impact the electrical characteristic of TFT devices.

Since the oxide semiconductor can be used to adjust electrical characteristics according to oxygen partial pres-
sure during the deposition process, the electrode layer as well as the semiconductor layer can be formed as one 
material through controlling of the oxygen partial pressure. More specifically, it has been reported that increasing 
of the oxygen partial pressure as an active channel layer during the oxide-semiconductor deposition shifts the 
electronic-transport behavior of the film from conductor-like to semiconductor-like20–22. Based on this result, it 
is possible to fabricate a homojunction-structured TFT device with low-contact resistance that is composed of 
one material by using a conducting layer as the electrodes and a semiconducting layer as the active channel layer.

Our previous study provided detailed results on the correlation between device performance and electronic 
structure of tungsten doped InZnO TFTs with respect to tungsten-doping concentration. In addition, we also 
suggested WIZO semiconductor material as a suitable active layer to solve the problem of bias instability because 
of the W element as excellent carrier suppressor, caused by its high oxygen bond dissociation energy. In this study, 
we provide a facile method to enhance device performance and stability of a WIZO thin film transistor using a 
homojunction structure with systemically analysis results in terms of the electronic structure, including aspects 
such as the contact resistance, surface/interfacial roughness, band-edge state below the conduction-band, refrac-
tive index, and energy level alignments.

Experimental procedure
Fabrication of the WIZO-TFTs with the homojunction and heterojunction structures.  To fab-
ricate the homojunction- and heterojunction-structured WIZO-TFT devices, a heavily doped p-type silicon 
(p++-Si) wafer with a resistivity from 0.001 Ω·cm to 0.005 Ω·cm was used as the back-gate electrode, and a 
100-nm-thick SiO2 layer that served as gate dielectrics was thermally grown on the Si substrate for the creation 
of an inverted staggered-bottom-gate type with a top contact. Then, the WIZO active-channel layer was depos-
ited with the use of a co-sputtering of WO3 and InZnO (1:1 at. %) as the sputtering target in a radio frequency 
(RF) sputtering system without substrate heating. eTo minimize variability of process conditions and contami-
nation on the target surface, film deposition was started after a pre-clean sputtering of the target for 15 minutes. 
RF-power values of the WO3 and the InZnO target for established optimum concentration of the tungsten dop-
ing from a previous study were fixed at 10 W and 150 W, respectively, and the WIZO active-layer thickness is 
10 nm23. Process pressure and relative oxygen-flow rate were set as 5 mTorr and the O2/(Ar + O2) ratio was 0.05, 
respectively. During the WIZO-film deposition, the active-layer region was defined using a shadow mask. Next, 
two types of 100-nm-thick S/D electrode were formed on the same WIZO active layer with repeated use of the 

Figure 1.  (a) Transfer, hysteresis, saturation mobility and (b) output characteristics of the WIZO-TFTs 
according to the S/D electrode materials, the conducting WIZO, and the indium-tin oxide (ITO) layer. (c) 
Shift of threshold voltage under positive and negative bias stress of WIZO TFTs according to the S/D electrode 
materials.
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shadow mask. First, the conducting WIZO S/D electrode was deposited with the same RF sputtering system 
as WIZO active layer without substrate heating. The only difference of conducting WIZO S/D electrode is the 
without oxygen gas provided during the deposition process. Also, to optimize deposition conditions of the con-
ducting WIZO S/D electrode, tungsten-doping concentration were controlled from 0% to 8% through variation 
of the input RF power of the WO3 target from 5 W to 20 W while fixing that of the InZnO target at 150 W. Second, 
the ITO S/D electrode was deposited with the use of InSnO (9:1 at. %) as the sputtering target and the RF power, 
process pressure and the relative oxygen-flow rate during the deposition process were set as 100 W, 5 mTorr and 
0%, respectively.

Structures of the fabricated homojunction (WIZO active layer-WIZO S/D electrode)- and heterojunction 
(WIZO active layer-ITO S/D electrode)-structured WIZO-TFTs are of the staggered-bottom-gate type, and the 
channel length (L) and the width (W) are 800 μm and 200 μm, respectively. Last, all WIZO-TFTs were annealed 
at 250 °C for one hour under an air atmosphere using a furnace system.

