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Boolean networks (BNs) have been widely used as a useful model for molecular

regulatory networks in systems biology. In the state space of BNs, attractors represent

particular cell phenotypes. For targeted therapy of cancer, there is a pressing need to

control the heterogeneity of cellular responses to the targeted drug by reducing the

number of attractors associated with the ill phenotypes of cancer cells. Here, we present

a novel control scheme for global stabilization of BNs to a unique fixed point. Using

a sufficient condition of global stabilization with respect to the adjacency matrix, we

can determine a set of constant controls so that the controlled BN is steered toward

an unspecified fixed point which can then be further transformed to a desired attractor

by subsequent control. Our method is efficient in that it has polynomial complexity with

respect to the number of state variables, while having exponential complexity with respect

to in-degree of BNs. To demonstrate the applicability of the proposed control scheme, we

conduct simulation studies using a regulation influence network describing themetastatic

process of cells and the Mitogen-activated protein kinase (MAPK) signaling network that

is crucial in cancer cell fate determination.

Keywords: Boolean networks (BNs), global stabilization, sequential control, heterogeneity, systems biology

1. INTRODUCTION

As a biology-based interdisciplinary field, systems biology is receiving a great interest in recent
years as it can investigate complex interactions within biological systems using holistic approaches
to biological research (Park et al., 2006; Kim et al., 2007; Murray et al., 2010). Since first proposed
by Kauffman (1969), Boolean networks (BNs) have been successfully applied to modeling gene
regulatory networks in systems biology. Themain reason for utilizing BNs is that they can formulate
simplified dynamics of biological networks while capturing the essential characteristics of the
networks. Since each gene in the network can be considered to have approximately two levels of
activity—active (logical one) or inactive (logical zero), one can define the corresponding Boolean
state variables and Boolean logics that serve as state transition functions.

Attractors are the most important factor of BNs as they represent key cellular phenotypes. It
is known that finding singleton attractors, or fixed points as they are often called, is an NP-hard
problem (Akutsu et al., 1998). Nevertheless, many studies exist in the literature on detecting and
analyzing attractors in the framework of BNs; see, e.g., Helikar and Rogers (2009); Cheng et al.
(2011a); Gonzalez et al. (2006); Zheng et al. (2013); Cheng et al. (2017); Zheng et al. (2016) and
references therein.
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On the other hand, controlling a cellular behavior is becoming
an important issue in systems biology (Liu et al., 2011;
Cornelius et al., 2013; Wang et al., 2016). In particular, inducing
homogeneous cellular responses is critical to deal with tumor
heterogeneity in most of the anti-cancer therapies (Burrell et al.,
2013; Mroz et al., 2015; McGranahan and Swanton, 2017).
Recent studies confirm that non-genetic heterogeneity is the
key driving force for the evolution of cancerous cells (Brock
et al., 2009; Shaffer et al., 2017; Dagogo-Jack and Shaw, 2018).
In terms of attractors, this is a problem of controlling BNs
so that the controlled BN can always converge to one or a
smaller number of attractors among all possible ones. It is most
desirable if we can reduce the number of undesired attractors
selectively. If not, as the second best policy, we can consider the
two-step strategy where we first drive the BN toward a global
attractor and then transform it into a desired one in the second
step. In this way, the desired attractor landscape can have one
fixed point.

In this paper, we address the aforementioned problem, termed
global stabilization of BNs. The main objective is to determine a
set of constant controls that drive the BN toward a unique fixed
point. There are many recent results on global stabilization of
BNs. Notable among them is Cheng et al. (2011b) that presents
necessary and sufficient conditions for global stability of BNs
based on a matrix operation called semi-tensor product (STP).
In Kim et al. (2013), on the other hand, a minimal set of state
variables that make the BN reach a desired attractor is defined as
the control kernel, and a general algorithm for the identification
of the control kernel is presented. In Zañudo and Albert (2015),
attractors are represented by stable motifs and a method is
proposed to identify control targets that ensure the convergence
of the BN to a desired attractor. The approach in Zañudo and
Albert (2015) is remarkable since it combines the structural and
functional information of the BN in finding control targets. In
Zañudo et al. (2017), a scheme of feedback vertex set control
is proposed that drives biological systems described by general
non-linear dynamics (including BNs) toward a desired attractor.
Recently, Biane and Delaplace (2017) proposed an elegant
theoretical scheme that can stabilize a BN in which abduction-
based inference is employed to determine constant control inputs
using integer linear programming (ILP). While their method
guarantees global stabilization, it needs exponential complexity
in deriving control targets. Further, if the dynamics of the BN
alters by mutations, ILP must be re-formulated. On the other
hand, as will be shown later, our method can be applied to BNs
having mutations that cause constitutive activity or inactivity of
proteins without any modification from the problem setting of a
normal case.

In the present study, we adopt the result of Robert (1986) and
Cheng et al. (2011b) to determine constant controls that ensure
global stability of BNs. In particular, we utilize the sufficient
condition that if the influence graph of a BN is acyclic, there
is only one fixed point and from each state there should be
a trajectory to it. Our method takes a general BN and will
search for a set of control inputs so that the resultant influence
graph becomes acyclic. Also, the selection of control inputs relies
on the canalization effect of a state variable. A canalized state

transition function is fixed to a constant when one state variable
belonging to the function as an argument is fixed (Kauffman et al.,
2004). As the number of state transition functions canalized by a
chosen control input increases, the tendency of the controlled BN
directing toward global stabilization is becoming higher. In this
regard, we will use the canalization effect as another criterion for
selecting control inputs.

Note that “global stabilization” in this paper does not mean
that the controlled BN converges to a unique fixed point for
all the possible combinations of external inputs and mutation
profiles. Since activation and inhibition of some genes is
determined only by external inputs representing extra-cellular
micro-environments or mutations occurring to the genes, the
global attractor cannot be always the same. Rather, the essence of
the proposed methodology is the ability to provide a consistent
set of control inputs that can achieve global stabilization
for any given combination of external inputs and mutation
profiles. Though the global attractor may vary depending on
external inputs and mutations, our solution guarantees global
stabilization despite the difference.

The rest of this paper is organized as follows. Basic notations
and terminologies of BNs and relevant notions are introduced
in section 2. In section 3, we propose an algorithm for
determining a set of constant control inputs that make the BN
converge to a unique fixed point. Permutation of the adjacency
matrix and canalization by state variables are incorporated
into an efficient procedure of determining control inputs. To
demonstrate the applicability of the proposed control scheme,
numerical experiments are conducted in section 4 where we
apply the proposed method to a regulation influence network
describing the metastatic process of cells (Cohen et al., 2015)
and an MAPK signaling network regulating cancer cell fate
determination (Grieco et al., 2013). A comparative study with
feedback vertex set control, the control kernel method, and the
stable motif control is also provided to highlight the efficiency of
the proposed scheme.

2. PRELIMINARIES

N is the set of natural numbers and [n]={1, . . . , n} for n ∈ N. For
a finite set A, |A| ∈ N denotes the cardinality of A.

A BN with n binary state variables x1, . . . , xn ∈ {0, 1} is
represented by a Boolean mapping F = (f1, . . . , fn)

T
:{0, 1}n →

{0, 1}n where fi :{0, 1}
n → {0, 1} is the state transition equation

of xi. Index i and xi will be used interchangeably for the ith state
variable. Letting x = (x1, . . . , xn)

T , we express the state evolution
with x : = F(x). Although our study focuses on BNs with
synchronous updating, it can be also applied to asynchronously
updating BNs.

The connectivity of F is described by a Boolean matrix with
respect to the influence graph of F (Paulevé and Richard, 2012),
a topological representation of F in which state variables serve as
nodes and there is an edge xi → xj when fj depends on xi.

