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Abstract

Tuberculosis is a current major world-health problem, exacerbated by the causative pathogen, Mycobacterium tuberculosis
(Mtb), becoming increasingly resistant to conventional antibiotic treatment. Mtb is able to counteract the bactericidal
mechanisms of leukocytes to survive intracellularly and develop a niche permissive for proliferation and dissemination.
Understanding of the pathogenesis of mycobacterial infections such as tuberculosis (TB) remains limited, especially for early
infection and for reactivation of latent infection. Signaling via hypoxia inducible factor a (HIF-a) transcription factors has
previously been implicated in leukocyte activation and host defence. We have previously shown that hypoxic signaling via
stabilization of Hif-1a prolongs the functionality of leukocytes in the innate immune response to injury. We sought to
manipulate Hif-a signaling in a well-established Mycobacterium marinum (Mm) zebrafish model of TB to investigate effects
on the host’s ability to combat mycobacterial infection. Stabilization of host Hif-1a, both pharmacologically and genetically,
at early stages of Mm infection was able to reduce the bacterial burden of infected larvae. Increasing Hif-1a signaling
enhanced levels of reactive nitrogen species (RNS) in neutrophils prior to infection and was able to reduce larval
mycobacterial burden. Conversely, decreasing Hif-2a signaling enhanced RNS levels and reduced bacterial burden,
demonstrating that Hif-1a and Hif-2a have opposing effects on host susceptibility to mycobacterial infection. The
antimicrobial effect of Hif-1a stabilization, and Hif-2a reduction, were demonstrated to be dependent on inducible nitric
oxide synthase (iNOS) signaling at early stages of infection. Our findings indicate that induction of leukocyte iNOS by
stabilizing Hif-1a, or reducing Hif-2a, aids the host during early stages of Mm infection. Stabilization of Hif-1a therefore
represents a potential target for therapeutic intervention against tuberculosis.
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Introduction

Pulmonary tuberculosis (TB), caused by the pathogen Mycobac-

terium tuberculosis (Mtb), is a major world health problem and is a

key priority for infectious disease research. The burden of TB has

been exacerbated by the increasing occurrence of Mtb strains with

resistance to multiple drug treatments, prioritising the need for

understanding of the mechanistic basis of host-pathogen interac-

tions during pathogenesis of disease in order to identify novel

therapeutic strategies [1]. Upon infection Mtb are rapidly

phagocytosed by host leukocytes, but are able to evade bacterial

killing mechanisms and utilize the leukocytes as a niche in which to

proliferate and disseminate [2]. Leukocyte infection initiates the

recruitment of uninfected macrophages, neutrophils and T-cells,

to form highly organised structures known as granulomas [3,4].

Mtb within granulomas can persist for many years and may

eventually escape and disseminate during clinical reactivation,

causing active disease [5]. The pathogenesis of both initial

infection and reactivation of latent infection are not well

understood, and further research into host signaling pathways at

these stages may uncover novel, host-derived targets for thera-

peutic intervention against Mtb.

Mycobacterial disease and hypoxia are intimately related.

Human tuberculous granulomas are hypoxic environments, and

it has been suggested that the relative hypoxia of granulomas

contributes to the latent infection phenotype and the associated
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relative resistance of Mtb to host and pharmacological killing

[6,7]. Hypoxia exerts its effects on host cell signaling predomi-

nantly through stabilization of Hypoxia Inducible Factor alpha

(HIF-a) transcription factor. HIF-a is stability and activity is

regulated by a group of oxygen sensitive enzymes: prolyl

hydroxylases (PHDs) and Factor Inhibiting HIF (FIH) [8–10].

Oxygen dependent PHD activity leads to degradation of HIF-a,

while hypoxia reduces PHD activity, stabilizing HIF-a, which joins

a nuclear complex and transduces the hypoxic cellular response

[11]. Three HIF-a isoforms have been identified in humans to

date, of which HIF-1a is a key regulator of leukocyte function

during both inflammation and a range of bacterial infections [12–

15].

