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Abstract

The present paper explores whether the shape of long bone shafts can be explained as a mere result of mechano-adapation. A
computer simulation study was conducted in order to investigate adaptation processes of bone-like structures under load patterns
comparable to those acting on the diaphysis of long bones. The aim of the study was to have a deeper look into the relationship
between typical loading patterns and resulting bone shape and structure. The simulations are based on a mechanistic model ap-
proach for mechano-transduction and bone transformation. Results of the simulations are that axial torsion around the long axis
is important for the evolvement and maintenance of tube-like structures. Of note such structures can form from a variety of
starting geometries, provided that axial torsion is present. The selection of the set-point parameter for the regulation of load
adapted bone transformation has an impact on the final structure as well. In conclusion, the present study confirms the mechanical

environment’s potential to generate shaft-like structures and demonstrates the respective boundary conditions.
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Introduction

The seemingly inert bone of vertebrates is, in reality, a liv-
ing tissue that retains adaptive capability throughout the life-
span'”. Transformation of bone in response to alterations of its
mechanical environment is evident in numerous examples, e.g.
from the bone loss observed during space flight and bed rest™*
as well as their recovery’®. Such adaptive modifications of
bone are often engendered by alterations in geometry, both
during immobilization” as well as in sport-specific responses
to increased loading®"’.

However, even when there is no net gain or loss in bone
mass, it is evident that a continuous process of bone renewal
takes place, which is often called remodelling®. This process

This study has been supported by the program ‘Research under Space
Conditions’ of the German Aerospace Center (DLR).

Corresponding author: Dr. Uwe Mittag, German Aerospace Center, Institute
for Aerospace Medicine, Linder Hohe, 51147 Koln, Germany
E-mail: Uwe Mittag@dlr.de

Edited by: F. Rauch
Accepted 15 November 2014

involves resorption of bone plus subsequent formation, and it
is thought to be partly of random nature and partly specifically
targeted to repair tissue damaged by micro-cracks''. Disorders
of these mechanisms are held responsible for bone disorders
such as osteoporosis'? and osteogenesis imperfecta'”, and a
deeper understanding will be a prerequisite for effective ther-
apeutic strategies. It is conceivable that these mechanisms also
relate to the bone loss of astronauts, and that understanding
them will enable the design of effective countermeasures.

In principle, mechanically driven adaptive responses of
human bone had been observed and described early by Wolff'*,
later known as “Wolff’s Law” of bone transformation, and it
was d’Arcy Thompson who coined the principle ‘form follows
function’”. Pauwels explained quite well how load forces
could determine certain characteristics of the geometry of
human long-bones'®. Frost proposed the mechanostat theory
to explain bone adaptation as a feed-back control mecha-
nism'”'®, His ‘three-way rule’ that proposes shifts of the bone
surface depending on different on-off criteria explains the ob-
servations in principle but does not yet have a quantitative
mechanistic background. The early authors distinguish strictly
between ‘modelling” and ‘remodelling’, with the former de-
scribing the shaping of bones and prevailing during growth,
and the latter describing the self-renewal of bone that prevails
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during adulthood'?. It has been recognized that these processes
do not occur simultaneously, and the idea therefore emerged
that they are biologically distinct.

Evidence suggests that osteocytes, living cells embedded in
the bone matrix, play a crucial role in mechano-sensation and
transduction of the mechanical signals'®. Another finding was
that dynamic bone loading (i.e. incorporating frequent load
changes) is more effective at inducing bone adaptation
processes than static loading®. With this background in mind
Huiskes and co-workers created a Finite Element Analysis
(FEA) based computer model for remodelling processes within
trabecular bone that used a mechanistic approach with a strong
cell-biological background of bone adaptation®?'. In their re-
modelling law they assume the osteocytes in the bone matrix
to be the main control element for the recruitment and bone
generating activity of osteoblasts. They are postulated to take
strain energy density as the leading regulatory parameter for
the mechano-transduction.

Early studies have looked upon the diaphysis of long bones
and their optimal shape studying interspecies diversity* and
investigating the adaptive response of different load types like
compression, bending, and torsion on the cross section with
numerical methods** . However, these studies have accepted
a tubular shape a priori. The influence of axial torsion for the
adaptation of cross section parameters was in most cases found
to be limited*. Torsion did not play a role in numerical mod-
els to explain flexure-neutralization”’.

It is a known fact in orthopaedic surgery that bones can rem-
edy their misalignment after fracture (so-called flexure neu-
tralization). However elegant the past studies on bone shaping
are, they do not have a mechanistic explanation for it. It is not
understood whether bones look the way they do because they
are used the way they are used, or vice versa. Or, in other
words: whether form follows function or function follows
form, and to what macroscopic extent bone is a self-organizing
tissue is yet to be established. Of course, there might be also a
genetic background, but overwhelming evidence suggests that
function can explain the form to a large extent.