Definition 1. Given F, the adjacency matrix A(F) is an
n × n Boolean matrix whose (i, j) entry Ai,j(F) is 1 if

there exists a state (x1, . . . , xj−1, 0, xj+1, . . . , xn)
T such that
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fi(x1, . . . , xj−1, 0, xj+1, . . . , xn) 6= fi(x1, . . . , xj−1, 1, xj+1, . . . , xn);
otherwise, Ai,j(F) = 0.

Ai,j(F) is equal to 1 when xi is directly affected by xj. Letting
A(F) = (ai,j), denote by ari ∈ {0, 1}1×n and acj ∈ {0, 1}n×1 the

ith row vector and jth column vector of (ai,j), respectively. The
norm of each vector is defined as:

|ari | =

n
∑

j = 1

ai,j

|acj | =

n
∑

i = 1

ai,j

|ari | and |acj | are equal to the number of all the incoming and

outgoing edges of xi and xj, respectively. For the row vector ari
and the column vector acj , we define additional parameters:

d(ari ) =

i
∑

j = 1

ai,j

d(acj ) =

j
∑

i = 1

ai,j

to denote the sum of all one entries from the first to ith position
of ari and from the first to jth position of acj , respectively.

Example 1. Consider the following synthetic BN F = (f1, . . . , f8)
T

with

f1(x) = ¬x3 ∧ x7 ∧ ¬x8

f2(x) = (x5 ∨ x6) ∧ ¬x8

f3(x) = x8

f4(x) = x2 ∧ ¬x7 (1)

f5(x) = x2 ∨ x4

f6(x) = x3 ∧ ¬x8

f7(x) = x2 ∧ ¬x8

f8(x) = ¬(x1 ∨ x2) ∧ (x4 ∨ x7)

where ¬, ∧, and ∨ are negation, conjunction, and disjunction
operation, respectively. In view of Definition 1, the adjacency
matrix A(F) = (ai,j) ∈ {0, 1}8×8 is derived as

(ai,j) =

























0 0 1 0 0 0 1 1
0 0 0 0 1 1 0 1
0 0 0 0 0 0 0 1
0 1 0 0 0 0 1 0
0 1 0 1 0 0 0 0
0 0 1 0 0 0 0 1
0 1 0 0 0 0 0 1
1 1 0 1 0 0 1 0

























F has three attractors σ1–σ3 where σ1 and σ2 are fixed points and
σ3 is a cycle with length 2:

σ1 = (1, 1, 0, 0, 1, 0, 1, 0)

σ2 = (0, 0, 0, 0, 0, 0, 0, 0)

σ3 = (0, 1, 0, 0, 1, 1, 0, 1) ⇆ (0, 0, 1, 1, 1, 0, 0, 0)

Figure 1 shows the influence graph of A(F), where the arrows
with pointed heads represent activation and those with bar heads
represent inhibition.

In Cheng et al. (2011b), the necessary and sufficient condition for
global stability of F to a fixed point is presented in terms of the
adjacency matrix.

Theorem 1. A BN F globally converges to a unique fixed point if
and only if there exists k ∈ N such that A(Fk) = 0n×n where Fk

denotes the kth iterate of F.

A(Fk) = 0n×n implies that all the edges between state variables
are disconnected after the kth iteration. Hence F will reach
a unique fixed point for any initial state. However, since the
computation of Fk has exponential complexity with respect to
n, this criterion is difficult to apply when n is large. Cheng et al.
(2011b) also presents a sufficient condition for the existence of a
global attractor with polynomial complexity.

Theorem 2. For a BN F, assume that there exists k ∈ N such
that (A(F))k = 0, where (A(F))k denotes Boolean power in which
the sum and product operations in the matrix multiplication are
logical OR and AND, respectively. Then, F globally converges to a
unique fixed point.

The existence of k ∈ N leading to (A(F))k = 0 can be determined
by checking whether A(F) falls under a specific category as stated
below (Robert, 1986).

Theorem 3. For a BN F, there exists k ∈ N such that (A(F))k = 0

if and only if a permutation matrix H ∈ {0, 1}n×n exists such that
HT×BA(F)×BH is a strictly lower triangular (equivalently, upper
triangular) matrix, where ‘×B’ denotes the Boolean product.

FIGURE 1 | Influence graph of A(F ).
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HT ×B A(F)×B H signifies that state variables of F are reordered
according to H. If HT ×B A(F) ×B H is strictly lower triangular,
the influence graph of F encoded by the adjacency matrix A(F)
turns out to be acyclic as addressed in Robert (1986). Theorem 2
and Theorem 3 stipulate that with this condition, F will converge
to a unique fixed point after some iterations k ∈ N. Further,
(A(F))k = 0 is a sufficient condition for global stabilization since
A(Fk) ≤ (A(F))k for all k.

Example 2. Consider a BN F = (f1, f2, f3, f4)
T with

f1(x) = x2 ∨ x3

f2(x) = ¬x4

f3(x) = x2 ∧ x3

f4(x) = ¬x3

Assume that x3 is fixed to 1 as a control input. With x3 = 1, The
second and third iterate F2 and F3 are derived as

F2 =



















x1 : = ¬x4 ∨ 1

x2 : = x3

x3 : = 1

x4 : = 0

F3 =



















x1 : = 1

x2 : = 1

x3 : = 1

x4 : = 0

Since A(F3) = 04×4, by Theorem 1 the BN globally stabilizes
to (1,1,1,0)T in three steps from any initial state. The adjacency
matrix of F with x3 = 1 is

A(F) =









0 1 1 0
0 0 0 1
0 0 0 0
0 0 1 0









It is easy to compute that (A(F))(4) = 04×4. Hence global stability
of the BN is confirmed again by Theorem 2. The latter can be
proved by employing the following permutation matrix

H =









1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0









that switches the order of x3 and x4. Since

HT ×B A(F)×B H =









0 1 0 1
0 0 1 0
0 0 0 1
0 0 0 0









is strictly upper triangular, by Theorem 3 k ∈ N exists such that
(A(F))(k) = 04×4 (k turns out to be 4 in this case).

For x and P = {(i1, u1), . . . , (i|P|, u|P|)} ⊂ [n] × {0, 1}, let
x̂P be the state vector in which each xik is fixed to a constant
uk, k = 1, . . . , |P|. If P = Ø, x̂Ø = x. For later usage, let
P[n] = {i1, . . . , i|P|} ⊂ [n]. x̂P stands for the state vector wherein
some state variables are selected as constant control inputs or are

canalized by other control inputs. This notation will be utilized
in developing the algorithm for global stabilization.

Assume that in a BN F, xik has been fixed to uk, k = 1, . . . , |P|,
as characterized by P. Then for xj and fi where i, j ∈ [n]−P[n] and
i 6= j, xj is called a canalizing variable of the transition function fi
if there exist u, v ∈ {0, 1} such that setting xj = u in x̂P canalizes
fi(x̂

P) to v. Note that all successive canalizations by xj = u are
considered in checking the canalization of fi, namely, more than
one transition function may be canalized in a sequential way as
the result of setting xj = u. fi is said to be a (u, v)-canalized
transition function of xj with respect to x̂P [a similar definition
is presented in Cheng et al. (2011a)].

To quantify the canalization effect of a state variable, denote
by Cj(P; u) ⊂ [n] − P[n] the index set of all (u, ∗)-canalized
transition functions of xj with respect to x̂P that are derived by
setting xj = u. For instance, if xj = u canalizes fj as well as
another transition function fj′ , we have Cj(P; u) = {j, j′}. It is
convenient to elucidate which setting among xj = 0 and xj = 1
yields greater canalization effect. To this end, define

Tj(P) = max(|Cj(P; 0)|, |Cj(P; 1)|)

as the canalization number of xj with respect to x̂P. Tj(P) equals
the maximum number of canalized transition functions of xj that
are found for all state variables in [n] − P[n]. But to describe
our algorithm of global stabilization, we often need to restrict the
state variables of interest to a subset of [n] − P[n]. Formally, for
Q ⊆ [n]− P[n] define Tj(P,Q), where j ∈ Q, as

Tj(P,Q) = max(|Cj(P; 0) ∩ Q|, |Cj(P; 1) ∩ Q|)

Tj(P,Q) represents the maximum number of canalized transition
functions of xj that are searched only among state variables of Q.