Normal host defense is dependent on HIF-1a expression, which

activates and enhances leukocyte functionality [12]. We have

previously shown in a zebrafish model of inflammation that

stabilized Hif-1a delays inflammation resolution by reducing

neutrophil apoptosis and reverse migration at the inflammation

site [16]. Existing evidence suggests that the successful clearance of

bacterial infections depends on normal HIF-a signaling, and

furthermore, immune cell HIF-a is activated by bacterial

challenge in normal oxygen levels, demonstrating the fundamental

importance of this pathway to immune cell response to invading

pathogens [13,17]. Despite the extensive work done on the effects

of hypoxia on Mtb phenotype, the effects of HIF-a stabilization or

downregulation in determining the outcome of host-mycobacterial

interaction remains unknown, and presents a major research

challenge requiring a combination of modern cell biology and

genetic approaches in animal models.

The zebrafish is a well-established model organism used to study

a wide variety of human diseases [18]. Zebrafish embryos are

easily manipulated genetically and their translucency allows for

detailed microscopy studies. Mycobacterium marinum (Mm), a natural

fish pathogen and a close relative of Mtb, causes an infection in

zebrafish that mimics key features of human TB, including the

formation of caseating granulomas and development of latency

[19,20]. Mm infection of zebrafish embryos has been successfully

used to understand both host cell signaling and mycobacterial

virulence determinants [21–24]. The Hif-a pathway can be

manipulated in vivo in the zebrafish, both pharmacologically, using

non-specific inhibitors of PHD enzymes such as dimethyloxaloyl-

glycine (DMOG), and genetically, by expression of dominant Hif-

1a variants [16,25].

Using the zebrafish Mm model and Hif-a manipulation we

aimed to understand the relationship between Hif-a signaling and

the outcome of mycobacterial infection. We show that Hif

isoforms, Hif-1a and Hif-2a have opposing effects on the host

susceptibility to mycobacterial infection by demonstrating that

stabilization of Hif-1a and downregulation of Hif-2a signaling

decreases bacterial burden of Mm infection. Furthermore, using

both genetic and pharmaceutical approaches, we show that this

effect acts via a nitric oxide (NO) dependent mechanism. Our

findings identify both Hif-a and NO signaling components as

potential host-derived targets for therapeutic intervention against

TB.

Results

Hif-a Signaling Is Detectable at Early Stages of Mm
Infection

HIF-a signaling and its role during mycobacterial infection

remain unclear. Upon Mm infection, zebrafish larvae develop

early stage granulomas within several days, but levels of Hif-a
signaling in early infection and larval granulomas are unknown.

To detect levels of Hif-a signaling in Mm infection we utilized in

situ hybridization for the known Hif-a target phd3 (Figure S1A and

S1B) and the transgenic line Tg(phd3:GFP)i144 (Figure 1A and 1B)

[16,25]. At 1 day post infection (dpi) phd3:GFP expression was

observed in infected leukocytes (Figure 1A). Larval granulomas at

6dpi showed only very low levels of phd3:GFP expression and are

therefore unlikely to have stabilized Hif-a at this later stage

(Figure 1B and S1B). By crossing the Tg(phd3:GFP)i144 line with a

line marking macrophages with a membrane targeted mCherry we

showed that the phd3:GFP expression was found in infected

macrophages at 1 dpi (Figure 1C). This macrophage-specific

upregulation of phd3:GFP expression by Mm infection was blocked

by injection of RNA for dominant negative (DN) hif-1ab,

indicating this is a Hif-1a dependent host response to Mm

infection (Figure 1D).

Stabilization of Hif-a by DMOG treatment between 5 and

6 dpi did not reduce the bacterial burden at 6 dpi (Figure 2A and

2B), suggesting that it is specifically early Hif-a stabilization which

may represent a novel cellular defense mechanism to arm the

leukocytes and cause Mm killing.

Stabilization of Hif-1a Signaling at Early Stages of
Infection Decreases Mm Burden

Using a combination of pharmacological and genetic approach-

es to upregulate Hif-1a signaling we aimed to determine the effects

on pathogenesis in the zebrafish Mm model. Treatment with

DMOG from 4 hours pre-infection to 24 hours post infection

significantly decreased bacterial burden compared to DMSO

negative control embryos, assessed at 4 dpi by fluorescent imaging

and pixel count analysis (Figure 2C and 2D). This is consistent

with stabilized Hif-1a aiding the host to combat Mm infection. To

eliminate the possibility that DMOG affects bacterial growth we

performed an in vitro assay for 24 hours of treatment, which

showed that DMOG does not affect bacterial growth in culture,

assessed by both OD600 reading and by plating to check viability

(Figure S2A and S2B).

