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ABSTRACT
Laboratory investigations of the pathogenesis of Pseudogymnoascus destructans, the fungal
causal agent of bat White Nose Syndrome (WNS), presents unique challenges due to its growth
requirements (4°-15°C) and a lack of infectivity in the current disease models. Pseudogymnoascus
pannorum is the nearest fungal relative of P. destructans with wider psychrophilic – physiological
growth range, and ability to cause rare skin infections in humans. Our broad objectives are to
create the molecular toolkit for comparative study of P. destructans and P. pannorum pathogen-
esis. Towards these goals, we report the successful development of an invertebrate model in the
greater wax moth Galleria mellonella. Both P. destructans and P. pannorum caused fatal disease
in G. mellonella and elicited immune responses and histopathological changes consistent with
the experimental disease.
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Introduction

White-nose syndrome (WNS) is an epizootic disease
responsible for the deaths of more than 5 million bats
in North America since its first discovery in 2006
[1,2]. The latest surveillance and modeling data
suggest that WNS is likely to lead to the regional
extinction of some bat species in the United States
while the disease remains well-tolerated among the
European bats [3,4]. Pseudogymnoascus destructans is
the fungal causal agent of WNS [5].
Pseudogymnoascus destructans is a psychrophile,
well-adapted to growing at 4°-15°C, and widely dis-
tributed in the caves and mines that serve as bat
hibernacula [5–8]. Bats infected with P. destructans
exhibit histopathological lesions on wings and other
body parts, are frequently aroused from hibernation-
induced torpor, and possibly succumb to WNS due to
fat depletion and starvation [9–11]. Some North
American bat species and bats elsewhere in the
world do not suffer from WNS-associated fatality
likely due to a protective immune response against
P. destructans [4,12–14]

P. destructans is unique among known human and
animal fungal pathogens for the manifestation of its
virulence attributes at temperatures lower than the
expected physiological range, which is a common trait
of pathogenic fungi as detailed by Kohler et al. [15]. P.
pannorum is the nearest fungal relative of P. destruc-
tans, which grows over psychrophilic – physiological
temperatures, and causes rare skin infections in
humans [5,16–18]. We have devoted efforts to create
the molecular toolkit for the comparative studies of P.
destructans and P. pannorum as there is no framework
to investigate fungal pathogenesis at low temperatures.
Towards this end, we earlier reported a comparison of
the draft genomes of the two pathogens and created a
transformation system for targeted gene disruption and
live-cell imaging [19–21] . In the current report, an in
vivo model is described using the wax moth Galleria
mellonella to facilitate comparative pathogenesis stu-
dies. Both P. destructans and P. pannorum caused
fatal disease in G. mellonella and elicited immune
responses and histopathological changes that are the
hallmark of experimental disease in this model system.
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Materials and methods

Strains and media

P. destructans (M1379, PD251) and P. pannorum (M1372,
PP1062) strains were routinely maintained on the yeast
extract peptone dextrose (YPD) agar at 15°C and stored in
15% sterile glycerol at −70°C. Potato dextrose agar (PDA;
Difco) and Sabouraud dextrose agar were used for growth
at 5°C or 15°C as described previously [20].

G. mellonella survival studies

Inocula were prepared by collecting P. destructans and
P. pannorum conidia from cultures grown in PDA
agar at 15°C for one-week, harvested by gently scrap-
ing the fungal growth, suspending in phosphate buf-
fered saline (PBS) and passing the suspension through
a 27G needle to separate conidia. Conidia were
washed twice with PBS by centrifugation and counted
with a hemocytometer to determine the fungal cell
concentration, and plated on culture plates to deter-
mine colony forming units (CFU). G. mellonella larvae
(Vanderhorst Wholesale, St. Marys, OH) at their final
instar stage were inoculated with 5 × 105 or 1 × 106

CFU of P. destructans or P. pannorum suspended in
PBS. Each infection group contained 16 randomly
chosen larvae of the appropriate weight
(330 ± 25 mg). The inoculum was injected in a 10 μl
volume directly to the last left pro-leg using a
Hamilton syringe [22]. Larvae were incubated at 5°C
and 15°C, and the number of dead larvae was scored
daily. Killing curves were plotted, and statistical ana-
lysis was performed by the Kaplan-Meier method

using STATA 6 statistical software (Stata). Killing
curves were performed in duplicate, and representa-
tive graphs were reported.

G. mellonella hemocyte density

In an experiment subsequent to survival studies, the
larvae were injected with the fungi at concentrations of
5 × 105 CFU/larvae or 1 × 106 CFU/larvae at the last
left pro-leg then incubated at 15°C. Hemocytes were
collected from the hemocoel at 24 h post-injection.
Larvae were punctured with a number 11 blade scalpel
and bled into tubes containing cold, sterile insect phy-
siologic saline (IPS) (150 mM sodium chloride; 5 mM
potassium chloride; 100 mM Tris–hydrochloride, pH
6.9 with 10 mM EDTA, and 30 mM sodium citrate),
pooling four larvae for each group. The hemocytes were
enumerated with the aid of a hemocytometer. However,
we did not differentiate between the six types of hemo-
cytes (prohemocytes, coagulocytes, spherulocytes,
oenocytoids, plasmatocytes, and granulocytes). Results
were averaged from four replicates, and a Student’s
t-test was used to compare groups, P < 0.05 was con-
sidered significant.