Example 3. Global stabilization by the control input x3 = 1 in
Example 2 can be interpreted as canalization. In view of Example
2, we can set P = Ø and Q = {1, 2, 3, 4}. Once x3 is fixed to 1,
x4 is also fixed to 0 in the second iterate F2. Further, x3 and x4
canalize x1 and x2 to 1 in the third iterate F3. Hence C3(P; 1) = 3.
Similarly, C3(P; 0) = 3 and thus T3(P,Q) = max(3, 3) = 3.

3. METHODS

3.1. Global Stabilization
Although the criterion of Theorem 3 is sufficient but not
necessary, it can serve as a practical tool to determine control
inputs to complex biological networks since A(F) has a
polynomial complexity with respect to n. Specifically, to derive
A(F) from the influence graph of F with n nodes, one must
check whether any pair of nodes are adjacent with each other.
Hence A(F) is computed in O(n2). Based on Theorem 3, we
now propose a scheme of deriving a set of control inputs that
guarantee global stabilization of a BN F. Theorem 3 implies
that if the adjacency matrix or one of its permuted matrices is
strictly lower triangular, F converges to a unique fixed point. To
utilize this result, we first reorder state variables of F so that the
permuted adjacency matrix can be as similar to a strictly lower
triangular matrix as possible. If the permuted adjacency matrix
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turns out to be strictly lower triangular, no assignment of control
inputs is necessary. Otherwise, we select in a sequential way a set
of state variables that will be used as control inputs. In terms of
the graph representation, the latter scheme is equal to making the
influence graph of F acyclic by fixing some nodes, thus removing
their input edges and potentially breaking cycles.

Once a state variable xi is selected as a control input, all the
incoming edges of xi are disconnected, leading to ari = 01×n. In
terms of global stabilization, we can also regard that the outgoing
edges of xi are ‘disconnected’ since the influence of xi on other
state variables becomes constant as does the value of xi. Hence
we will set aci = 0n×1 in our algorithm for determining control
inputs. In this regard, it would be best if we first select the state
variable that has the greatest outgoing edges in its upper right
entries of the (permuted) adjacency matrix. Moreover, we must
consider the canalization effect of the selected state variable.
If the transition function of another state variable is canalized
by the selected state variable, all the corresponding entries of
the adjacency matrix also degenerate into zeros. How many
state variables are canalized, as is quantified by the canalization
number, will be also utilized as a criterion to select the control
input. The following algorithm is the main result of this paper.

Algorithm 1. Derivation of control inputs that make the
adjacency matrix strictly lower triangular:

Given a BN F with the adjacency matrix A(F) = (ai,j), we
determine a set of control inputs that ensures global stability of F.
Set P = Ø and Q = [n].

1. Permute (ai,j) and update Q as follows.

a. Sort the row vectors into an ascending order of the row
vector norm. Letting i(1), . . . , i(n) be the sorted indices, we
have

|ari(1)| ≤ |ari(2)| ≤ · · · ≤ |ari(n)|

b. Permute (ai,j) according to i(1), . . . , i(n), i.e., reorder the
state variables so that xi(k) is placed on the kth position for
all k ∈ [n]. Let (ãi,j) be the permuted matrix of (ai,j).

c. Set Q = Q− {j ∈ Q|d(ãcj ) = 0}.

2. Search for j∗ ∈ Q as follows.

a. Let K ⊂ Q be the set of indices such that

k = argmax
j∈Q

d(ãcj ) ∀k ∈ K

b. Among the entries of K, find j∗ such that

j∗ = argmax
k∈K

Tk(P,Q)

3. Modify (ãi,j) and update P and Q as follows.

a. Let u∗ ∈ {0, 1} be the value of xj∗ such that Tj∗ (P,Q) =

|Cj∗ (P; u
∗) ∩ Q|.

b. Set

ãrj∗ = ãrh = 01×n

ãcj∗ = ãch = 0n×1 ∀h ∈ Cj∗ (P; u
∗) ∩ Q

c. Update P and Q by

P = P ∪ {(j∗, u∗)}

Q = Q− {j∗} ∪ Cj∗ (P; u
∗)

4. If (ãi,j) is strictly lower triangular, terminate the algorithm. The
solution to global stabilization of F is

xj1 = u1, . . . , xj|P| = u|P|

where P = {(j1, u1), . . . , (j|P|, u|P|)}. Otherwise, return to Step 2.

In the above algorithm, P denotes the set of selected control
inputs so far and Q represents eligible candidates that can be
selected as control inputs in the next step (P[n] ∩ Q = Ø). Step
1 describes the permutation of (ai,j) by reordering state variables.
Since the permuted adjacency matrix must be akin to a strictly
lower triangular one, we reorder xi’s in an ascending order of the
norm of the corresponding row vectors, that is, those with more
incoming edges are placed on later positions. If d(ãcj ) = 0, xj
needs not be selected as a control input since the present form
of its column vector ãcj is already a component of a strictly lower

triangular matrix. Thus xj is removed from the candidate set Q
(Step 1.c).

In Step 2, we derive the index j∗ of the state variable that, if
selected as a control input, can modify (ãi,j) so that the changed
matrix approaches a strictly lower triangular matrix the most.
The best candidate would be the one having the most outgoing
edges in its upper right entries, which is represented by max d(ãcj )

(Step 2.a). If more than one state variable have the maximum
d(ãcj ), we choose the variable that has the greatest canalization

number (Step 2.b), since the corresponding row and column
vectors of all canalized state variables degenerate into zeros (Step
3.b), hence contributing to the modification of (ãi,j) to a strictly
lower triangular matrix.

Once selected as a control input or canalized by any selected
control input, the state variable must be excluded from the
candidate set Q (Step 3.c). If the modified adjacency matrix is
strictly lower triangular, the assignment of constant controls in
P is the solution to global stabilization (Step 4). Otherwise, the
foregoing steps are iterated until the solution is derived.

Example 4. Using Algorithm 1, let us derive the solution to global
stabilization of F in Example 1. According to Step 1.a–b of
Algorithm 1, we first permute (ai,j) by reordering state variables in
an ascending order of the norm of their row vectors. The permuted
adjacency matrix (ãi,j) is shown in Table 1. Here, |ar8| = 4, |ar2| =
3, and so on. Since d(ãcj ) = 0 for all j ∈ {3, 7, 6, 4, 5, 1}, we set

Q = {2, 8} by Step 1.c. This means that only the outgoing edges of
x2 and x8 are in the upper right positions of the permuted (ãi,j).
Figure 2A illustrates this topology where the outgoing edges of x2
and x8 are drawn in orange and green, respectively. Since d(ãc8) =
5 > d(ãc2) = 3, j∗ = 8 is selected as the first control input by Step
2. As the value of x8 is made constant, the incoming/outgoing edges
of x8 are removed from the influence graph as shown in Figure 2B.
Referring to (1), further, f2 is (1, 0)-canalized by x8. Hence x8 = 1 is
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TABLE 1 | Permuted adjacency matrix (ãi,j ).

|ar
i
| x3 x7 x6 x4 x5 x1 x2 x8

1 0 0 0 0 0 0 0 1

2 0 0 0 0 0 0 1 1

2 1 0 0 0 0 0 0 1

2 0 1 0 0 0 0 1 0

2 0 0 0 1 0 0 1 0

3 1 1 0 0 0 0 0 1

3 0 0 1 0 1 0 0 1

4 0 1 0 1 0 1 1 0

the value that maximally canalizes the remaining variables of Q—
single element x2 in this case. Applying Step 3.b, we modify (ãi,j)
to

(ãi,j) =

























0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

























Since the above matrix is strictly lower triangular, we terminate
the algorithm by determining the solution x8 = 1. The resultant
influence graph becomes acyclic as shown in Figure 2C. The
global fixed point obtained by the control input x8 = 1 is
x∗ = (0, 0, 1, 0, 0, 0, 0, 1)T , which differs from σ1–σ3 derived in
Example 1.