The goal in this study is to link tissue-level adaptive re-
sponses to whole-bone shaping in order to understand why
bones are shaped the way they are. For this we are focussing
on the basic principles responsible for reshaping of bone-like
structures in response to loading. The present approach uses
computer modelling to perform experiments of thoughts on a
simplified level. Accordingly, we present work based upon
simplistic geometries. The underlying transformation scheme,
however, is kept close to physiological patterns. The algorithm
originally proposed by Huiskes for the remodelling domain
has been adapted in this study, in order to show that the prin-
ciples are the same for modelling and remodelling. In order to
foster that vision and to avoid confusion with the historical ter-
minology we use the term transformation for both modelling
and remodelling in this paper.

As a first step, we describe a bone shaft analogue both in
terms of physiologically-motivated boundary conditions as
well as in terms of code implementation. We hypothesize that
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Figure 1. Transformation cycle.

a bone shaft- analogue load pattern will generate a straight
tube-like compact structure from different precursor geome-
tries, showing that the straight tube in full three dimensions -
that obviously seems to be the optimum structure - is supported
by the adaptation laws on microbiological level, and that it is
not only an adaptation of an existing tubular cross section. If
the straight tube is the preferred geometry, then one should ex-
pect (as our secondary hypothesis), that flexed precursor
geometries should be straightened as suggested by flexure neu-
tralization in clinical observations. Both hypotheses presume
that form follows the function of bone and bone parts, and
therefore loads are one of the main drivers of bone anatomy.

Methods

The in silico transformation cycle used here assumes that
mechanic loads are guiding the transformation process. The
cycle (Figure 1) starts from a given model geometry, where a
random load pattern comparable to those acting on the diaph-
ysis of long bones is then applied. Next, the resulting stress
distribution within the structure is calculated by means of Fi-
nite Element Analysis (FEA) using the commercial FEA soft-
ware ANSYS. The distribution of strain energy density rate in
the volume elements of the model is the control parameter of
this “mechanostat” and is the input for the transformation al-
gorithm, which results in a modification of the model geome-
try. With this modified geometry the process is re-iterated step
by step. The details are explained in the following.

The geometry models were defined within a design space,
which is structured by a regular cubic voxel mesh with an edge
length of 75 voxels. The housing mesh size was 4.5x4.5x4.5
mm?, bringing the voxel length to 0.06 mm. The elements
(voxels) in this mesh were either defined as isotropic bone ma-
terial with a compact bone-like Young’s modulus, or of non-
bone character with Young’s modulus two orders of magnitude
less. Following Huiskes’ example, structures similar to a pri-
mary spongiosa were defined as regular grid inside the cubic
design space with a regular and homogeneous pattern of bone.
In this approach non-bone elements also have to be calculated
by the FEA algorithm. Therefore the design space was selected
to be only slightly larger than the objects to be analysed. The
resolution was restricted by computer resources. With its
421875 elements the model approach is a good compromise.
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CL: cylindrical lattice

BL: cuboid lattice

FL: flexed cylindrical
lattice

FT: flexed tube

Figure 2. Starting geometries; for all four different starting geometries CL, BL, FL and FT a 3D-view (+y/-z-view, x-axis horizontally) together
with cross-section representations in the xy-plane (top) and in the xz-plane (bottom) are shown (x-axis horizontally): CL a cylindrically shaped
Bravais lattice, BL a cuboidal shaped cubic Bravais lattice (box lattice), FL a cubic Bravais lattice in form of a flexed cylinder and FT a flexed

tube; find more explanations in the text.

A total of four different starting geometries was used (see
Figure 2). In one direction (z-direction) the geometries ex-
tended over the entire design space, while in the other direc-
tions the geometries did not touch the design space edges, in
order to leave space for apposition. One exception was the
flexed geometries that touched the outer edges at 3 points. The
following starting geometries were used:

CL: a cylindrical shaped cubic Bravais lattice with the axial
length of the full design space size of 4.5 mm and a width of
3.38 mm. This was the main geometry to observe the transfor-
mation from spongious to compact geometry.

BL: a quadratic cuboid sized Bravais lattice (box lattice)
with the length of the full design space size of 4.5 mm and di-
ameter of 2.25 mm. This was the geometry that we used to
focus on transformation of outer shape. We intentionally chose
smaller dimensions in comparison to geometry 1 in order to
get an idea, if there might be an influence on the final dimen-
sions. Also the unit cell of the lattice has been modified (see
explanation below).

FL: a flexed cylindrical Bravais lattice with the length of
the full design space size of 4.5 mm and a diameter of 3.38
mm. The degree of flexion was sufficient to let the flexed
geometry occupy the whole design space in a mediolateral di-
rection. This geometry will show if flexure neutralization from
flexed spongious structure is possible.

FT: a flexed cylindrical tube with the length of the full de-
sign space size of 4.5 mm and a diameter of 3.38 mm. With
this geometry we want to find out if flexure neutralization is
also possible starting from flexed compact structures.