Hif-1a signaling was manipulated genetically by injecting RNA

for dominant active (DA) and dominant negative (DN) hif-1ab

variants [16,26,27]. Due to a genome duplication event in

Author Summary

Tuberculosis is a mycobacterial disease that was a major
cause of death until the discovery of antibiotics in the mid-
twentieth century. However, TB is once again on the rise,
with the emergence of strains that are multi-drug resistant.
Mycobacteria are specialists in evading immune cell killing
and use host immune cells as a niche in which they can
proliferate and survive latently, until subsequent re-
activation and spreading causing life-threatening disease.
Pharmaceutical reprogramming of the immune system to
kill intracellular mycobacteria would represent a therapeu-
tic strategy, effective against currently untreatable strains
and less susceptible to drug resistance. Here we use an in
vivo zebrafish model of TB to show that manipulation of
the host genetic pathway responsible for detecting low
oxygen levels (hypoxia) causes a decrease in mycobacterial
infection. This antimicrobial effect was due to a priming of
immune cells with increased levels of nitric oxide, a
molecule that is used by immune cells to kill bacteria. Here
we show in vivo manipulation of a host-signaling pathway
aids the host in combatting mycobacteria infection,
identifying hypoxic signaling as a potential target for
future therapeutics against TB.

HIF Signaling Modulates Mycobacterial Infection
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zebrafish there are two homologues of human HIF-1a, hif-1aa

(ZFIN: hif1aa, NCBI Reference Sequence: XM_001337574.2) and

hif-1ab (ZFIN: hif1ab, NCBI Reference Sequence: NM_200233.1)

[28]. hif-1ab aligns more closely to the human sequence than hif-

1aa, and contains all three highly conserved hydroxyl-regulated

amino acids, while hif-1aa only has two. We have previously

reported that dominant hif-1ab constructs are able to modulate

Hif-1a signaling and that hif-1ab is the homologue responsible for

the delay in resolution of inflammation observed when Hif-1a
signaling is stabilized [16,25]. Therefore all dominant constructs

used in this study are based on the hif-1ab homologue. Injection of

DA hif-1ab RNA into one-cell stage embryos, followed by injection

of Mm at 1 day post fertilization (dpf), caused a decrease in

bacterial burden at 4 dpi, when compared to both phenol red (PR)

injected controls and DN hif-1ab injected embryos (Figure 2E and

2F). The reduction in bacterial burden was comparable to that

seen in DMOG treatment embryos (Figure 2C and 2D).

Furthermore, injection of DN hif-1ab blocked the anti-mycobac-

terial effect of DMOG without affecting the dynamics of infection

in untreated wild-type fish (Figure 2G). Leukocyte numbers were

unaffected by dominant hif-1ab constructs at the timepoints of Mm

injection (30 hpf) and imaging (120 hpf, Figure 2H and 2I). These

data indicate that Hif-1a stabilization aids the host in clearing Mm

infection independently of a change in leukocyte number.

Although bacterial burden was decreased by stabilized Hif-1a,

general granuloma structure was morphologically normal in DA

hif-1ab injected larvae compared to controls (Figure 2I). The

observation that granulomas are able to form in the presence of

stabilized Hif-1 a suggests that in these fish, changes in

pathogenesis occur before the appearance of larval granulomas.

These data show that overexpression of stabilized Hif-1a pre-

infection and during initial infection reduces the host’s suscepti-

bility to Mm, therefore we focused our further investigations on

early stage Mm pathogenesis.

Nitrosylation Levels Are Increased in Unchallenged
Leukocytes with Stabilized Hif-1a

Once phagocytosed by leukocytes, pathogens are subjected to a

number of bactericidal processes, including exposure to reactive

nitrogen species (RNS) [29]. Due to the highly reactive nature of

RNS, direct measurement of production has previously proved

problematic. To overcome this an anti-nitrotyrosine antibody has

been used in other fish models [30], and we have previously shown

that this antibody can be used in wholemount zebrafish embryos

after infection [31]. The advantage of measuring nitrosylation of

tyrosine is that this is a stable protein formation, therefore

detecting historical NO (nitric oxide) production.