Electrical and physical measurements.  To optimize electrical resistivity of conducting WIZO S/D 
electrode as a function of the tungsten-doping concentration, Hall-effect measurements were conducted using 
van der Pauw configuration with the permanent magnet of 0.55 Tesla at room temperature. Transfer character-
istics and hysteresis behavior of WIZO-TFT devices with two types of S/D electrode were measured at room 
temperature using the Keithley SCS-4200 semiconductor-parameter analyzer. During electrical measurements, 
drain-to-source voltage (VDS) was fixed at 10.1 V and the drain-to-source current (IDS) was measured through 
sweeping of the gate-to-source voltage (VGS) from −20 V to 20 V. To examine electrical contact between the S/D 
electrode and the WIZO active layer, the well-known transmission line method (TLM) was conducted. Changes 
of film density and surface/interfacial roughness between the S/D electrode and the WIZO active layer accord-
ing to the different S/D electrodes were examined using atomic force microscopy (AFM) and X-ray reflectivity 
(XRR). Especially, the XRR experiment was conducted at the 10D beamline in the Pohang Accelerator Laboratory 
(PAL) in the Korea, and obtained XRR data were fitted using X’Pert Reflectivity software.

Electronic-structure measurements and energy-level alignments.  Electronic structures that are 
related to changes of the band-edge state below the conduction band and energy-level alignments were inves-
tigated using X-ray photoelectron spectroscopy (XPS), Kelvin probe force microscopy (KPFM), and spectro-
scopic ellipsometry (SE). In particular, SE measurement was conducted using a rotating analyzer system with an 
auto-retarder in the energy range from 0.74 eV to 6.4 eV, with the incident angles of 65°, 70°, and 75°. In addi-
tion, change of the interfacial states depending on the device structure was examined by Transmission Electron 
Microscopy (TEM) analysis.

Results and Discussion
It has been reported that electrical and optical properties of the WIZO films are crucially affected by oxygen 
partial pressure during the sputtering-deposition process20, 21, as shown in S1 (Supplementary Information). To 

W4f

Chemical composition (at. %)

In3d Zn2p Sn3d O1s

ITO — 53.1 — 5.3 41.6

Conducting WIZO 0.6 25.7 22.9 — 50.8

Semiconducting WIZO 0.4 24.8 19.8 — 55.1

Table 1.  Chemical compositions of the ITO, conduction WIZO, and semiconducting WIZO layers.

Figure 2.  Electrical characterization of the WIZO-TFTs with different S/D electrodes. (a) Total resistance 
plotted against the channel length, allowing for extraction of contact resistance by the transmission line method 
(TLM). (b) Contact resistance plotted as a function of the gate voltage.
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consider structural effects and chemical composition of WIZO films as a function of oxygen partial pressure 
during the deposition process, XRD and XPS were investigated as shown in S2 (Supplementary Information) and 
Table 1. Preferred orientations and their qualitative comparison are comparable, because all XRD spectra were 
measured by theta–2theta X-ray diffractometer and normalized by Si (400) from Si (100) substrate. Regardless of 
oxygen pressure during the deposition process, the diffraction pattern of WIZO films represent typical polycrys-
talline structure with diffraction peaks of ZnO (002), ZnO (102), ZnO (110), and In2O3 (440) except for peaks 
of Si substrate. These indicate that the WIZO films have polycrystalline and different oxygen pressure during the 
deposition process shows no effects on modification of the physical structure. However, chemical composition 
of the oxygen atom bounded to metal (W, In, Zn) of the conducting WIZO is reduced compared to semicon-
ducting WIZO, which can generate free electrons related to oxygen deficient states. Based on this result, it is 
possible to fabricate a homojunction-structured TFT device that comprises a low contact resistance and is com-
posed of one material. Since electrical properties of the WIZO layer were sensitively changed by tungsten-doping 
concentration as well as oxygen partial pressure24, electrical properties of the conducting WIZO-electrode layer 
were systematically optimized according to tungsten-doping concentration with the use of two procedures, as 
shown in S3 (Supplementary Information). First, electrical properties of conducting WIZO films as a function 
of tungsten-doping concentration were investigated using the Hall-effect measurement at room temperature. 
As the tungsten-doping doping concentration increased from 0% to 8%, carrier concentrations of the WIZO 
film gradually decreased from 5.2 × 1020/cm3 to 1.72 × 1019/cm3. However, as the tungsten-doping concentration 
increased from 0 to 4%, the hall mobility of WIZO film increased from 3.76 cm2/Vs to 12.9 cm2/Vs. Conversely, 
at tungsten-doping concentrations more than 4%, hall mobility of WIZO film significantly decreased to 0.03 cm2/
Vs. Here, the decrement of carrier concentration is strongly associated with a decrement of the oxygen deficiency 
state caused by increase of doping concentration of tungsten with high oxygen bond dissociation energy. In 
addition, the parabolic trend of hall mobility with increasing tungsten doping concentration is resulted from the 
changes of electronic structure by incorporation of excess tungsten atoms, provided in the previous study23. At 
the same time, the conducting WIZO layer according to tungsten-doping concentration was formed as the S/D 
electrode layer on the optimized WIZO active-channel layer for evaluation of electrical characteristics of the TFT 
device. Both results reveal optimized electrical properties at tungsten-doping concentration of 4%; additionally, 
with the increasing of tungsten-doping concentration until −8%, resistivity of WIZO films and device perfor-
mance of the WIZO-TFTs were degraded. Interestingly, the exhibited resistivity of the optimized tungsten-doped 
WIZO film is slightly lower than that of ITO film with values of 1.1 × 10−3 Ω·cm, and 3.5 × 10−3 Ω·cm. The 