The unit cell of our cubic lattices in CL and FL is a cube of
an edge length of 8 voxels (= 0.48 mm) with beams of 2x2
voxels at all edges building a cubic frame. Putting together
that kind of unit cells, a cubic lattice of quadratic beams of
width 4 voxels (=0.24 mm) is generated. The unit cell of BL
is different in having a width of 6 voxels (0.36 mm) with one
voxel sized beams at all edges building a lattice with thinner
beams of 2x2 voxels (0.12 mm) width. In all cases we used a
template lattice generated in Matlab and matched that lattice
into the mesh of our FE model using ANSYS standard func-
tionality. Irregular surfaces of the lattice rods are due to this
matching process. The irregularity was assumed not to influ-
ence the simulation results, because for one type of starting
geometry always the same lattice was used for all runs. The
flexed starting geometries were used to investigate the flexure
neutralization problem.

The dimensions studied here are downscaled for technical
reasons in comparison to human scales. They are similar to
that of a rat femur. Therefore, we kept the mechanical proper-
ties similar to rat conditions. We assumed isotropic mechanical
properties for the compact bone. The value for Young’s mod-
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1D Z (ax.) XY (lat.) Torque K¢ [102 nmol/ #steps Starting
[N] [N] [Nmm] (mm?*day)] geometry
CLO -100 40 +/-180 250 200 CL
CL1 -100 40 +/-180 120 200 CL
CL2 -100 40 +/-180 50 200 CL
CL3 -100 40 +/-180 20 200 CL
CL4 -100 40 +/-180 5 400 CL
CL5 -100 40 0 5 200 CL
CL6 -100 40/90° +/-180 5 200 CL
CL7 -100 40/90° 0 5 200 CL
BL1 -100 40 +/-180 5 200 BL
BL2 -100 40 0 5 200 BL
FL1 -100 40 +/-180 5 200 FL
FL2 -100 40 0 5 200 FL
FT3 -100 40 +/-180 5 400 FT
FT4 -100 40 0 5 400 FT

Table 1. Overview of the computational runs performed in this study. Z gives the axial compressional force, XY the bending forces. Torque is
the torque around the z-axis. Values for k,, are given as well as step number per run and starting geometry. Every run has got an identifier (ID)

that indicates its starting geometry. See Figure 2 for explanation of the acronyms CL,BL,FL and FT.

ulus of 15000 MPa for cortical bone was in line with our ref-
erence’’ and similar to the observed range from 16000 to
19000 MPa for rat cortical bone®. For rat cortical bone poisson
numbers between 0.3 and 0.42 were found®, so we took 0.36
as a mean for our simulations.

For simulation of mechanical loads the geometry models
were implemented in the Finite Element simulation software
ANSYS (ANSYS Germany GmbH, Darmstadt) version 12.1.
In this numerical model each voxel is represented by a brick el-
ement with quadratic shape function. For the load calculations
the geometry’s bottom and top surfaces (with respect to the z-
direction) were fixed to rigid plates. The bottom plate was fixed
in three directions, and the surface of the top plate was subjected
to different types of loads such as axial compression, varying
lateral bending and torque (details are given in Table 1). For this
purpose the ANSYS basic functions ‘external force” and ‘mo-
ment’ on a rigid surface have been used. The scripting capability
of ANSYS Workbench has been used to modify both the exter-
nal force vector as well as the torque vector of the ANSYS-‘mo-
ment’ in subsequent calculation steps in order to simulate the
variance of the load pattern (Figure 3).

We estimated the rat load conditions by scaling down known
load conditions of the human case, because measurements of
real loads on these animals in vivo are incomplete in the litera-
ture. From force measurements in smart knee prostheses®' one
can derive load conditions on human long bones in non-sporting
activities. There we find maxima of 350% body weight (BW)
for axial load (knee load in z-direction ~ axial load on tibia),
some 2% BWm torque around z-axis (can be taken as the axial
torque on the tibia) as well as shear forces in the knee up to 40%
BW (can be taken as bending forces for the tibia). For a rat of
1kg we can scale that to 35 N axial load, 4 N bending load and
0.2 Nm (200 Nmm) axial torque. For running and jumping the
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Figure 3. Load pattern for diaphysis models (see explanation in the text).

loads will be much higher, especially the bending load, because
higher dynamic forces will come into effect. Therefore, as de-
picted in Figure 3, a constant major compressive force in axial
direction with a magnitude of 100 N was applied on the rigid
top surface and modulated by a smaller component in lateral di-
rection. The lateral force was taken as random in direction with
a constant magnitude (40 N in all cases, see details in Table 1).
In Figure 3 the resulting force sum on the top plate is depicted
as a black arrow, the dashed circle visualizing the random di-
rection in 360°. In order to study the influence of lateral bending
components that are non-uniformly distributed we narrowed the
possible random direction down to a 90° segment in two of the



runs. The magenta arrow in Figure 3 represents an additional
random torque around the length axis of the model. At any step
it can assume any value between a maximum clockwise and
counter-clockwise magnitude (uniformly distributed). The ab-
solute values of the maxima in both directions are identical,
comparable in magnitude to values for rat long bones above. In
all cases where torque was present, 180 Nmm as the maximum
magnitude (see Table 1 for details) was taken.