In the absence of infection, we found that anti-nitrotyrosine

staining was specific to leukocytes at 2 dpf. As with other fish

species, staining was found mainly in neutrophils, but also in

macrophages (Figure 3A). Nitrosylation levels are higher in

neutrophils, partly due to a contribution of neutrophil-specific

myeloperoxidase, which is able to nitrosylate tyrosine residues in

the absence of peroxynitrite [30]. In the absence of infection,

nitrosylation levels at 2 dpf were significantly higher after DA hif-

1ab injection, compared to control and DN hif-1ab injected

embryos (Figure 3A and 3B), suggesting that DA hif-1a leukocytes

are already in an activated state prior to infection. In control

embryos, the presence of Mm infection at 1 dpi (the equivalent

timepoint of 2 dpf) increased nitrosylation levels in leukocytes

(Figure 3A and 3C). Nitrosylation levels of DA hif-1ab leukocytes

remain high in infected embryos compared to uninfected controls,

but are lower than DA hif-1ab uninfected equivalents (Figure 3A

and 3C).

Neutrophil-Specific Expression of Stabilized Hif-1a
Causes Increased Neutrophil Nitrosylation

Systemic stabilization of Hif-1a by DA hif-1ab RNA injection

increased nitrosylation levels in neutrophils (Figure 3A). In order

to test the cell autonomy of the increase in nitrosylation observed

after stabilization of Hif-1a, we transiently injected DNA

constructs using neutrophil and macrophage specific promoters

to express DA hif-1ab in mosaic. To express DA hif-1ab in specific

leukocyte lineages a lysozyme C (lyz) promoter was used to drive

expression in neutrophils (Tg(lyz:da-hif-1ab,IRES-nlsGFP) construct,

subsequently referred to as lyz:da-hif-1ab), and an mpeg1 promoter

was used to drive expression in macrophages (Tg(mpeg1:da-hif-

1ab,IRES-nlsGFP) construct, subsequently referred to as mpeg:da-hif-

1ab) [32,33]. Both constructs contained a nuclear-localized GFP to

visualize the mosaic expression in neutrophils or macrophages,

expressed separately from the hif-1ab via an internal ribosome

entry site (IRES). When these constructs were injected into

neutrophil or macrophage reporter lines expected leukocyte-

specific, mosaic expression was observed (Figure 4A, S3A, and

S3B).

When lyz:da-hif-1ab DNA was injected into Tg(lyz:DsRED2)nz50

embryos or wildtype embryos (with neutrophils labeled with a

TSA post-mortem stain), GFP positive neutrophils had higher

levels of nitrotyrosine compared to GFP negative neutrophils in

the vicinity (Figure 4A–C). These data support a link between

stabilized Hif-1a and increased tyrosine nitrosylation in neutro-

phils. Although mosaic expressed mpeg:da-hif-1ab localized specif-

ically to macrophages (Figure S3B), GFP expression did not

correlate to an increase in anti-nitrotyrosine. We previously

observed that neutrophils represent the majority of cells with anti-

nitrotyrosine labeling, although some mpx:GFP negative cells were

labeled (Figure 3A, white arrowhead). We confirmed that there are

a proportion of macrophages labeled with anti-nitrotyrosine in the

wildtype infected and uninfected scenario, although the frequency

of labeling was much lower than observed for neutrophils (Figure

S3C).

These data indicate that neutrophils are the main cell type that

have tyrosine nitrosylation, and that this nitrosylation can be

increased by stabilizing Hif-1a specifically in neutrophils.

Figure 1. phd3 is expressed in infected macrophages during early stage Mm pathogenesis in a Hif-1a dependent manner. (A)
Fluorescent confocal micrographs of 2 examples of infected areas prior to granuloma formation of 1 dpi embryos (upper and lower panels). phd3
expression was detected by GFP levels, in green, using the Tg(phd3:GFP)i144 transgenic line. Mm mCherry is shown in the red channel. Increased
levels of phd3:GFP expression were detectable in cells associated with infection. (B) Fluorescent confocal micrographs of 2 granulomas at 6 dpi
(upper and lower panels). Only low levels of phd3:GFP expression were detectable in areas of infection. The low level of GFP is illustrated in the upper
panel where the auto-fluorescence of a pigment cell (white arrowhead) is brighter than the phd3:GFP expression. (C) Fluorescent confocal
micrographs of 2 embryos with Mm infected macrophages at 1 dpi. The phd3:GFP line was outcrossed to the mpeg1:mCherry line to show co-
localization with infected macrophages. (D) phd3:GFP embryos were injected at the 1 cell stage with dominant negative hif-1ab RNA (DN1) or phenol
red (PR) as a negative control. 60 embryos of each were screened for phd3:GFP expression using confocal microscopy and the 3 brightest areas of
phd3:GFP expression were imaged and showed co-localization with Mm infection. In the DN1 group GFP laser levels and confocal settings were
increased until background green fluorescence was visible showing no specific co-localisation with Mm.
doi:10.1371/journal.ppat.1003789.g001
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Figure 2. Stabilization of Hif-1a at early stages of infection leads to a decrease in bacterial burden. (A) Quantification of bacterial burden
by fluorescent pixel count after DMOG treatment between 5 and 6 dpi. No significant difference was observed between groups. Data shown are
mean 6 SEM, n = 106–121 accumulated from 3 independent experiments. (B) Stereo-fluorescence micrographs of Mm mCherry infected 6 dpi larvae
from (C). (C) Bacterial pixel counts of larvae treated with DMOG between -4 and 24 hpi, imaged at 4 dpi. DMOG treated embryos have significantly
lower levels of bacterial burden. Data shown are mean 6 SEM, n = 109–114 accumulated from 3 independent experiments. *P,.05, **P,.01, and
***P,.001. (D) Fluorescence micrographs of representative infected larvae for data shown in (E). (E) Bacterial pixel counts of RNA injected larvae at