To discuss computational complexity of Algorithm 1, let s ∈ N

be the maximum number of incoming edges of a node in F. In
Step 1.a, sorting the row vectors needs n2 operations in the worst
case. Since Step 1.b and Step 1.c can be done in one operation,
respectively, Step 1 has the maximum n2 + 2 operations. Step 2.a
needs n operations in the worst case. In Step 2.b, on the other
hand, we need to derive the canalization number of each state
variable. For a state variable with l incoming edges, wemust check
whether the corresponding state transition function is fixed to a
constant for all 2l−1 combinations of arguments (one argument
is the canalizing variable). Hence Step 2.b needs n2s−1 operations
in the worst case. Step 3 has four operations (Step 3.a needs
two operations to determine u∗), and finally Step 4 has just one
operation. Combining these factors, we conclude that Algorithm
1 can be computed in O(n2 + n2s−1). In other words, Algorithm
1 has polynomial complexity with respect to the number of
state variables, while having exponential complexity with respect
to the number of incoming edges. When the considered BN
has a state variable with a huge number of incoming edges,
applying Algorithm 1 may be computationally demanding. Still,
Algorithm 1 is useful since it is known that BNs representing
biological systems are very sparse in general—the average degree
of a node is about two (Leclerc, 2008).

As duality of making a strictly lower triangular matrix, we can
adjust Algorithm 1 so as to search for a set of control inputs that

FIGURE 2 | Change of the influence graph of F: (A) before control, (B)

removal of incoming/outgoing edges of x8 by setting x8 = 1, and (C) removal

of incoming/outgoing edges of x2 by canalization (the resultant influence graph

becomes acyclic).

make the resulting adjacency matrix strictly upper triangular. To
this end, we reorder state variables according to an ascending
order of the column vector norm |acj |, find the candidate control

input that has the greatest |d(ari )|, and so on. The following
algorithm is analyzed in a similar way to Algorithm 1.

Algorithm 2. Derivation of control inputs that make the
adjacency matrix strictly upper triangular:

Given a BN F with the adjacency matrix A(F) = (ai,j), we
determine a set of control inputs that ensures global stability of F.
Set P = Ø and Q = [n].
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1. Permute (ai,j) and update Q as follows.

a. Sort the column vectors into an ascending order of the
column vector norm. Letting j(1), . . . , j(n) be the sorted
indices, we have

|acj(1)| ≤ |acj(2)| ≤ · · · ≤ |acj(n)|

b. Permute (ai,j) according to j(1), . . . , j(n), i.e., reorder the
state variables so that xj(k) is placed on the kth position for
all k ∈ [n]. Let (ãi,j) be the permuted matrix of (ai,j).

c. Set Q = Q− {i ∈ Q|d(ãri ) = 0}.

2. Search for i∗ ∈ Q as follows.

a. Let K ⊂ Q be the set of indices such that

k = argmax
i∈Q

d(ãri ) ∀k ∈ K

b. Among the entries of K, find i∗ such that

i∗ = argmax
k∈K

Tk(P,Q)

3. Modify (ãi,j) and update P and Q as follows.

a. Let u∗ ∈ {0, 1} be the value of xi∗ such that Ti∗ (P,Q) =

|Ci∗ (P; u
∗) ∩ Q|.

b. Set

ãri∗ = ãrh = 01×n

ãci∗ = ãch = 0n×1 ∀h ∈ Ci∗ (P; u
∗) ∩ Q

c. Update P and Q by

P = P ∪ {(i∗, u∗)}

Q = Q− {i∗} ∪ Ci∗ (P; u
∗)

4. If (ãi,j) is strictly upper triangular, terminate the algorithm.
The solution to global stabilization of F is

xi1 = u1, . . . , xi|P| = u|P|

where P = {(i1, u1), . . . , (i|P|, u|P|)}. Otherwise, return to Step 2.

Algorithm 2 is identical to Algorithm 1 except that (i) the column
vector norm |acj | is employed instead of the row vector norm

|ari | in permuting the adjacency matrix (Step 1), and (ii) d(ãri ),
the number of 1’s in off-diagonal entries of a row, replaces
its column counterpart d(ãcj ) in determining the control input

(Step 2). Algorithm 1 is suitable for applying to BNs in which
state variables with a large number of outgoing edges produce
large canalization numbers. On the other hand, Algorithm 2
is pertinent to apply to BNs where state variables with a large
number of incoming edges have a tendency to have large
canalization numbers.

Example 5. Let us apply Algorithm 2 to global stabilization of F in
Example 1. We first permute (ai,j) according to an ascending order
of the column vector norm. The permuted adjacency matrix (ãi,j) is

shown in Table 2. After applying Step 2–4, we obtain P = {(8, 1)},
i.e., x8 = 1 as the control input that achieves global stabilization.
Thus the control inputs and the global fixed point are the same as
those derived using Algorithm 1 in Example 4.

The proposed algorithm can be applied without modification
to the case that some state variables serve as external inputs or
outputs. We first remove input and output variables from the
entries of the adjacency matrix. Then we derive the adjacency
matrix by setting the values of external inputs and continue to
apply Algorithm 1. The proposed algorithm is also applicable to
the case that some state variables are disabled by mutation. For
instance, if xi is knocked out by mutation, its value is fixed to
xi = 0. In a similar way to Step 3.b of Algorithm 1, to deal
with mutated variables we refine the adjacency matrix a priori
by setting ari = ar

h
= 01×n and aci = ac

h
= 0n×1 for all h ∈ [n]

such that xh is canalized by xi = 0. Moreover, our algorithm can
deal with the existence of uncontrollable state variables, namely
those state variables that cannot be used as control inputs. Let
Qf ⊂ [n] be the index set of uncontrollable state variables. The
latter constraint can be easily implemented in the algorithm by
setting Q : = [n]− Qf instead of Q = [n] in the initial phase.

As mentioned in Introduction, a significant advantage of the
proposed algorithm is that it always guarantees a solution to
global stabilization for any values of the external inputs and
fixed values of mutated variables. Unless the external inputs and
mutations influence the variables that are otherwise to be selected
as control inputs, the algorithm gives the same solution without
regard to the external inputs and mutations.

3.2. Sequential Control
Once the heterogeneity of cellular responses is eliminated by the
proposed scheme of global stabilization, it would be a reasonable
follow-up measure to investigate whether there is a subsequent
scheme that can drive the BN further from the unique fixed
point to another stable state with a desirable feature. We may
realize this objective by applying various control strategies for
BNs (Cheng et al., 2011a; Kim et al., 2013; Mochizuki et al.,
2013). In doing so, the contribution of our study to reduce the
heterogeneity of the BN strewn with many mutations and input
variations will play a role as an important precedence.

In this paper, we present one of straightforward subsequent
schemes—to perturb the values of external inputs after the BN
reaches the unique fixed point. We first assume that among n
state variables of the considered BN, m ones (1 ≤ m < n)

TABLE 2 | Permuted adjacency matrix (ãi,j ).

x1 0 0 0 0 1 1 0 1

x6 0 0 0 0 1 0 0 1

x5 0 0 0 1 0 0 1 0

x4 0 0 0 0 0 1 1 0

x3 0 0 0 0 0 0 0 1

x7 0 0 0 0 0 0 1 1

x2 0 1 1 0 0 0 0 1

x8 1 0 0 1 0 1 1 0

|ac
j
| 1 1 1 2 2 3 4 5
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serve as external inputs, that is, they have no incoming edges in
the corresponding influence graph. We also assume that some
bio-markers of the cell are available to determine that the BN
reaches an attractor and that a desirable phenotype turns on a
specific combination of bio-markers. The proposed sequential
control scheme combining global stabilization and perturbation
of external inputs is addressed as follows.