The transformation law has been adopted from Huiskes et
al.**?" and simulates the modification of bone density m (value
between 0 and 1) in terms of the bone-generating activities of the
osteoblasts and the bone-resorbing activities of osteoclasts. Fol-
lowing Huiskes et al., strain energy density (SED) rate was taken
as the leading mechanical signal that activates the osteocytes. In
the following the algorithm proposed by this group is described:

The modification of bone density m,, at time t and location
X is given by positive contributions of osteoblasts m,; and neg-
ative contributions of osteoclasts m,:

dmior (x,t) _ dmpi(x,t) — dmei (x,1) (1)
dt dt dt
The osteoblast contributions are given by:
At 50— 2 (P (1) - i), 0)
for P(x, t) > k,, disappears for P(x,t) <=k,
P (x)=3L, f(x, x)uiR(x1.1), 3)

with f(x, x;)= edx D
where index 7 indicates the osteocytes in the neighbourhood.
Pis a trigger signal at a surface position and depends on the
distances between osteocytes (given by f(x,x;)), the sensitivi-
ties of the osteocytes (given by ) and the SED rates (given
by R(x;,t)). As can be seen from equation (2), there is a thresh-
old parameter k,, that makes sure, that the system only reacts
on P-values that reach a certain level. Below that level bone
resorption does not occur. T is an additional gain factor.
R(x;,t) calculates from S(x;,t) as given in equation (4), the
SED and a load frequency of F, the latter taken as 1 for typical
walking-like load pattern:
R(x;, )=4.08 S(x;,t) F “)
This formula results if we look at a load o,(t) oscillating
with frequency F, taking values between 0 and a maximum
value o. If we follow the derivation of Ruimerman®' we can
calculate the maximum SED S_,:

max*

Smax= max (% Ko? (1+cos(25tFt))2) =% Ko? (4a)
The corresponding maximum SED rate can be calculated as
R,..= 0.657FK 0?2 (4b)

Assuming that a single step corresponds to several days in
reality and our S(x;,t) is the S,,,, of the oscillating load pattern
during that time, we can take over formula 4a for S(x;,t) and
analogous equation 4b for R(x;,t). Comparing both equations
we find the relationship of equation 4.

We calculated P(x.t) for up to seven shells of voxels neigh-
boring a surface voxel. For this calculation we had to take into
account the number of osteocytes per voxel that we took as
44000 per mm3 as for human cortical bone?', the number of
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voxels and the number of osteocytes per voxel defining the total
number of osteocytes (the N of equation 3) taken into account.

From m(x,t) the Young’s modulus E(x,t) can be calculated
as E .. mY with in our case E_, = 15000MPa and y=3 (see
reference?!).

For the resorption Huiskes et al. give:
dmey (x,1)

dt =Tl

where 1, is a statistical value, wherein the recruitment rate of
osteoclast cavities (in [1/voxel/day]) on the surface (f,,) and
the resorbed volume per cavity (v,) play a role.

We calculated the voxel resorption rate as:

= foer () coon ©)

Vvox

&)

with v, the voxel volume. For better comparability with the
Huiskes calculations we use a correction factor c,,= (dx/dx,)*
where dx,dx,,; are the voxel sizes of our model and the Huiskes
reference model. Because only surface voxels are involved, we
have to correct Huiskes f,, parameter (recruitment rate of bone
modeling units BMU) for our differing voxel sizes in two di-
mensions (always looking at the surface).

We did not take into account coupling between osteoclast
and osteoblast-activity and assume a random distribution of
osteoclast activity over the whole surface.

The transformation cycle was implemented in Matlab
(Mathworks Inc., Natick, Mass. USA) version R2011a. Strain
energy densities resulting from the simulated load applications
were calculated using FEA based on the commercial package
ANSYS, using a Preconditioned Conjugate Gradient (PCG)
solver. Calculations were performed on a high performance
computing cluster (IBM x3550 and X iDataPlex computers).
For each run, between 200 and 400 iterations were calculated
before we could be sure, that the forming process had con-
verged. Our criteria for convergence are given in detail in the
results section below. Each calculation step (a single loop of
the transformation cycle) took around 60 minutes.

In pre-calculations it had been found that the given threshold
k, had to be adapted significantly in order to achieve an acti-
vation of the process. When varying the magnitude of k,, it ap-
peared that the value of this parameter has a big impact on the
final geometry in dynamic equilibrium. To better understand
the underlying systematics, we performed several additional
computational runs in order to check the sensitivity for this pa-
rameter. As a result for further simulation experiments we se-
lected a setting of k,=0.05 nmol/(mm?-day), because this value
provided a good tubular shape in the basic load configuration.

An overview of all runs is given in Table 1.