HIF Signaling Modulates Mycobacterial Infection
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Decrease in Mm Burden Caused by Stabilized Hif-1a Is
Dependent on iNOS

RNS are produced by the activity of the nitric oxide synthase

(NOS) enzymes. There are three characterized forms of NOS,

namely endothelial-NOS (eNOS), neural-NOS (nNOS), and the

leukocyte specific inducible-NOS (iNOS). iNOS expression has

been shown to be increased in infected leukocytes, and is present

in zebrafish leukocytes [34].

Increase of nitrosylation levels in neutrophils after infection is

likely to be due to increased iNOS as the morpholino against

nos2a, the zebrafish gene for iNOS [34], was able to abrogate the

increase in nitrotyrosine levels following infection (Figure 3D). To

confirm that the increase in nitrosylation observed after DA hif-1ab

is due to iNOS we used a biochemical probe for NO and an

antibody stain for iNOS. DAF-FM DA is a probe that measures

NO levels directly [35]. In the absence of Mm, DAF-FM DA

staining was increased after RNA injection of DA hif-1ab

compared to controls (Figure 5A). The signal of DAF-FM DA

staining increased after Mm infection, indicating iNOS activity

(Figure 5B). Both the increasing effect on DAF-FM DA of DA hif-

1ab in the absence of infection, and the increase after infection in

controls, could be partially blocked using the nos2a morpholino,

illustrating the iNOS specificity of these effects (Figure 5A and 5B).

Furthermore, using an iNOS antibody [36], we were able to detect

higher levels of iNOS protein in the DA hif-ab neutrophils in non-

infected embryos, which were present only at low levels in controls

(Figure 5C).

To assess the effect of blocking iNOS activity at the 1 dpi stage

on bacterial burden at 4 dpi, we treated early infected embryos

with NOS inhibitors. NOS activity was inhibited using the pan-

NOS inhibitor L-NG-Nitroarginine methyl ester (L-NAME) and

the iNOS specific inhibitor N6-(1-iminoethyl)-L-lysine (L-NIL) at

early stages of Mm infection [34,37,38]. Bacterial burden at 4 dpi

was not significantly affected by either treatment in control

embryos, although there was a trend towards increased infection

levels after NOS inhibition (Figure 5D and 5E). Both inhibitors

were able to block the decreasing bacterial burden effect of DA hif-

1ab at 4 dpi (Figure 5D and 5E). Morpholino knockdown of nos2a

was also able to block the decreased bacterial burden in DA hif-1ab

injected embryos compared to PR injected controls (Figure 5F).

These data confirm that the positive effect of stabilized Hif-1a on

the host to combat Mm infection is dependent on iNOS.

Hif-1a and Hif-2a Have Opposing Effects on Mm Burden
in an iNOS Dependent Mechanism

In humans there are three different HIF-a transcription factors:

HIF-1a, HIF-2a, and HIF-3a. It is becoming clear that HIF-2a is

important in leukocyte biology [39,40]. In order to investigate the

effects of hif-2a modulation, we synthesized dominant variants for

hif-2a with the equivalent hydroxylation site mutations to the hif-

1a variants [16]. As with Hif-1a, Hif-2a has two homologues in

the zebrafish, hif-2aa (ZFIN: epas1a, NCBI Reference Sequence:

XM_690170.5) and hif-2ab (ZFIN: epas1b, GenBank:DQ375242).