Step 1: Given a BN F, apply Algorithm 1 (or Algorithm 2)
to derive the set of constant control inputs P =

{(j1, u1), . . . , (j|P|, u|P|)} that ensures global stabilization
of F. Find the unique fixed point x∗ ∈ {0, 1}n that will be
reached in response to P.

Step 2: Allocating x∗ as the initial state, apply all 2m input
combinations to F separately during which |P| state
variables xj1 , . . . , xj|P| that were used as control inputs are
set to be free variables again.

Step 3: Check whether there exists an input combination that
drives F from x∗ to another fixed point with the desirable
phenotype.

Step 4: If no such input combination is found, the sequential
control scheme fails to achieve global stabilization to
a desired fixed point. Else if there are a number of
input combinations that succeed in favorable global
stabilization, select the minimally perturbed input
combination, namely, the input combination in which
the number of activated external inputs is minimum.

As elucidated in Step 4, this control strategy does not always
give a solution, as the reachability of the BN starting from the
unique fixed point x∗ may not be expanded enough by perturbing
external inputs. Nevertheless, this method is worth attempting
since it is very easy to apply and computationally tractable
(usually the number of external inputs m is small). Once we
derive the input combination that will be applied in the second
step, we can conduct the overall procedure of the sequential
control scheme as follows.

1. Provide P to the considered BN.
2. Determine the convergence of the BN to x∗ by observing

the corresponding bio-markers. When the convergence is
ensured, stop the transmission of P.

3. Engage in the second control step by providing the input
combination that is derived in the preceding algorithm.

4. Confirm the convergence of the BN to the desired fixed
point by observing that the bio-markers change to the
corresponding values.

The practicality of the sequential control scheme will be validated
in our numerical experiments.

4. APPLICATION TO BIOLOGICAL
SYSTEMS

4.1. Metastasis Influence Network
To validate the practicality of the proposed algorithm, we apply it
to two real biological systems. First, let us consider an influence
network describing the metastatic process of cells (Cohen et al.,
2015). The network graph of the metastasis influence network is

shown in Figure 3. There are two external inputs, ECMicroenv
and DNADamage, and one output, Metastasis. ECMicroenv =

1 and 0 means that the effect of the extracellular micro-
environment turns on and off, respectively. DNADamage =

1 implies that a DNA damage occurs to the considered cell.
Excluding the inputs and output, the BN of Figure 3 has 29 free
variables (n = 29). According to Cohen et al. (2015), it has nine
possible fixed points in total.

Referring to Algorithm 1, we first compute the adjacency
matrix (ai,j) and permute it to (ãi,j) according to the norm of
the row vector. Display of (ai,j) and (ãi,j) is omitted here for
space limit and the names of proteins shown in Figure 3 will
take place of the corresponding indices. By Step 2, we derive
K = {k ∈ Q|k = argmax d(ãcj )} where Q = [n] = {1, . . . , 29}.

It turns out that K is a monotone set K = {p53}. Hence we have
j∗ = p53.

By Step 3.a, we replace p53 with 0 and 1 respectively to the
Boolean logic rules (Supplementary Table S1) to compute the
canalization number. It is found that by setting p53=1, eight state
variables AKT1, AKT2, CTNNB1, NICD, p63, p73, SNAI1, and
SNAI2 are maximally canalized to logic 0. For instance, the state
transition equation of AKT1 is (see Supplementary Table S1 and
Cohen et al., 2015)

AKT1 = CTNNB1 ∧ (NICD ∨ TGFbeta ∨ GF ∨ CDH2)

∧ ¬p53 ∧ ¬miR34 ∧ ¬CDH1

Since p53 is included in the equation in the form “∧¬p53,” p53=
1 clearly leads to AKT1= 0.

Further, we investigate whether other variables are
subsequently canalized by these first-canalized variables
and so forth. Interestingly, all the other variables are canalized
to fixed values. Therefore, we find that p53 = 1 is a solution to
global stabilization of the metastasis influence network (refer
to Supplementary Dataset S4 for a Python script of Algorithm
1 for the Metastasis influence network). To confirm our result,
we use a Python package called BooleanNet (Albert et al.,
2008; BooleanNet, 2018) to search for attractors of the BN
with the control input p53 = 1 (see also the Supplementary
Material BooleanNet). Table 3 is the outcome of the search
given every possible combination of two inputs DNADamage
and ECMicroenv. We ensure the validity of the proposed scheme
since Table 3 equals the result of our scheme.

An examination of Table 3 shows that four attractors attr1–
attr4 are almost identical with each other (only the value of
TGFbeta differs). Hence it can be said that the proposed scheme
guarantees homogenous stable states of the considered BN
against heterogeneity in terms of external inputs. Further, all the
obtained attractors are desirable since they ensure programmed
cell death and no metastasis is manifested (Apoptosis = 1 and
Metastasis = 0 in all attractors). This result complies with the
analysis in Cohen et al. (2015) that unless the mutation activating
NICD and inhibiting p53 occurs, the network will converge to
apoptotic stable states.

Though any subsequent control is unnecessary in this case,
we note that the proposed algorithm of global stabilization is
not able to specify the features of the obtained fixed points in
general since it does not use any parameter associated with the
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FIGURE 3 | Boolean network implementing a metastasis influence network (Cohen et al., 2015). Some nodes represent biochemical species (proteins, miRNAs,

processes, etc.) and others represent phenotypes, and edges represent activating (blue) or inhibitory (red) influences of one node onto other node. The BN has two

input nodes ECMicroenv and DNADamage and one output node Metastasis, drawn in rectangles.

desirable phenotypes. Hence, if the obtained fixed points do not
have desirable features, we must apply the second control step.
The latter problem will be discussed in the next case study. We
also note that Algorithm 2 produces the same result p53 = 1 for
this case study.

In Cohen et al. (2015), main consideration was devoted
to constructing a logical model describing metastasis and to
understanding the role of involved gene alterations. While some
predictions were made on pathways and molecules triggering
metastasis, no methodology was presented to determine control
targets that can globally stabilize the metastasis influence
network. Hence, our study can expedite further analysis of the
metastasis influence network for control purposes.

4.2. MAPK Signaling Network
Next, we apply the proposed algorithm to global stabilization of
the Mitogen-activated protein kinase (MAPK) signaling network
that describes the mechanism underlying the influence of the
MAPK signaling network on cancer cell fate decision (Grieco
et al., 2013). Represented as a BN shown in Figure 4, the
MAPK signaling network has 53 components in total, among
which there are four inputs (DNA_damage, EGFR_stimulus,

FGFR3_stimulus, and TGFBR_stimulus) and three outputs
(Proliferation, Apoptosis, and Growth_Arrest).

We have applied the proposed algorithm to the MAPK
signaling network with various combinations of input sets and
mutation settings, which are specified in Supplementary Dataset
S3 of Grieco et al. (2013). For all the possible input combinations
and mutation settings, our algorithm produces the same solution
set, p38= 1 and GRB2= 1, that globally stabilizes the considered
network (both Algorithms 1 and 2 derive the same result; refer
to Supplementary Dataset S5 for a Python script of Algorithm
1). Table 4 is a list of selected results that shows attractors
with respect to five combinations of external inputs and three
mutation settings, denoted by r4, r9, and r10 following Grieco
et al. (2013); refer to Supplementary Table S3 for attractors
obtained with respect to all input combinations.

This results imply a remarkable virtue of the proposed
algorithm, i.e., despite differences in activations of the external
inputs and mutation profiles, our scheme guarantees the
global stabilization of the considered network. According to
Supplementary Dataset S3 of Grieco et al. (2013), the number
of attractors for each mutation setting is 3 for r4, 1 for r9, and 2
for r10. By contrast, applying the derived control inputs p38 = 1
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TABLE 3 | Unique fixed points with p53 = 1.