A total of eight runs was performed with the cylindrical lat-
tice (CL) as starting geometry (identifier CLx with x=0....7). In
five of them (CLO to CL4) we varied the Huiskes threshold pa-
rameter keeping other parameters constant. In run CL5 we set
the torsional load to zero with all other parameters unchanged.
In run CL6 we kept the bending load in a narrow angle of 90
degrees (into the quadrant of positive x- and y-direction) in
order to see any influence of directed bending. In run CL7 we
combined directing bending forces as in CL6 with missing tor-
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ID Starting geometry Final geometry OQuter R/t mid-

(3D-view, left; cross (3D view, left; cross radlqs shaft

sections mid-shaft and | sections mid-shaft and R mid-

axial, right) axial, right) shaft

[mm]
CLO & \ n/a n/a
" -
CL1 - n/a n/a
{,
9
CL2 . H n/a n/a
CL3 ':,gggg n/a n/a
gehe
bRt

CL4 1.7%0.1 | 2:3*02
O
steps) i
CL4 1.7*0.1| 2.4*0.2
o)
steps)

Figure 4a. Results for runs CLO to CL4; same presentation as in Figure 2 with starting geometries always a 3D view together with two cross-

sections; original voxels in green, new voxels in blue.

sional loads. In all CL-runs 200 steps have been calculated ex-
cept for CL4, where we extended to 400 steps in order to
demonstrate the stability of the final geometry. In addition two
runs with the box lattice (BL) as starting structure (BL1, BL2)
have been performed to investigate the dependence on the start-
ing geometry. Again one of them was without torsional load
(BL2). In order to investigate the flexure problem four runs
have been calculated, two starting from the flexed cylindrical
lattice (FL), the other two starting from the flexed tubular struc-
ture (FT), in both cases once with torsion and once without.

Table 2 shows an overview of the parameter settings in the
Huiskes algorithm that have been used in all calculations.

In order to be able to compare to earlier investigations on
bone shaft geometries we calculated the radius R of the final
shaft geometries as well as the parameter R/t, with t being the
thickness of the corticalis.
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Parameter Setting Dimension

T 5.107 mm?’/(Nmol)

D 100 um

W (osteocyte) 1 nmol-mm-s/(J-day)
F 1 Hz

Vi 1.5 mm?

focl 7.1-104 1/(voxel-day)
days/step 30

osteocyte density 44.103 1/mm?

Table 2. Constant settings of important parameters of the Huiskes
model (equations 2-4); with given dimensions, the R(x;,t)- resp. the
S(x;,t)-values from the FEM results have to be entered in GPa.
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ID Starting geometry Final geometry Outer R/t mid-
(3D-view, left; cross (3D view, left; cross ra_dlus R | shaft
sections mid-shaft and | sections mid-shaft and mid-shaft
axial, right) axial, right) [mm]

CLS ' n/a n/a

CL6 1.7*01 |2.8*0.5

5t
»

CL7 ‘ n/a n/a

BL1 ' 1.6"0.1 | 2%0.2

BL2 . n/a n/a

Figure 4b. Results for runs CL5 to CL7 and for runs BL1 and BL2; same color code as in Figure 4a.

ID Starting geometry Final geometry Outer R/t mid-
(3D-view, left; cross (3D view, left; cross ra'dlus R | shaft
sections mid-shaftand | sections mid-shaftand | mid-shaft
axial, right) axial, right) [mm]

FL1 1.65"0.1 | 2.5"0.2

e

n/a n/a

FL2 ARG
3
i

el
)

1.65"0.1 | 2.5"0.2

n/a n/a

Figure 4c. Results for runs FL1, FL2, FT1, FT2; same color code as in Figure 4a.
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For convergence checking several indicators have been cal-
culated for the mid-shaft slice (at 2.25 mm in z-direction) that
give an idea of topological modifications with time. The indi-
cators were:

1. Number of bone voxels

2. Mean radius

3. Standard deviation of bone voxels from mean radius
4. The two principle moments of area

5. Optically assessed shape

6. Deviation index I,

The deviation index I, was calculated using formula (8).

=2 2 (B2 xy)-Etlx y) /2.2, Etl x y)+2.2, B2xy))  (8)

with E(tl,x,y) and E(t2,x,y) being the Young’s moduli at two
different times at the same position x, y of the mid-shaft slice.
This index vanishes in case of identity and becomes 1 for
100% deviation.

Results

In the tables of Figures 4a-c results of our computations are
presented as 3D-visualizations and as silhouettes of a mid-shaft
cross-section on the top right and an axial cross-section on the
bottom right in the 3 column. For comparison the starting geom-
etry is shown as well in 3D as in the cross-sectional silhouettes
in the 2" column. The 3D-pictures show green and blue voxels,
the green ones being ‘bone’ voxels that survived from the begin-
ning, the blue ones being voxels that have been generated during
the simulation. The two remaining columns show the outer radius
and, for comparison with literature®, the R/t value at mid-shaft
only for cases where a regular tube can be identified at mid-shaft.
Because of the rough surface of structures the measurement of
diameters and wall thickness could not be very precise, thus we
provided an estimate for the variation.

Quick convergence was found after about 200 calculation
steps for all lattice-type starting geometries. For the flexed tube
starting geometry it took longer to reach equilibrium. There-
fore, we extended the runs to 400 steps in these cases.

Figure 5 shows as an example the run CL4 to demonstrate
that within about 100 to a maximum of 200 steps the system
has reached its final geometry. The characteristic parameters
have attained a level that will be kept more or less stable (ra-
dius, standard deviation of radius) or with a small drift (mo-
ments of area and bone voxel number). Voxel number and
moments of area show a noticeable oscillation. It can be easily
seen, that the moments of area vary in phase with the voxel
number. The I-value converges quickly to a quite low but non-
zero value.