Vth [V]

ΔVth, 

hysteresis 
[V]

μsat 
[cm2/
Vs]

S.S. [V/
decade] ION/IOFF

Homojunction-structured WIZO-TFT −3.35 0.07 26.10 0.38 7.39 × 106

Heterojunction-structured WIZO-TFT −2.80 0.32 21.02 0.44 6.42 × 106

Table 2.  Device parameters of the WIZO-TFT, including the Vth, μsat, S.S., and the on/off current ratio 
according to the different S/D electrodes.

Figure 3.  Physical properties of the WIZO film with the homojunction and the heterojunction. (a) Surface and 
interfacial roughness extracted from the XRR spectra. (b) Surface roughness of the WIZO and ITO films.

http://S2
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homojunction-structured WIZO-TFT device reveals a small hysteresis-derived threshold-voltage shift compared 
with the heterojunction-structured WIZO-TFT device. Detailed explanation of the origin are subsequently pro-
vided for enhanced device performance and stability of the optimized homojunction-structured WIZO-TFT 
from comparison with the heterojunction-structured WIZO-TFT.

Figure 1(a) and (b) show the representative transfer, hysteresis, saturation mobility and output characteristics 
of WIZO-TFTs according to different S/D electrodes. Hysteresis behavior obviously reveals that the clockwise 
hysteresis is positively related to the S/D electrode, as shown in Fig. 1(a). The hysteresis-derived threshold-voltage 
shift (ΔVth) in the homojunction-structured WIZO-TFT is insignificant at 0.07 V, whereas the shift of 0.32 V is 
significant in the heterojunction-structured WIZO-TFT. Generally, the hysteresis characteristic is related to trap 
densities at the semiconductor and/or the interfacial region between the semiconductor and the gate insulator, 
dramatically enhanced in the homojunction-structured WIZO-TFT. This means that trap densities of the sem-
iconductor and/or the interfacial region are affected by S/D electrode materials. The homojunction-structured 
WIZO-TFT exhibited enhanced device performance with saturation mobility (μsat) and subthreshold gate-swing 
(S.S.) value, as well as excellent hysteresis behavior, compared with the heterojunction-structured WIZO-TFT. 
The detailed device parameters are summarized in Table 2. The bias instability of WIZO TFTs according to the 
two types of electrode was investigated under bias stress condition, with a negative and positive gate bias of −20 
V and 20 V for 3600 s, as shown in Fig. 1(c). As the stress time passed, the Vth of the heterojunction-structured 
WIZO-TFT shifts by −0.91 V and 12.3 V, while that in the homojunction-structured WIZO-TFT exhibited only 
−0.71 V and 4.02 V shift in Vth. These indicate that the type of electrode affects device stability.