Histopathology

Infected larvae were fixed in buffered formalin at 4°C
for 48-hours, and embedded in paraffin. Paraffin blocks
were sectioned and stained with H&E and Periodic
acid-Schiff (PAS). Blind histopathological evaluation
was performed on 8–9 full-length sagittal sections of
larvae in each group.
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Figure 1. P. destructans reduced survival of the G. mellonella infection host. Larvae infected and incubated at 15°C experienced
decreased survival compared to larvae injected with PBS per dosage indicated.
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Results and discussion

Pseudogymnoascus destructans and P. pannorum caused
temperature and dose-dependent mortality in G.

mellonella. P. destructans- and P. pannorum-injected G.
mellonella suffered significant mortality at 15°C compared
to larvae injected with PBS, based on assessment with a
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Figure 2. P. pannorum reduced survival of the G. mellonella infection host. Larvae infected and incubated at 15°C experienced
decreased survival compared to larvae injected with PBS per dosage indicated.

Figure 3. P. destructans and P. pannorum infection caused melanization in G. mellonella. a) PBS-injected control larvae, b) Larvae injected
with 1 × 106 P. destructans, c) larvae injected with 1 × 106 P. pannorum. All photographs were taken approximately 60-min after injections.
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Figure 4. Larvae infected with both Pseudogymnaoscus species exhibited a decrease in the hemocyte density. The hemocyte density
within the hemolymph was reduced significantly compared to larvae injected with PBS (**P < 0.01). The legends include P.
destructans (PD251-M1379) and P. pannorum (PD1062-M1372).
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Kaplan-Meier survival plot (P < 0.001). This mortality
pattern was consistent with 5 × 105 CFU and 1 × 106

CFU within the 144-hour evaluation period (Figures 1–2).
Mortality of 50% was reached as early as 75-hours post-
inoculation for the infected groups. At 5°C, there was no
impact on the larvae survival by different dosage of
inoculum of both pathogens (data not shown).

Upon visual inspection of larvae, we observed mela-
nization induced within larvae infected with either
Pseudogymnoascus species (Figure 3), suggesting recog-
nition of the pathogen by the host immune system. The
larvae exhibited melanization at the injection site; the
pigmentation spread throughout the body, and it was
retained during the infection until death. Infection with
P. destructans and P. pannorum resulted in reduced
hemocyte density within the hemolymph compared to
larvae injected with PBS (Figure 4) (P < 0.01). The
reduction in hemocyte density was significant with
both 5 × 105 CFU (P < 0.05) and 1 × 106 CFU

Figure 5. Histopathology of G. mellonella inoculated with PBS
(PAS stain). Note cross-sections of organelles (Org), fat bodies
(Fb), and lack of melanization in the hemocoel cavity (5x; scale
100 µm).

Figure 6. Histopathology of G. mellonella infected with P. destructans and kept at 5°C. A. Throughout the hemocoel there are
numerous lakes of dense eosinophilic material with melanin deposition (*) around organelles (Org) and expanding in the fat body
(Fb) (5x; scale 100 µm). B. Higher magnification of hemolymph lake with numerous PAS-positive hyphae (Hyp) and conidia (Con)
with concomitant mild melanization. C. Hyphae and conidia on the surface of organelles eliciting moderate melanization. D. Densely
packed PAS-positive hyphae and conidia expanding between longitudinal muscle fibers (Lm) eliciting marked melanization and the
infiltration of hemocytes (Ha). (50x; scale 10 µm).
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(P < 0.05) of P. destructans. A significant reduction in
hemocyte density was also observed with 5 × 105 CFU
(P < 0.05) of P. pannorum while injection of higher
dosage (1x106 CFU) did not result in significant reduc-
tion (P > 0.05).

The histopathological examination of the hemocoel of
uninfected sham inoculated (PBS) larvae showed normal
organelles and fat bodies, and lack of melanization in the
hemocoel cavity (Figure 5). All larvae inoculated with P.
detructans or P. pannorum showed evidence of fungal
dissemination throughout the hemocoel. Variable numbers
and sizes of melanized spots were observed, which repre-
sented immune-competent hemocytes surrounding
entrapped fungal spores or hyphae. The larvae inoculated
with either fungus and housed at 5°C, had numerous
clusters of hemocytes admixed with hemolymph, melanin,
conidia, and hyphae throughout the hemocoel (Figures 6 –
7). These clusters were less organized in the larva inocu-
lated with P. destructans and mostly expanding in the fat
body and coelomic space (Figure 6). In the P. pannorum
inoculated larvae, there were numerous loosely and well-