Unlike hif-1a homologues, hif-2a sequences are highly similar and

both contain all three conserved hydroxylation sites. DA hif-2aa

increased phd3 expression by in situ hybridization and phd3:GFP

expression at 1 dpf, whilst DN hif-2aa decreased expression levels

(Figure S4A,B). DN hif-2aa also blocked the increase in phd3

expression associated with early Mm infection at the 1 dpi stage of

pathogenesis (Figure S4C). These data illustrate that zebrafish Hif-

2a has similar effects on a well characterized target of the Hif-a
transcription factor, phd3, as the previously characterized zebrafish

Hif-1a [16,25].

DA hif-2aa, while able to increase phd3 expression, had no effect

on bacterial burden compared to controls (Figure 6A and

Figure 6B). DN hif-2aa reduced bacterial burden at 4 dpi to a

similar level to that of DA hif-1ab (Figure 6C and 6D). As was the

case with dominant hif-1ab constructs, dominant hif-2aa variants

had no effect on leukocyte numbers (Figure 6E and 6F).

Nitrosylation levels in DN hif-2aa were found to be high in non-

infected leukocytes, as with DA hif-1ab, with no effect of DA hif-

2aa (Figure 7A and 7B). Mm infection caused a decrease in

nitrosylation levels in DN hif-2aa leukocyte, as with DA hif-1ab

(Figure 7C). The reduction in bacterial burden seen with DN hif-

2aa could be blocked by inhibition of iNOS (Figure 7D–7F)

indicating that the reciprocal effects of Hif-1a and Hif-2a
modulate susceptibility to mycobacterial infection via an iNOS

dependent mechanism (Figure 7G).

Discussion

The rise in prevalence of multi-drug resistant TB creates an

urgent need for novel, host-targeting therapies to complement

existing antibiotics and to combat currently untreatable strains of

Mtb [41,42]. Using a well-established zebrafish/Mm infection

model of TB, we have identified a new anti-mycobacterial

leukocyte phenotype being driven by Hif-1a stabilization and

consequent iNOS activity. Our data identify that in vivo

manipulation of Hif-a, a ubiquitous host-signaling pathway, can

affect specific cellular mechanisms of pathogen handling, tipping

the host-pathogen balance in favour of the host to decrease

mycobacterial infection.

Mtb infection and Hif-a signaling have only previously been

linked in the context of the hypoxic, necrotic center of the fully

formed caseating granuloma. The necrotic center has been

previously identified in adult zebrafish granulomas, however larval

granulomas are not necrotic, and to our knowledge the levels of

Hif-a signaling in larval granulomas had not previously been

investigated [19]. We did not detect high levels of Hif-a signaling,

via elevated phd3 target gene expression, in larval granulomas.