This enhancement of device performance may be attributed to lower contact resistance between the WIZO 
active-channel layer and conducting WIZO electrodes. Normally, contact resistance can be extracted by the TLM 
according to the following equation25:

·= +R RC r L2 , (1)T ch eff

of which RT is total resistance, RC is contact resistance, rch is semiconductor-channel resistance, and Leff is 
effective-channel length. As shown in the equation, total resistance that is composed of contact and channel 
resistances was extracted from current-voltage curves at the WIZO-TFT device with various channel lengths (75 
μm, 150 μm, and 300 μm). Here, the rch is a constant value because the homojunction-structured WIZO-TFT 
and the heterojunction-structured WIZO-TFT were fabricated on the same WIZO active layer; therefore, an 
RT change according to a different S/D electrode means a change of the RC. Figure 2(a) shows the RT versus 
the channel-length plot as a function of the gate voltage. To extract RC values, we conducted linear fitting and 
intercept values of the y-axis when values of x-axis are zero as a function of the gate voltage was obtained as RC. 
Exhibited RC of the WIZO-WIZO contact is lower than that of the WIZO-ITO contact as a function of the gate 
voltage, as shown in Fig. 2(b), thereby leading to transfer-characteristic differences. A low contact resistance of 
the homojunction-structured WIZO-TFT may be attributed to the ideal contact structure with identical oxide 
materials and absence of an interfacial layer.

Figure 4.  The three types of the absorption-coefficient spectra of the WIZO active layers such as the single 
WIZO layer and the WIZO layer affected by the homojunction and the heterojunction (left). Optical model for 
the extraction of the absorption-coefficient spectra (middle). Cross section images of the WIZO TFT according 
to the device structure (right).
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Figure 3(a) shows that measured XRR spectra and fitting results are in sound agreement, thereby validat-
ing the extracted XRR parameters. These oscillations are representations of interference of light reflected from 
various interfaces such as the air–S/D electrode, the S/D electrode–semiconductor active, the semiconductor 
active–insulator, and the insulator–substrate interface. Especially, to collect information on the interfacial layer 
according to different S/D electrode materials, the interfacial layer located between the S/D electrode and the 
WIZO active layer serves as the focus. First, film density, thickness, and roughness were analyzed for each sin-
gle layer of the semiconducting WIZO layer, the conducting WIZO layer, and the ITO layer using the XRR 
analysis, as shown in S4 (Supplementary Information). Then, interfacial information of the multi-layer struc-
ture was obtained for the homojunction (WIZO-WIZO) and the heterojunction (WIZO-ITO) based on phys-
ical parameters extracted from each single layer. For the heterojunction, the surface- and interface-roughness 
values are 1.97 nm and 0.39 nm, respectively. Surface- and interface-roughness values of the homojunction of 
0.43 nm and 0.17 nm, respectively, however, are more flat compared with the heterojunction. Results indicate 
that rough-interface correlation can interfere with electron transport that could be a plausible origin of degraded 
field-effect mobility of the heterojunction-structured WIZO-TFT. In addition, the surface roughness obtained by 
AFM analysis, revealed a similar tendency with XRR results, as shown in Fig. 3(b).

The oxide semiconductor-active layer in which a channel is formed most significantly affects device per-
formances of the oxide-TFT device. Also, since the stacked structure of the TFT devices consists of a semicon-
ductor, an insulator, and an electrode, the active layer is influenced by the adjacent layer; therefore, to directly 
understand device performance of a TFT device, it is critical to analyze change of the electronic structure of the 
active layer that is caused by the adjacent layer with respect to the actual stacked structure. Figure 4 shows the 
three types of absorption-coefficient spectra of the WIZO active layers constituted of the single WIZO layer and 
the WIZO layers affected by the homojunction and the heterojunction. This spectrum of the single WIZO layer 
was extracted from the WIZO layer after establishing a four-phase optical model such as an actual multilayer 
situation, comprising of a Si substrate, a SiO2 layer, a WIZO layer, and an ambient layer. In particular, a detailed 
analysis of WIZO layer of the band edge states and unoccupied states in the conduction band was conducted by 
fitting using a Gaussian model (band edge states) and a Tauc-Lorentz model (conduction band states). In order 
to investigate change of the absorption coefficient of the WIZO layer according to the S/D electrode materi-
als, a five-phase optical model was used by the insertion of an electrode layer between the semiconductor layer 
and the ambient layer. Regarding homojunction, the band-edge state below the conduction band of the WIZO 
active layer was slightly increased. The band-edge state of the WIZO active layer, however, was dramatically 
increased in the heterojunction. These changes of the band-edge state of the WIZO active layer according to 
S/D electrode materials may be attributed to hysteresis-derived degradation of device instability that may be 
strongly related to charge-trap densities, such as those of oxygen-related traps in the active layer and/or the elec-
trode active-layer interface26. TEM images revealed that the interface region between the WIZO active layer and 
ITO electrode was obviously observed in the case of heterojunction structure, but no abruptly changed interface 
region was observed in homojunction structure. If the previous XRR, TEM and SE data are considered together, 
when the heterojunction-structured WIZO-TFT device is operated, electrons transferred from the S/D elec-
trode to the active layer may be scattered due to the extent of interfacial roughness; the electrons may be trapped 
in electron-trap sites below the conduction band. In contrast, when the homojunction-structured WIZO-TFT 
device is operated, transport of electrons may easily occur due to the flat interfacial roughness and small amount 