Looking into the results of the different runs, a strong shape-
imposing influence was found for the threshold values k.. As
can be seen from equation 2, this threshold defines a minimum
value, below which an integrated trigger signal on a surface
position does not activate bone formation. First calculations
with a high setting for this value provided truss-like final struc-
tures. Systematic variation in k,, in this study yielded a close
relationship between this parameter and structural properties,
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0.1H 1

0.08} deviation index

0.06 4

0.04 R

number of voxels

12} mean radius (mm)

standard deviation of radius

1 1 1 1 1
0 100 200 300 400 500 600
steps

Figure 5. Monitoring of parameters of slice 37 (mid-shaft) during an
ultra-long run of 600 steps of experiment CL4 as a function of the step
number; lower part: number of bone voxels (green), mean radius (blue)
and its standard deviation (magenta); upper part: deviation index (black)
and the both principle moments of area (light blue and brown); in addition
silhouettes of cross-sections at step 0, 100, 200, 300 400, 500 are given.

which can be seen easily by comparing the final geometries of
the runs CL1 to CL4 in the table of Figure 4a. From a closed
straight tube for k,=0.05 nmol/(mm?-day) the structure opens
up and broadens more and more at the ends of the tube with
increasing magnitude of k, and finally grows into the open
truss-like form at k,=1.2 nmol/(mm?-day). The beams of the
truss seem to become more filigree with further increasing
magnitude of k.



Looking more closely now at CL4, where we used the low
value for k,,, we observed the conversion of our spongious start-
ing geometry to a closed and straight tubular structure with a
clear “corticalis”. This tube wall is very regular in thickness. The
diameter stays close to the diameter of the original geometry.

In CL5 (see table in Figure 4b) we run the same conditions
without the axial torsional load component. As it can be clearly
seen, the final geometry is no longer tubular, but has the form
of a truncated cone. The mid shaft cross section has smaller
diameter and an irregular shape compared to the torsional
loaded run.

CL6 and CL7 (see table in Figure 4b) show the effects of
introducing a strongly directed bending load towards one of
the quadrants. The quadrant in question is marked by a red
angle in the mid shaft cross section representation. It can be
seen that with torsional load in CL6 we got a geometry that is
not far from that of uniform distributed bending in CL4. There
is a slightly increased thickness of the tube wall in this quad-
rant, but the effect is much less than could be expected. The
anticipated effect arises, when torsion is ‘off’, as can be seen
in CL7. Here we have a completely different picture - no tu-
bular geometry at all, indicating an important role of torsion
for maintaining the tube.

In BL1 (results in table of Figure 4b) we used the same con-
ditions as in CL4, but started from the quadratic (instead of a
circular) cross section of starting scheme BL with quite a small
diameter in comparison to the start setting of CL4. From a
cuboid starting lattice we again got a tubular geometry. The
final outer diameter was only slightly smaller (1.6 instead of
1.7 mm). The difference can be found in the much thicker tube
wall resulting in a R/t value of 1.6.

BL2 that started with same conditions as BL1 but, analogue
to CL5, without torsional load showed a similar behavior as
CL5 (see table in Figure 4b).

From our flexed starting geometries FL.1, FL2, FT1, FT2
we extracted the following results shown in Table 3c: FL1
(the flexed spongiosa as initial geometry), after 200 steps, re-
sults in a regular straight tubular structure that is very similar
to that of the comparable CL4 run, which started in unflexed
configuration. For FT1, which started from a flexed tube con-
figuration, the effect and the resulting geometry is a straight
tube as well, but a bit less regular as with the “spongiosa”
based FL1.

‘When torsional loads are switched off we find, when start-
ing from a spongy structure (example FL2), a final geometry
very similar to the results of runs CL5 and BL2, namely a trun-
cated cone. When starting from the flexed tube (example FT2)
the behaviour is different. We do not get a truncated cone-
shaped structure which we may have expected when compar-
ing it to the flexed lattice case FL2. There seems to be a trend
to narrow the upper diameter. But it can be stated in any case:
a closed straight tube does not develop.

Different from the smooth surfaces of long bones in nature
the surfaces of all of our final geometries show a considerable
degree of roughness.
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Discussion

It is the principle goal of this publication to establish an in
silico platform for testing of bone transformation laws and to
use it to identify possible mechanisms and laws on the meso-
scopic level that are able to explain the phenomenological laws
established by Frost from a mechanistic point of view.

As the first study in this context the present study tried to
explain common geometrical transformations of bone (e.g.
spongy to compact as in the metaphysis during growth, or flex-
ure neutralization) mainly on the basis of a transformation law
that has been proposed for the mechanically-driven remodel-
ling of trabecular bone. Investigating principles in an experi-
ment of thought, we focus on a construct that has sufficient
similarity to the shaft of a long bone of a rat from the viewpoint
of load characteristics. Even with this sparse approach, a num-
ber of remarkable results have been achieved.