Gene attr1 attr2 attr3 attr4

DNADamage 0 0 1 1

ECMicroenv 0 1 0 1

AKT1 0 0 0 0

AKT2 0 0 0 0

CDH1 1 1 1 1

CDH2 0 0 0 0

CTNNB1 0 0 0 0

DKK1 0 0 0 0

ERK 0 0 0 0

GF 0 0 0 0

miR200 1 1 1 1

miR203 1 1 1 1

miR34 0 0 0 0

NICD 0 0 0 0

p21 1 1 1 1

p53 1 1 1 1

p63 0 0 0 0

p73 0 0 0 0

SMAD 0 0 0 0

SNAI1 0 0 0 0

SNAI2 0 0 0 0

TGFbeta 0 1 0 1

TWIST1 0 0 0 0

VIM 0 0 0 0

ZEB1 0 0 0 0

ZEB2 0 0 0 0

CellCycleArrest 1 1 1 1

Apoptosis 1 1 1 1

EMT 0 0 0 0

Invasion 0 0 0 0

Migration 0 0 0 0

Metastasis 0 0 0 0

The rows of two external inputs and one output, and the key gene, Apoptosis, are written

in bold.

and GRB2 = 1, we ensure that the network converges to a fixed
point for any mutation profile. Moreover, as observed in Table 4,
the global attractor for each case of the input combination and
mutation setting is very similar to one another. For instance, in
the attractors for all 24 = 16 input combinations (among which
only five are displayed in columns 2–6 of Table 4), only five state
variables, ATM, SMAD, TAK1, TAOK, and TGFBR, have different
values. The attractors obtained under mutation settings also have
strong similarity with each other.

The reason for this similarity is obvious. Note that the
proposed algorithm always searches for the target variables and
corresponding values according to the number of outgoing edges
and the canalization number (Algorithms 1 and 2). Since the
latter values are little influenced by perturbation of external
inputs, the result will be the same in most cases. Only state
variables having incoming edges from external inputs or from
those variables that are directly connected with external inputs
will differ. In the above case, for example, ATM will vary

according to the inputDNA_damage sinceATM=DNA_damage
(see Supplementary Table S2).

Once heterogeneity of cellular responses is minimized by
global stabilization, we can apply further control schemes to
take the derived global attractor toward another attractor with
desirable features. In this numerical experiment, we try to achieve
this goal by perturbing four external inputs as presented in
section 3.2. An apoptotic stable state of the MAPK signaling
network is characterized by Apoptosis = Growth_Arrest = 1 and
Proliferation = 0 (Grieco et al., 2013). Referring to Table 4, six
left most attractors are apoptotic stable states while those of
mutations r9 and r10 are not. We apply every combination of
input perturbations to the two non-apoptotic attractors in order
to conduct the second control. Note that in the second step, the
foregoing control inputs p38 = GRB2 = 1 are not employed any
more and p38 and GRB2 are released as free variables.

Table 5 shows the results of perturbation of external
inputs after global stabilization for mutations r9 and r10 (see
Supplementary Table S4 for complete description of attractors).
Note that there are a number of input combinations among
16 candidates achieving the goal, namely, invoking the BN to
reach apoptotic stable states in both mutations. We select the
case of DNA_damage = TGFBR_stimulus = 1 as our solution
since it needs the minimum number of input perturbations. The
sequential control procedure for the MAPK signaling network
for mutations r4, r9, and r10 is summarized as follows (see also
section 3.2).

1. Apply control inputs p38 = GRB2 = 1 to drive the network
toward the global fixed point of each mutation setting (Table 4
and Supplementary Table S3).

2. Determine the convergence of the network by observing the
change of bio-markers (see Grieco et al., 2013).

3. Conduct the second control step by applying DNA_damage
= TGFBR_stimulus = 1 so as to drive the network toward
apoptotic attractors (Table 5 and Supplementary Table S4).

Like the foregoing case study, the present result can contribute

to determining control targets for the MAPK signaling network
since the original study (Grieco et al., 2013) did not consider the

latter topic. The major concern of Grieco et al. (2013) was to

present a logical model of the MAPK signaling network and to
elucidate how MAPK signaling affects cell proliferation, growth

arrest, apoptotic cell death, etc. Grieco et al. (2013) applied

known biological input/output data to the MAPK signaling
network, based on which the underlying mechanisms were

analyzed in detail. Note that such analysis was focused on
understanding the mechanism with respect to feedbacks and

cross-talks inherent in the model, not on determining control

targets for global stabilization as done in this study.
As mentioned, the proposed algorithm cannot specify the

feature of the unique fixed point in a desirable way, which may
impose a burden on the second control step. But our sequential
control scheme can still be useful, especially in controlling cancer
cells, for the following reasons:

(i) First, for cancer cells, removing non-genetic heterogeneity
via global stabilization is a very significant phase itself
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FIGURE 4 | Boolean network implementing the MAPK signaling network (Grieco et al., 2013). Each node denotes a model component. Model inputs and outputs are

drawn in rectangles, and blue arrows and red T-arrows denote positive and negative regulations, respectively.

that should be achieved even though the resulting attractor
is unsatisfactory. Sequential control of cancer cells, i.e.,
initially blocking primary mutation effects and cross-talks,
and subsequently applying combinatorial targeted drugs for
additional control, has been an active area of research in
recent years [see, e.g., Lee et al. (2012); Vijayaraghavalu et al.
(2012)].

(ii) Next, while many existing targeted drugs aim at inhibiting
or activating intracellular molecules (mainly signaling
proteins) of cancer cells, studies on tackling cancer cells by
manipulating tumor micro-environments are also receiving
a great attention. Since tumor micro-environments are
characterized by external inputs in BNs, our sequential
control schemewith external input control in the second step
can be combined with the related methods [e.g., Bissell and
Hines (2011); Quail and Joyce (2013)].

4.3. Comparative Study
To conduct a comparative study, we have applied three
representative global stabilization schemes—feedback vertex set

(FVS) control (Fiedler et al., 2013), the control kernel (CK)
method (Kim et al., 2013), and the stable motif (SM) method
(Zañudo and Albert, 2015) to the control problem of the MAPK
signaling network discussed in the previous subsection.

(i) Feedback vertex set control: In graph theory, an FVS is
a subset of nodes in the absence of which the digraph becomes
acyclic, i.e., it contains no directed cycles (Fiedler et al., 2013;
Liu and Barabàsi, 2016). Hence if constant control inputs are
assigned to the state variables of an FVS, the resultant BN
will eventually converge to a unique fixed point. To apply FVS
control, we first identify a desired fixed point that is possessed by
the considered BN, namely, a fixed point showing the desirable
phenotype (Apoptosis = Growth_Arrest = 1 and Proliferation =
0). To this end, we randomly generated 100,000 initial states and
made the MAPK signaling network evolve from each initial state.
In this near brute-force searching, we found eight fixed points
for r9 mutation and four ones for r10 mutation that have the
desirable phenotype. We select a desired fixed point from each
attractor set for r9 and r10 mutations, respectively, and derive
the minimal FVS. Then we set the values of FVS according to the
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TABLE 4 | Unique single attractors with p38 = 1 and GRB2 = 1 for various input combinations and mutation settings.