However, upregulated expression of phd3 was observed in infected

macrophages at early stages of pathogenesis, before the formation

of larval granulomas, and we were able to demonstrate that this

increase in expression is Hif-a dependent. Upregulation and

stabilization of HIF-1a is a known consequence of leukocyte

activation during onset of infection, even in normoxia [13], and

remains high during pathogenesis of other types of bacterial

4 dpi. Dominant active hif-1ab (DA1) significantly decreased bacterial burden in infected larvae compared to both phenol red injected controls (PR)
and dominant negative hif-1ab (DN1). Data shown are mean 6 SEM, n = 115–127 as accumulated from 3 independent experiments. (F) Example
fluorescence micrographs from the data found in (E). (G) Bacterial pixel counts of RNA injected larvae at 4 dpi after DMSO/DMOG treatment for
24 hours at 4 hours before Mm injection. Dominant negative hif-1ab was able to block the antimicrobial effect of DMOG treatment. Data shown are
mean 6 SEM, n = 83–100 as accumulated from 3 independent experiments. (H, upper panel) L-plastin (macrophages and neutrophils) and TSA
(neutrophils only) wholebody counts at 30 hpf. No significant difference was observed between groups. Data shown are mean 6 SEM, n = 90
accumulated from 3 independent experiments. (H, lower panel) L-plastin and TSA wholebody counts at 120 hpf. Data shown are mean 6 SEM, n = 90
as accumulated from 3 independent experiments. (I) Example fluorescence confocal micrographs of 4 dpi granuloma structures from phenol red (PR)
and dominant active hif-1ab (DA1) injected larvae. Leukocytes are identified by Alexa-488 (green) labeled L-plastin antibody.
doi:10.1371/journal.ppat.1003789.g002
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Figure 3. Nitrosylation levels are increased in unchallenged leukocytes with stabilized Hif-1a. (A) Example fluorescence confocal z-stacks
of the caudal vein region of embryos stained with Alexa-633 labeled anti-nitrotyrosine antibody (blue), imaged at 1 dpi in the presence or absence of
Mm infection. Embryos were injected with phenol red (PR), dominant active hif-1ab (DA1), dominant negative hif-1ab (DN1), or nos2a morpholino
(NOS2MO). Anti-nitrotyrosine mainly co-localized with neutrophils (labeled with mpx:GFP), however, some cells without GFP (white arrowhead),
possibly macrophages, were also labeled. (B) Corrected fluorescence intensity levels of anti-nitrotyrosine antibody confocal z-stacks in uninfected
larvae at 2 dpf (1 dpi equivalent). Dominant active hif-1ab (DA1) had significantly increased anti-nitrotyrosine levels in the absence of Mm bacterial
challenge compared to phenol red (PR) injected controls. Data shown are mean 6 SEM, n = 67–92 cells accumulated from 5 embryos per group.
Graph shown is a representative dataset of 3 independent experiments. (C) Corrected fluorescence intensity levels of anti-nitrotyrosine antibody
confocal z-stacks of dominant active hif-1ab (DA1), or phenol red (PR) control injected embryos in the presence or absence of Mm infection at 1 dpi.
Data shown are mean 6 SEM, n = 233–270 cells accumulated from 15 embryos. Graph shown is combined data from 365 embryos from independent
experiments. (D) Corrected fluorescence intensity levels of anti-nitrotyrosine antibody confocal z-stacks of nos2a morpholino (NMO) or standard
control morpholino (SCMO) injected embryos imaged at 1 dpi (2 dpf) in the presence or absence of Mm. Data shown are mean 6 SEM, n = 46–92
cells accumulated from 5 embryos. Graph shown is a representative dataset of 3 independent experiments.
doi:10.1371/journal.ppat.1003789.g003
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infections leading to enhanced leukocyte function [13,15]. In

contrast, we observed levels of Hif-a signaling in early Mm

infection, but not at the granuloma stage, suggestive of a silencing

of Hif-a signaling over the course of Mm pathogenesis. This

observation is consistent with leukocyte transcriptional reprogram-

ing observed in human mycobacterial disease and with murine

macrophages having upregulated HIF-1a in the presence of heat-

killed Mtb but not in the presence of viable Mtb [43–45]. A

dampening effect on Hif-a signaling could be a mechanism by

which mycobacteria are able to form a protected niche in which to

proliferate and disseminate, and this may be via manipulation of

transcription factors such as HIF-1a. This possibility is supported

by dominant negative hif-1ab having no effect on Mm bacterial

burden, suggesting that Hif-1a signaling does not play a major role

in leukocyte anti-mycobacterial activity during the normal

pathogenesis of infection. Stabilization of HIF-1a during the

pathogenesis of mycobacterial infection may represent a thera-

peutic opportunity to re-arm leukocytes and to inhibit further

infection.

The study of the zebrafish/Mm larval granuloma model has led

to key discoveries for TB pathogenesis causing changes in

treatment practises in the clinic [42,46]. However, the zebrafish

embryo is an untapped resource for study of mycobacterial

pathogenesis at the earliest stages of infection, before granuloma

structures form. Genetic manipulation of Hif-1a during myco-

bacterial infection has not previously been explored, and further

understanding of the roles of this critical host-signaling pathway

may uncover Hif and its signaling components as future

therapeutic targets for intervention against TB. A critical role of

HIF-1a during bacterial infection was demonstrated in murine

knockout studies showing that HIF-1a signaling is required for

proper response to Streptococcal bacterial challenge [47]. Further-

more localized treatment with a drug that stabilized HIF-1a led to

a decrease in proliferation of the skin pathogens, Pseudomonas

aeruginosa and Acinetobacter baumanii, in a mouse abscess model [48].

Our data demonstrate, in vivo, that pharmacological or genetic

stabilization of Hif-1a can aid the host in the fight against

mycobacterial infection. Importantly, these data suggest that

therapeutic upregulation of HIF-1a signaling could complement

current antibiotic treatments in the fight against Mtb infection.