defined hemocyte nodules throughout the hemocoel
(Figure 7). In both groups, the hemocyte nodules consisted
of conidia and hyphae surrounded by prominent melanin
deposition and scattered hemocytes (Figures 6–7). The
histopathological changes were more severe in the larvae
inoculated with either P. destructans or P. pannorum and
housed at 15°C (Figures 8 – 9). Additionally, there were
subtle differences in the severity of the immune response
and dissemination. The P. destructans inoculated larvae
had numerous granuloma-like hemocyte nodules through-
out the hemocoel, fat body, and expanding within the wall
of organelles containing round-to-spindloid hemocytes
encapsulating fungal elements and abundant melanin
(Figure 8). Similar immune response and distribution
were observed in the larva inoculated with P. pannorum
with wider dissemination of the fungal elements into the
body wall and cuticle (Figure 9).

Our novel findings establish a tractable experimental
system to study host-pathogen interactions of psychrophi-
lic fungi P. destructans and P. pannorum. Many earlier
publications have described the wax moth model as a

Figure 7. Histopathology G. mellonella infected with P. pannorum and kept at 5°C. A. Numerous nodules and aggregates of melanin
deposition (arrow heads) on the wall of organelles (Org) and fat body (Fb) (5x; scale 100 µm). B-D. Note PAS-positive fungal elements
and infiltration of hemocytes (Ha) in melanin nodules. D. Hyphae invading organelle wall (arrow head). (50x; scale 10 µm).
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preferred in vivo system for the study of human, insect, and
fish pathogenic fungi [23–27]. Our findings are novel as we
took advantage of the G. mellonella ability to survive in a
wide range of temperature to conduct the experiments at
low temperature. In contrast, other studies maintained the
infected G. mellonella larvae at temperatures ranging from
25° to 37°C. The present study provided proof that the G.
mellonella experimental system is amenable to an extended
temperature range from 5°C to 37°C. It is well-known that
temperature affects G. mellonella immune response to
pathogens; however, the relevant previous studies focused
on the effects of pre-incubation periods as they related to
the immune responses [28,29]. Importantly, the current
study differs from earlier publication in that the larvae
were maintained at room temperature until infection and
were not placed at 5°C and 15°C until after infection. It is
likely that in this case, the lower temperature was condu-
cive both for the growth of the fungal pathogens and G.
mellonella. The fact that robust immune response is
invoked in G. mellonella kept at 4°C might have

contributed to the lack of P. destructans- and P. pan-
norum-induced mortality in this study [27,29]

The decrease in hemocyte density after P. destructans
and P. pannorum infections also held true at low tem-
peratures as reported for the higher temperatures in other
studies. The hemocyte decline fulfilled an additional cor-
relation of experimental disease as postulated by Bergin
and colleagues [30]. The decline in hemocyte count was
not dose-dependent likely because the experiments were
performed with different batches of larvae. The observed
melanin in the infected larvae suggested that the insect
hostmounted a robust albeit ineffective immune response
in the form of phenoloxidase activation and resulting
melanin production [24].

Galleria mellonella models have become invaluable to
study cellular and humoral immune responses against
pathogens [31–33], epigenetic influences on the evolution
of virulence [32,34,35], and for development and testing
antimicrobials [36–39]. It is relevant to add that the com-
plete genomes of P. destructans and G. mellonella have

Figure 8. Histopathology of G. mellonella infected with P. destructans and kept at 15°C. A. Granuloma-like hemocyte nodules (arrow
heads) with prominent melanin deposition expanding in the wall of organelle (Org) (10x; scale 100 µm). B. Higher magnification of
melanized granuloma-like nodule, note numerous PAS-positive fungal elements admixed with hemocytes (*). C-D. Granuloma-like nodule
with prominent PAS-positive fungal elements and marked melanin deposition on the wall of organelles (arrow heads). (50x; scale 10 µm).
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become available recently [40,41]. Thus, G. mellonella –
Pseudogymnoascus pathosystem is now ready as a tractable
model for the fungal gene–phenotype studies as well as for
the high-throughput screens in search for effective antifun-
gal agents.
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insect physiologic saline: IPS;
phosphate buffered saline: PBS
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Figure 9. Histopathology of G. mellonella infected with P. pannorum and kept at 15°C. A. Large granuloma-like hemocyte nodules (Nod)
with prominent melanin deposition in the hemocoel cavity (10x; scale 100 µm). B. Higher magnification of granuloma-like nodule. Note
thick capsule of round-to-spindle cells (arrow heads) surrounding PAS-positive fungal elements and prominent melanin deposits (50x;
scale 10 µm). C. Overview of hemocoel cavity depicting numerous melanized granuloma-like nodules (arrow heads), including in the body
wall (Bw) (5x; scale 100 µm). D. Higher magnification of granuloma-like nodule expanding in the body wall. Note prominent PAS-positive
hyphae and conidia eliciting melanization and infiltration of hemocytes (arrow heads) (50x; scale 10 µm).
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