Gene Input set to 1 Mutation settings

None DNA_ EGFR_ FGFR3_ TGFBR_ FGFR3 = 1 EGFR = 1 FGFR3 = 1

damage stimulus stimulus stimulus (r4) p14 = 0 p14 = 0

(r9) (r10)

AKT 0 0 0 0 0 0 1 1

AP1 1 1 1 1 1 1 0 0

ATF2 1 1 1 1 1 1 1 1

ATM 0 1 0 0 0 0 0 0

Apoptosis 1 1 1 1 1 1 0 0

BCL2 0 0 0 0 0 0 1 1

CREB 1 1 1 1 1 1 1 1

DUSP1 1 1 1 1 1 1 1 1

EGFR 0 0 0 0 0 0 1 0

ELK1 1 1 1 1 1 1 1 1

ERK 0 0 0 0 0 0 0 0

FGFR3 0 0 0 0 0 1 0 1

FOS 0 0 0 0 0 0 0 0

FOXO3 1 1 1 1 1 1 0 0

FRS2 0 0 0 0 0 0 0 0

GAB1 1 1 1 1 1 1 1 1

GADD45 1 1 1 1 1 1 0 0

GRB2 1 1 1 1 1 1 1 1

Growth_Arrest 1 1 1 1 1 1 0 0

JNK 1 1 1 1 1 1 0 0

JUN 1 1 1 1 1 1 0 0

MAP3K1_3 1 1 1 1 1 1 1 1

MAX 1 1 1 1 1 1 1 1

MDM2 0 0 0 0 0 0 1 1

MEK1_2 0 0 0 0 0 0 0 0

MSK 1 1 1 1 1 1 1 1

MTK1 1 1 1 1 1 1 0 0

MYC 1 1 1 1 1 1 1 1

PDK1 1 1 1 1 1 1 1 1

PI3K 1 1 1 1 1 1 1 1

PKC 0 0 0 0 0 1 1 1

PLCG 0 0 0 0 0 1 1 1

PPP2CA 1 1 1 1 1 1 1 1

PTEN 1 1 1 1 1 1 0 0

Proliferation 0 0 0 0 0 0 0 0

RAF 1 1 1 1 1 1 0 0

RAS 1 1 1 1 1 1 1 1

RSK 0 0 0 0 0 0 0 0

SMAD 0 0 0 0 1 0 0 0

SOS 1 1 1 1 1 1 1 1

SPRY 0 0 0 0 0 0 0 0

TAK1 0 0 0 0 1 0 0 0

TAOK 0 1 0 0 0 0 0 0

TGFBR 0 0 0 0 1 0 0 0

p14 1 1 1 1 1 1 0 0

p21 1 1 1 1 1 1 0 0

p38 1 1 1 1 1 1 1 1

p53 1 1 1 1 1 1 0 0

p70 0 0 0 0 0 0 0 0

The rows of three genes composing the desirable phenotype are written in bold.
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TABLE 5 | Results of perturbation of external inputs after global stabilization by p38 = 1 and GRB2 = 1.

Mutation setting External inputs Key genes in attractors

DNA_ EGFR_ FGFR3_ TGFBR_ Apoptosis Growth_Arrest Proliferation

damage stimulus stimulus stimulus

r9 0 0 0 0 Cycle Cycle Cycle

0 0 0 1 0 0 0

0 0 1 0 Cycle Cycle Cycle

0 0 1 1 0 0 0

0 1 0 0 Cycle Cycle Cycle

0 1 0 1 0 0 0

0 1 1 0 Cycle Cycle Cycle

0 1 1 1 0 0 0

1 0 0 0 1 1 0

1 0 0 1 1 1 0

1 0 1 0 1 1 0

1 0 1 1 1 1 0

1 1 0 0 1 1 0

1 1 0 1 1 1 0

1 1 1 0 1 1 0

1 1 1 1 1 1 0

r10 0 0 0 0 Cycle Cycle Cycle

0 0 0 1 0 0 0

0 0 1 0 Cycle Cycle Cycle

0 0 1 1 0 0 0

0 1 0 0 Cycle Cycle Cycle

0 1 0 1 0 0 0

0 1 1 0 Cycle Cycle Cycle

0 1 1 1 0 0 0

1 0 0 0 Cycle Cycle Cycle

1 0 0 1 1 1 0

1 0 1 0 Cycle Cycle Cycle

1 0 1 1 1 1 0

1 1 0 0 Cycle Cycle Cycle

1 1 0 1 1 1 0

1 1 1 0 Cycle Cycle Cycle

1 1 1 1 1 1 0

The rows of the selected solution input combination are written in bold.

corresponding values in the selected fixed point. Although some
cyclic attractors also have the desirable phenotype, we did not use
them for the purpose of focusing on fixed points.

Referring to Supplementary Dataset S1, we found that
Attractor 2 of r9 mutation and Attractor 21 of r10 mutation
are the same. Hence by selecting this fixed point, we can
achieve global stabilization of the BN with desirable phenotype
irrespective of the existence of both r9 and r10mutations.Table 6
shows the minimal FVSs that take the MAPK signaling network
toward the desired fixed point. The result of Table 6 is similar
to that of Table 5 in that both solve the global stabilization
problem by activating two external inputs (DNA_damage and
TGFBR_stimulus) and by setting some state variables to be
constant controls.

In term of accessibility of the modeling information, FVS
control is superior since it does not need the exact Boolean logic

of the BN. On the other hand, the solution of the proposed
scheme is more efficient in this numerical experiment since the
number of control inputs is less than that of FVS control. In fact,
our solution set p38= 1 andGRB2= 1 is included in the minimal
FVS as seen in Table 6.

(ii) Control kernel method: In Kim et al. (2013), the control
kernel is defined as the minimal set of nodes that need to be
regulated to drive the network to converge to a desired attractor
for all initial states. A genetic algorithm (GA) is employed to
find the minimal set among randomly selected candidate node
sets. Following the method addressed in Kim et al. (2013),
we found the control kernel that drives the MAPK signaling
network to a fixed point with the desirable phenotype (Apoptosis
= Growth_Arrest = 1 and Proliferation = 0). Since global
stabilization must be valid for either r9 or r10 mutation, we
searched for the control kernel for each mutation case separately
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and extracted common control kernels, if any. The control
kernel method usually chooses a desired fixed point, based on
which an appropriate control kernel is explored. But we did
not specify any desired fixed point in this case study. Instead,
we adapted the control kernel algorithm and discovered feasible
control kernels and their corresponding fixed points yielding the
desirable phenotype simultaneously in the search space of the
control kernel method.

It is found that no control kernel having size one exists
that achieves global stabilization of the BN. With the size
of the control kernel set to be two, we found nine control
kernels that solve the control problem, as shown in Table 7 and
Supplementary Dataset S2. Interestingly, our solution set p38=
1 and GRB2=1 is not included in the derived control kernels.
This is due to the property of our adapted searching algorithm
that it explores the control kernel and a desired attractor in
one single step. The result of Table 7 indicates that the control
kernel has superior performance than the proposed scheme since
it does not need any external input to be activated. In term
of computational load, however, our algorithm is much better
since while the control kernel method takes more than 72 h to
obtain the result, our algorithm yields the control inputs and the
associated external inputs in a few minutes.

(iii) Stable motif method: A stable motif is referred to as a set
of nodes and their corresponding states such that the nodes form
a minimal strongly connected component and their states form
a partial fixed point of the BN (Zañudo and Albert, 2015). Stable
motifs can be regarded as control targets since once they reach
certain Boolean values, they are preserved against other updating
schemes due to their dynamical property of being partial fixed
points. In Zañudo and Albert (2015), the set of stable motifs

is first computed, followed by reducing the number of control
targets in the stable motif using the stable motif control algorithm.
The stable motif method is remarkable since it is the first network
control approach that combines the structural and functional
information of Boolean networks to determine control inputs for
stabilization.

We have applied the stable motif method to controlling
the MAPK signaling network that is influenced by r9 and r10
mutations. The stable motif control algorithm was implemented
based on the method of Zañudo et al. (2017), and StableMotifs
java library devised in Zañudo and Albert (2015) was used to
realize the simulation code. It is found that the set of stable motifs
for each mutation profile contains more than 10 state variables.
However, through the stable motif control algorithm, we derived
a number of stable motif control sets consisting of only four
external inputs (Supplementary Dataset S3). Among them, four
combinations shown inTable 8 globally stabilize the BN to a fixed
point having the desirable phenotype (Apoptosis =Growth_Arrest
= 1 and Proliferation= 0) for both r9 and r10 mutations.

TABLE 8 | Stable motif control sets for control of the MAPK signaling network

with r9 and r10 mutations (refer to Supplementary Dataset S3 for associated

desired fixed points).