Before discussing the results let us first come back to gen-
eral aspects and some differences of the present model ap-
proach with respect to the Frost mechanostat. Due to the
‘bottom-up’ approach that we used in order to study bone as a
self-organizing tissue, our simulations did not take into ac-
count a merit function or any other ‘determination’ constraint,
other than regulation by local strains and stresses. The fact that
even in the absence of such constraining assumptions, our sim-
ulations found R/t-values that are very similar to those reported
by Currey and Alexander for land mammals* may add to the
applicability of our results. We are aware that the transforma-
tion law under investigation has been proposed only for adap-
tation processes based on bone basic multicellular units
(BMU) next to marrow at trabecular and endocortical surfaces.
In this study it was applied generally for all surfaces including
the periosteal ones, so that we reduced the two different mech-
anisms of Frost (modeling and remodeling) to a single mech-
anism. In contrast to Frost’s definition, the present model has
only one single ‘modelling’ set-point, the already mentioned
k.. The model relies on a steady bone absorption like a ther-
mostat that only needs one set-point in a cold climate, because
there is always heat dissipation and no active cooling is re-
quired. It is astonishing how already this single-set-point set-
up can manage an effective mechano-adaptation. In our future
investigations, it will certainly be important to have a closer
look whether this set-up can also explain the findings of a lazy
zone and if that is not the case to identify a set-point mecha-
nism for the active cooling (meaning active reduction of bone
mass in case of disuse) analogous to bone.

Resuming the results we find the following:

1. In line with our main hypothesis the ‘typical’ load pattern
assumed for long bones in combination with a generalized
modelling/remodelling transformation algorithm based on
reasonable assumptions on bone physiologic principles sup-
ports the formation and maintenance of regular and straight
tubular structures.

2. In line with our secondary hypothesis this kind of formation
of regular straight tubular structures is independent of the
starting geometry and therefore also holds for flexed geome-
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tries, leading to flexure neutralization.

3. The findings 1) and 2) are valid under certain boundary con-
ditions: a) the set-point-values used in the calculation are in
a well-defined range, otherwise truss-like open structures
arise; b) axial torsional loads have to be present; otherwise
a variety of geometries form that are not straight or tubular.

4. Bending loads into a selected direction do not deform the
tubular shape very much. The thickness of the wall is thicker
on the loaded side. Again this statement loses its validity if
torsion is missing.

5. The independence of starting geometry of finding 2) holds
for the tubular shape, but not for the dimensions of the result-
ing cross-sections with respect to radius and wall thickness.

6. Rough surfaces develop in our simulations in comparison
to smooth surfaces in reality.

Thus, and in line with the initial hypothesis, mechano-adap-
tion occurred from different starting conditions - spongy, non-
cylindrical and flexed geometries, implying that load patterns
typical for a bone shaft evoke the well-known tubular structure
with closed compact bone in the “cortical” area. In the first in-
stance this looks self-evident. Other authors in the literature
have taken this principal geometry as given and looked on di-
mensional variations??, or investigated variations of the cross
sectional geometry®. In this study we consequently applied
the ‘form follows function’ principle and assumed load as the
main shape defining and maintaining entity. The results sug-
gest that tubular shape is not self-evident. It is a more surpris-
ing outcome that the presence of axial torsion was crucial, not
to say required in order to achieve realistic shaft structures. In
the literature torsion normally plays a minor role. In the work
of Mittlmeier® the authors found out in a computational study
that torsion cannot explain deviations from the ideal tube. In-
deed torsion does not explain deviations, but it seems to ensure
that the base geometry is the tube. If one takes tubular shape
as given and only looks on a thin cross section, as those authors
did, then you will find no influence of torsion. This is under-
lined when looking on the cases of this study where directed
bending is involved. Here we find only a minor impact on the
thickness of the tubular wall when torsion is in place, but
break-down of the tube without torsion. Others® came to very
similar results when they simulated the development of a long
bone cross section when directed bending was effective. The
tube shape was lost if not compensated by taking the degree
of calcification of the bone tissue into account.

We do not see other computational studies where the influ-
ence of torsion has been an issue. The reason for that might be
that torsional loads in long bones could not be measured very
well in vivo and therefore have been neglected or taken of
minor influence. It is only recently that data have been ob-
tained from smart prostheses after knee replacement®'** that
show that axial torques are present. These values®' have been
taken as reference for our own simulations (see above). A re-
cent experimental in vivo study from our group has yielded
that also in healthy young people axial torsion of substantial
magnitude is present during locomotion™.

If we assume that the anatomy of bone is optimized for the
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load it experiences and want to learn why it has this shape we
have to look closely into the regimes in our model where we
find deviations. Beside the missing torsion we find a high
value of the threshold parameter k, as a possible reason. At
first glance that seems to be a more technical aspect of the sim-
ulation, but we have to be aware that the parameter k plays
the role of the modeling set-point in the sense of the Frost
mechanostat because it rules the onset of bone adsorption. In
our model it also seems to be an important determinant for
bone shape building. The higher the set-point with respect to
the magnitude of the loads or in reverse the lower the forces
with respect to the set-point the more the system seems to pre-
fer deviation from the ideal tube to truss-like open geometries.
Such structures are often found in engineering and structural
biology (e.g. trabecular bone material), but are not typical for
a complete bone. An explanation for this behaviour might be
that higher set-points are more selective. If there are small
local differences in the stress pattern, the slightly higher
stressed areas will be very selectively reinforced. Reinforced
areas draw additional load and reduce stress in other areas so
that this differentiation is amplified.