Figure 5.  Schematic illustration of the electron-transport mechanism according to the S/D electrode materials.
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of electron-trap sites, as shown in Fig. 5. Considering previous electrical data of device stability in Fig. 1, this 
result is strongly correlated with a rough interface, and a large number of electron-trap sites could be the plausible 
origin of degraded field-effect mobility and S.S. values that are caused by heterojunction.

An understanding of the interfacial energy-level alignments between the active layer and the S/D electrode is 
indispensable for the design and realization of high-performance TFT devices. Therefore, for further discussion 
subsequently provided in this study, energy-level alignment between the Fermi level and the conduction-band 
minimum were considered. Figure 6(a) and (b) show the valence-band spectra and the bandgap of each single 
layer of the semiconducting WIZO layer, the conducting WIZO layer, and the ITO layer that were measured 
using XPS and SE according to the extrapolation method, respectively. Especially, the optical bandgap values were 
estimated from the Tauc-plot for direct-bandgap WIZO27. In addition, to conduct full energy-band alignment of 
adjacent-layer-constituting TFT devices, the valence-band spectra and the bandgap of the insulating SiO2 layer 
and the p++-Si substrate were analyzed again using the XPS and the SE, as shown in S5 (Supplementary 

Figure 6.  (a) Valence-band spectra and (b) optical bandgap of each of the single layers for the semiconducting 
WIZO, the conducting WIZO, and the ITO that were measured using the XPS and the SE according to the 
extrapolation method.

Figure 7.  Schematic energy-level alignment reflecting the relative energy position of the Fermi level (EF) 
in terms of the conduction band minimum (CBM) and the valence-band maximum (VBM) with the 
homojunction and the heterojunction.

http://S5
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Information). Through a combination of the spectral changes in Figs 6 and S5, energy-level alignments were 
evaluated and are shown in Fig. 7. The work function (Ψ) of each layer was obtained using KPFM. The electron 
barrier ( bφ ) between the WIZO active layer and the conducting WIZO electrode of the homojunction is 0.09 eV, 
that is slightly smaller than the 0.21 eV electron barrier between the WIZO active layer and the conducting ITO 
electrode of the heterojunction. These reduced electron barriers may be attributed to enhancement of electrical 
performance of the TFT device that is due to easy transference of electrons injected from the S/D electrode to the 
active-channel layer.

Conclusion
In conclusion, homojunction- and heterojunction-structured WIZO-TFTs were fabricated using two types 
of S/D electrode material, the conducting WIZO and ITO, on the same WIZO active-channel layer. The 
homojunction-structured WIZO-TFT exhibited an excellent device performance including saturation mobility of 
26.10 cm2/Vs, an S.S. value of 0.38 V/decade, and a hysteresis-based ΔVth that is within 0.07 V. In contrast, in the 
case of the heterojunction-structured WIZO-TFT, saturation mobility, S.S. value, and hysteresis-based ΔVth were 
degraded to 21.02 cm2/Vs, 0.44 V/decade, and 0.32 V, respectively. Enhancement of device performance of the 
WIZO-TFT with the homojunction structure originated from the flat interfacial roughness and a small number 
of electron-trap sites. The electron barrier of the homojunction-structured WIZO-TFT is 0.09 eV, which is lower 
than the value of 0.21 eV that was obtained for the heterojunction-structured WIZO-TFT. This reduced electron 
barrier may be attributed to enhancements of device performance and stability, that are related to the carrier 
transport. Results suggest that control of the interfacial status is significant in the fabrication of high-performance 
TFT devices.