External inputs

DNA_damage EGFR_stimulus FGFR3_stimulus TGFBR_stimulus

1 1 0 0 1

2 1 0 1 1

3 1 1 0 1

4 1 1 1 1

TABLE 6 | Minimal FVS for control of the MAPK signaling network with r9 and r10 mutations (refer to Supplementary Dataset S1 for associated desired fixed points).

External inputs Internal variables

DNA_ EGFR_ FGFR3_ TGFBR_ ERK p53 p38 PKC GRB2 GAB1

damage stimulus stimulus stimulus

1 0 0 1 0 1 1 1 1 1

TABLE 7 | Control kernels with size two for control of the MAPK signaling network with r9 and r10 mutations (refer to Supplementary Dataset S2 for associated desired

fixed points).

External inputs Internal variables

DNA_ EGFR_ FGFR3_ TGFBR_ ATM FRS2 GRB2 TGFBR p53 MDM2

damage stimulus stimulus stimulus

1 - - - - 1 1 - - - -

2 - - - - 1 - 1 - - -

3 - - - - 1 - - 1 - -

4 - - - - - 1 - - - 1

5 - - - - - 1 - - 1 -

6 - - - - - - 1 - - 1

7 - - - - - - 1 - 1 -

8 - - - - - - - 1 - 1

9 - - - - - - - 1 1 -

“-” indicates that the corresponding variable or external input is not needed.
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TABLE 9 | Comparison between the proposed scheme and feedback vertex set, control kernel, and stable motif methods that are applied to controlling the MAPK

signaling network.

Proposed scheme Feedback vertex set Control kernel Stable motif

Find control targets for

global stabilization

Yes Yes Yes Yes

Applicable to large-scale

BNs (n ≥ 100)

Yes Yes Yes† No

Need to know Boolean logic

of the network

Yes No Yes Yes

Procedure 1. Global stabilization by the

adjacency matrix

2. Determine external inputs

to steer the BN toward a

desired attractor

1. Find FVSs using network

topology

2. Fix values of FVS states

corresponding to the

desired attractor

Check whether the BN can

be steered toward the

desired attractor by

brute-force method (sample

initial states for large

networks)

1. Compute stable motifs

2. Derive optimal stable

motif nodes that take the

BN to the desired attractor

†Note that the control kernel method is computationally intractable, if not impossible, for large-scale BNs since it takes huge time to find control kernels for BNs with large n.

The result of the stable motif method is efficient in that
the solution set includes no internal variables. Hence it would
be more advantageous when manipulating control targets in
biological experiments. On the other hand, it is necessary to
identify all attractors of the MAPK signaling network before
determining the stable motif control set that will be utilized
as actual controls since some quasi-attractors induced in the
network reduction procedure are not real attractors of the BN
(see Supplementary Dataset S3).

The primary difference between the proposed scheme and
the existing methods is that the proposed scheme is a purely
analytical approach for solving the global stabilization problem
based on structural and algebraic information of the BN.
The proposed scheme is particularly useful for large-scale
biological networks as it does not involve any numerical search
algorithm with demanding complexity. Table 9 summarizes our
comparative study with a brief review of the procedure of each
control scheme.

5. CONCLUSION

The problem of global stabilization of BNs has been addressed
in this paper to control the heterogeneous cellular behavior
for homogeneous responses. We have proposed an algorithm
determining a set of constant control inputs that can drive
the controlled BN to an unspecified global fixed point. A
subsequent control to transform the fixed point to a desired
attractor is further presented using perturbation of external
inputs. The proposed sequential control method is practical
in that the procedure of selecting control inputs is simple
and has polynomial computational complexity with respect
to the dimension of state variables, while having exponential
complexity with respect to in-degree of BNs. In addition, the
proposed method can be used for any combination of external
inputs and mutations. The results of numerical experiments on
the metastasis regulation influence network andMAPK signaling
network demonstrate the applicability of the proposed control
scheme. Furthermore, our experimental studies show that the

proposed sequential control can drive the BN to reach a desired
final attractor and the proposed global stabilization can be
utilized as a preparatory step.
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Supplementary information on the two biological Boolean
network models, the details of the proposed control targets,
and the implementation information and results of comparative
studies are provided:

Supplementary Table S1 | Boolean logical rules describing the activity of nodes

in the Metastasis influence network.

Supplementary Table S2 | Boolean logical rules describing the activity of nodes

in the MAPK signaling network.

Supplementary Table S3 | Unique single attractors with p38 = 1 and GRB2 = 1

for all the possible input combinations in the MAPK signaling network.

Supplementary Table S4 | Complete description of the attractors in Table 4 that

are obtained by perturbation of external inputs after global stabilization by p38 = 1

and GRB2 = 1.

Frontiers in Physiology | www.frontiersin.org 15 July 2018 | Volume 9 | Article 774

https://www.frontiersin.org/articles/10.3389/fphys.2018.00774/full#supplementary-material
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Yang et al. Global Stabilization of Boolean Networks

Supplementary Dataset S1 | Results of FVS control for the MAPK signaling

network.

• “r9_RealAttractors” sheet: All the attractors of the BN with r9 mutation that are

obtained by randomly generating 100,000 initial states.

• “r10_RealAttractors” sheet: All the attractors of the BN with r10 mutation that

are obtained by randomly generating 100,000 initial states.

• “Minimal FVSs” sheet: Derived minimal FVSs with respect to Attractor 2 in

r9_RealAttractors and Attractor 21 in r10_RealAttractors sheets.

• “Results” sheet: Selected minimal FVSs and the desired fixed points for r9 and

r10 mutations.

Supplementary Dataset S2 | Results of the control kernel method for the MAPK

signaling network.

• “r9_CKs” sheet: All the control kernels with size two that stabilize the BN with

r9 mutation to a set of desired fixed points.

• “r10_CKs” sheet: All the control kernels with size two that stabilize the BN with

r10 mutation to a set of desired fixed points.

• “Results” sheet: Intersection of the control kernels with size two for r9 and r10

mutations.

Supplementary Dataset S3 | Results of the stable motif method for the MAPK

signaling network.

• “r9_RealAttractors” sheet: All the attractors of the BN with r9 mutation that are

obtained by randomly generating 100,000 initial states.

• “r10_RealAttractors” sheet: All the attractors of the BN with r10 mutation that

are obtained by randomly generating 100,000 initial states.

• “r9_StableMotifControlSets” sheet: Stable motif control sets of the BN with r9

mutation that are obtained by the stable motif control algorithm.

• “r10_StableMotifControlSets” sheet: Stable motif control sets of the BN with

r10 mutation that are obtained by the stable motif control algorithm.

• “r9_and_r10_QuasiAttractors” sheet: Quasi-attractors of the BN with r9 and

r10 mutations that are obtained by the stable motif control algorithm.

• “r9_StableMotifControl_results” sheet: Desired fixed points of the BN with r9

mutation that are obtained by applying common stable motif control sets.

• “r10_StableMotifControl_results” sheet: Desired fixed points of the BN with r10

mutation that are obtained by applying common stable motif control

sets.

Supplementary Dataset S4 | A Python script that conducts global stabilization

by Algorithm 1 for the Metastasis influence network (section 4.1). It can be also

downloaded from https://github.com/choonlog/Global-stabilization/tree/master/

GS_Adjacency_Matrix.

Supplementary Dataset S5 | A Python script that conducts global stabilization

by Algorithm 1 for the MAPK signaling network (section 4.2). It can be also

downloaded from https://github.com/choonlog/Global-stabilization/tree/master/

GS_Adjacency_Matrix.

BooleanNet | A Python package called BooleanNet executed on Python 3.5 is

used in searching for attractors in all the numerical experiments. By setting

simulation parameters of the initial state of each node, logical functions of the BN,

limit of trajectory steps, and the update scheme, we can find associated

attractors. Notice that we have modified the source code of BooleanNet for

enhancing computing efficiency. Download distribution is provided in https://

github.com/choonlog/Global-stabilization.
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