If we translate this virtual phenomenon into relevance for
real bone adaptation processes we should consequently expect
that disuse based osteoporosis in a long bone shaft should tend
to be irregular in the sense that areas already weakened are
candidates for enhanced bone reduction. But of course at this
point we should not forget that we have simplifications in our
models. E.g., taking anisotropy of bone material properties into
account might change conditions. Future in silico and in vivo
studies will help to clarify this. For another open question our
set-point phenomenon might be relevant as well, namely the
question why spongy (resp. truss-like) structures are preferred
in the epiphyseal region of the bone. Is it only because other
types of forces, especially shear forces, are becoming domi-
nant there, or is it because we are in a lower force regime with
respect to the set-point?

The truss-structures that result from the structure optimizing
process of remodeling strongly resemble principles that have
been applied in engineering for many years as “method of bi-
ologic growth” in Computer Aided Optimization (CAO), the
latter being derived from principles learned from tree growth™.
It is not really a surprise that what is good for nature in finding
optimized structure in tree growth could also be a major prin-
ciple in bone growth and adaptation.

We have found that under the given load conditions, if tor-
sion is present and the set-point is in the right range, straight
tubular geometry is achieved independently of the starting
geometries be it a cylindrical or a cuboid lattice or even a
flexed lattice or tube. Especially, the straightening - or ‘flex-
ure-neutralization’ - could not be expected. In his classic ex-
periment of thought, Frost had argued that the mechanostat
theory alone cannot explain flexure-neutralization, and he had
therefore partly waived his theory and postulated a ‘marrow
factor’ that identified or symbolized whole-bone compres-
sion'®. It is interesting, therefore, that taking the mechanostat
idea to a truly quantitative level the mechanostat can be rec-



onciled with flexure neutralization. With this finding we are
in line with the outcomes of Roberts et al.”’ in their computa-
tional study using a different contour based simulation ap-
proach. This states that the straightening of askew healed bone
in fast modelling and remodelling bones as seen in the bones
of children can be explained as driven by load, thereby sug-
gesting that the guiding influence is bone adsorption to bone
surfaces near high strain energy areas.

Looking at parameters like radius of the tube or thickness
of the wall we find differences depending on starting condi-
tions. While the radius is quite similar, the C/t value starting
from cuboid lattice with smaller diameter is with 2.0 signifi-
cantly smaller than the values of the other runs starting from
other lattices lying around 2.4. The reason for this is a thicker
tube wall. This behaviour is difficult to explain.

Why do we see such rough surfaces in our final structures,
rather than the smooth kind of surfaces seen in nature? This is
equally true for the “endocortical” as well as for the “pe-
riosteal” surfaces, which is rather unsurprising as the mecha-
nisms in our model are identical for both. This is related to the
fact that the simulation can only adapt by adding and removing
little cubes. By chance the volume of the voxel in the present
simulation (2.2*10™* mm?) is quite similar to the v,, the typical
size of a BMU cavity (1.5%¥10* mm?3). However, in reality the
BMU cavities are not cubes, but flat and elongated pits. In ad-
dition the simulation finds its position completely randomly
on the surface, so it might happen that a voxel is taken away
where there is already a pit in existence, leading to ragged sur-
faces with pits up to 2 voxel sizes deep. In principle, this could
be improved by much better resolution both in space and time,
as both temporal and spatial resolution are quite coarse in these
simulation experiments. In this sense a smoother surface can
be expected when enhancing the grid resolution to below that
of the BMU size. The temporal resolution of our model (30-
days per step) only allows for resolving the delta in bone ad-
sorption and resorption during an entire BMU activity.
Modelling resorption in smaller time steps will undoubtedly
lead to smoother surfaces, but would by far exceed current
computing limitations.

Thus, in conclusion, the present exercise, although initiated
as a first approach, has yielded interesting results in that a re-
modeling law without any specific assumptions on surface-or-
ganization like in the ‘three-way rule’ can explain
mechano-adaptation in terms of compactization, corticaliza-
tion, circularization, and flexure neutralization. Of the many
variations possible in our computer model, we have identified
appropriate setting of k,,, the threshold parameter of bone for-
mation, as well as application of torsional loads as powerful
stimuli. This outcome makes us believe that numerical imple-
mentation of mechano-adaption is a fruitful field of research,
and it is intended to prepare a platform, where we can invite
other investigators to use our tools and to join our efforts on
this field.

Having investigated a very narrow aspect of bone mechano-
adaptation, a logical next step will be to study the epiphyseal
region of long bones, too. First results reveal problems arising
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from the different scales of macroscopic shape forming and
mesoscopic trabecular transformation, which we are currently
trying to consolidate with a two scale approach looking at high
resolution trabecular spots inside a matrix of coarser resolution
structures at the macroscopic level.
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