References
	 1.	 Kamiya, T., Nomura, K. & Hosono, H. Present status of amorphous In–Ga–Zn–O thin-film transistors. Sci. Technol. Adv. Mater. 11, 

044305 (2010).
	 2.	 Park, J. S. et al. Flexible full color organic light-emitting diode display on polyimide plastic substrate driven by amorphous indium 

gallium zinc oxide thin-film transistors. Appl. Phys. Lett. 95, 013503 (2009).
	 3.	 Kim, H. J. & Lee, J. H. Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview. Sens. Actuators, B 

192, 607–627 (2014).
	 4.	 Granqvist, C. G. Electrochromics for smart windows: Oxide-based thin films and devices. Thin Solid Films 564, 1–38 (2014).
	 5.	 Rühle, S. et al. All-Oxide Photovoltaics. J. Phys. Chem. Lett. 3(24), 3755–3764 (2012).
	 6.	 Grinberg, I. et al. Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials. Nature 503, 509–512 

(2013).
	 7.	 Nomura, K. et al. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. 

Nature. 432, 488–492 (2004).
	 8.	 Fortunato, E., Barquinha, P. & Martins, R. Oxide Semiconductor Thin-Film Transistors: A Review of Recent Advances. Adv. Mater. 

24, 2945–2986 (2012).
	 9.	 Park, J. S., Kim, H. & Kim, I. D. Overview of electroceramic materials for oxide semiconductor thin film transistors. J. Electroceram. 

32, 117–140 (2014).
	10.	 Park, J. S., Jeong, J. K., Mo, Y.-G., Kim, H. D. & Kim, C.-J. Control of threshold voltage in ZnO-based oxide thin film transistors. 

Appl. Phys. Lett. 93, 033513 (2008).
	11.	 Yim, J.-R. et al. Effects of Metal Electrode on the Electrical Performance of Amorphous In–Ga–Zn–O Thin Film Transistor. Jpn. J. 

Appl. Phys. 51, 011401 (2012).
	12.	 Barquinha, P. et al. Gallium–Indium–Zinc-Oxide-Based Thin-Film Transistors: Influence of the Source/Drain Material. IEEE Trans. 

Electron Devices. 55(4), 954–960 (2008).
	13.	 Park, J. S., Jeong, J. K., Mo, Y.-G. & Kim, H. D. Improvements in the device characteristics of amorphous indium gallium zinc oxide 

thin-film transistors by Ar plasma treatment. Appl. Phys. Lett. 90, 262106 (2007).
	14.	 Nomura, K. et al. Thin-Film Transistor Fabricated in Single-Crystalline Transparent Oxide Semiconductor. Science 300, 1269–1272 

(2003).
	15.	 Meng, Y. et al. Low-temperature fabrication of high performance indium oxide thin film transistors. RSC Adv. 5, 37807 (2015).
	16.	 Meng, Y. et al. Photochemical Activation of Electrospun In2O3 Nanofibers for High-Performance Electronic Devices. ACS Appl. 

Mater. Interfaces. 9, 10805 (2017).
	17.	 Kim, M.-M., Kim, M.-H., Ryu, S.-M., Lim, J. H. & Choi, D.-K. Coplanar homojunction a-InGaZnO thin film transistor fabricated 

using ultraviolet irradiation. RSC Adv. 5, 82947 (2015).
	18.	 Park, J. et al. Self-aligned top-gate amorphous gallium indium zinc oxide thin film transistors. Appl. Phys. Lett. 93, 053501 

(2008).
	19.	 Ahn, B. D., Shin, H. S., Kim, H. K., Park, J.-S. & Jeong, J. K. Comparison of the effects of Ar and H2 plasmas on the performance of 

homojunctioned amorphous indium gallium zinc oxide thin film transistors. Appl. Phys.Lett. 93, 203506 (2008).
	20.	 Chiu, C. J., Pei, Z. W., Chang, S. T., Chang, S. P. & Chang, S. J. Effect of oxygen partial pressure on electrical characteristics of 

amorphous indium gallium zinc oxide thin-film transistors fabricated by thermal annealing. Vacuum 86, 246–249 (2011).
	21.	 Chen, W.-T. et al. Oxygen-Dependent Instability and Annealing/Passivation Effects in Amorphous In–Ga–Zn–O Thin-Film 

Transistors. IEEE Electron Dev. Lett. 32(11), 1552–1554 (2011).
	22.	 Park, K., Choi, J.-Y., Lee, H.-J., Kwon, J.-Y. & Kim, H. Thin Film Transistor Using Amorphous InGaZnO Films as Both Channel and 

Source/Drain Electrodes. Jpn. J. Appl. Phys. 50, 096504 (2011).
	23.	 Park, H.-W., Song, A., Kwon, S., Ahn, B. D. & Chung, K.-B. Improvement of device performance and instability of tungsten-doped 

InZnO thin-film transistor with respect to doping concentration. Appl. Phys. Express. 9, 111101 (2016).
	24.	 Liu, A. et al. Eco-friendly, solution-processed In-W-O thin films and their applications in low-voltage, high-performance transistors. 

J. Mater. Chem. C 4, 4478 (2016).
	25.	 Reeves, G. K. & Harisson, H. B. Obtaining the Specific Contact Resistance from Transmission Line Model Measurements. IEEE 

Electron Dev. Lett. 3(5), 111–113 (1982).
	26.	 Park, H.-W., Park, K., Kwon, J.-Y., Choi, D. & Chung, K.-B. Effect of Active Layer Thickness on Device Performance of Tungsten-

Doped InZnO Thin-Film Transistor. IEEE Trans. Electron Devices 64(1), 159–163 (2017).
	27.	 Kang, B. S. et al. High-Current-Density CuOx/InZnOx Thin-Film Diodes for Cross-Point Memory Applications. Adv. Mater. 20, 

3066–3069 (2008).

http://S5


www.nature.com/scientificreports/

9ScIentIfIc REPOrTS | 7: 11634  | DOI:10.1038/s41598-017-12114-y

Acknowledgements
This research was supported by the Basic Science Research Program and the framework of international 
cooperation program through the National Research Foundation of Korea (NRF) funded by the Ministry of 
Education (2016R1A6A1A03012877 and 2015K2A2A7056357), and supported by the National Research 
Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (2016R1A4A1012950). This work 
was also supported by Samsung Display Co., Ltd.

Author Contributions
H.-W.P. designed the experimental concept and wrote the main manuscript text. A.S., D.C., H.-J.K., and J.-
Y.K. discussed the experimental results and commented on theoretical mechanism. All authors reviewed the 
manuscript. The project was guided by K.-B.C.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-017-12114-y.
Competing Interests: The authors declare that they have no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2017

http://dx.doi.org/10.1038/s41598-017-12114-y
http://creativecommons.org/licenses/by/4.0/

	Enhancement of the Device Performance and the Stability with a Homojunction-structured Tungsten Indium Zinc Oxide Thin Film ...
	Experimental procedure

	Fabrication of the WIZO-TFTs with the homojunction and heterojunction structures. 
	Electrical and physical measurements. 
	Electronic-structure measurements and energy-level alignments. 

	Results and Discussion

	Conclusion

	Acknowledgements

	Figure 1 (a) Transfer, hysteresis, saturation mobility and (b) output characteristics of the WIZO-TFTs according to the S/D electrode materials, the conducting WIZO, and the indium-tin oxide (ITO) layer.
	Figure 2 Electrical characterization of the WIZO-TFTs with different S/D electrodes.
	Figure 3 Physical properties of the WIZO film with the homojunction and the heterojunction.
	Figure 4 The three types of the absorption-coefficient spectra of the WIZO active layers such as the single WIZO layer and the WIZO layer affected by the homojunction and the heterojunction (left).
	Figure 5 Schematic illustration of the electron-transport mechanism according to the S/D electrode materials.
	Figure 6 (a) Valence-band spectra and (b) optical bandgap of each of the single layers for the semiconducting WIZO, the conducting WIZO, and the ITO that were measured using the XPS and the SE according to the extrapolation method.
	Figure 7 Schematic energy-level alignment reflecting the relative energy position of the Fermi level (EF) in terms of the conduction band minimum (CBM) and the valence-band maximum (VBM) with the homojunction and the heterojunction.
	Table 1 Chemical compositions of the ITO, conduction WIZO, and semiconducting WIZO layers.
	Table 2 Device parameters of the WIZO-TFT, including the Vth, μsat, S.