In the zebrafish Mm model, the early treatment window of

DMOG (treatment between -4 hpi and 24 hpi, followed by wash-

off then bacterial burden assessment at 4 dpi) and the DA hif-1ab

RNA injection at the one-cell stage, (an effect that will be diluted

as the embryo develops), indicate that Hif-1a stabilization at early

stages of Mm infection, pre-granuloma formation, is causing the

decrease bacterial burden at 4 dpi. This is further supported by

the observation that embryo granulomas are able to form after DA

hif-1ab injection despite a decrease in bacterial burden. Therefore,

to understand the mechanism of action of early Hif-1a stabiliza-

tion, we focused on the role of bacterial killing by the leukocytes

during early stage infection. A major mechanism of bacterial

killing is the use of RNS by leukocytes [29,49]. The leukocyte

enzymatic producer of NO, iNOS, is a tightly regulated enzyme,

and is a known target of a number of immune transcription

factors, including HIF-1a [40]. We found that levels of NO, as

assessed by protein nitrosylation, were consistently higher in

neutrophils of infected embryos at early stages of infection.

Morpholino reduction of iNOS confirmed that increased nitrosy-

lation in neutrophils after infection was iNOS dependent. We

showed that stabilization of Hif-1a is able to activate neutrophils to

produce NO in the absence of bacterial challenge and that this

could be achieved through neutrophil specific expression of DA

hif-1ab, demonstrating a cell-autonomous effect. The increased

level of NO in non-infected embryos with stabilized Hif-1a
indicates a priming of neutrophils to bacterial challenge, leading to

greater levels of RNS pre-infection. Early bacterial killing would

lead to lower levels of bacterial survival, decreased dissemination

and the observed decrease in bacterial burden at the granuloma

stages of infection. This early priming of neutrophils could be

blocked using iNOS inhibition, confirming that the reduced

susceptibility to Mm infection due to Hif-1a stabilization is

dependent on iNOS activity.

The role of neutrophils in early mycobacterial infection is not

fully understood. Macrophages have previously been thought the

major leukocyte involved in the pathogenesis of mycobacterial

infection [50] and are also the main leukocyte-type involved in the

phagocytosis of intravenously injected mycobacteria and are

present in abundance in the granuloma. However, more recently,

potentially important roles of neutrophils during mycobacterial

infection are becoming evident. Neutrophils are known to be able

to undertake oxidative killing of Mm phagocytosed by macro-

phages in embryonic granulomas, a mechanism which may be

important to control infection, however their role at early stages of

infection has not been addressed [51,52]. We observed that

enhanced nitrotyrosine levels early after infection were mostly

detected in neutrophils, although in rare instances nitrosylation

levels were detectable in both uninfected and infected macro-

phages. This was confirmed using the iNOS antibody, which also

showed a mainly neutrophil localization. In the absence of

infection there are detectable levels of nitrotyrosine in neutrophils,

likely due to myeloperoxidase activity, an enzyme that is

neutrophil-specific in zebrafish [53]. Myeloperoxidase can form

NO-derived inflammatory oxidants and it has been shown that

myeloperoxidase is responsible for the majority of tissue nitrosyla-

tion in fish in the absence of infection [30,54].

The anti-microbial effect of stabilized Hif-1a was abrogated

after pharmacological and morpholino inhibition of iNOS.

Neutrophils form the major leukocyte population that display

protein nitrosylation after stabilization of Hif-1a, therefore we

hypothesize that through an unknown mechanism, increased

neutrophil iNOS levels leads to increased Mm killing at early

Figure 4. Neutrophil-specific stabilization of Hif-1a causes increased neutrophil nitrosylation. (A) Confocal photomicrographs of
expression of lyz driven DA hif-1ab and IRES- nlseGFP (lyz:da-hif-1a) in lyz:dsRed embryos stained with anti-nitrotyrosine antibody at 2 dpf. Cells with
nuclear localized eGFP colocalized with lyz:dsRed expression showing neutrophil specificity of the transgenic construct. Mosaic labeled neutrophils
(white arrowheads) had a higher level of anti nitrotyrosine signal compared to GFP negative ones (black arrowheads). (B) Confocal photomicrographs
of a Tg(lyz:da-hif-1ab:IRES-nlsegfp) (lyz:da-hif-1a) injected ABTL embryo at 2 dpf. TSA staining of endogenous myeloperoxidase was used to stain
neutrophils. Due to the nature of the myeloperoxidase staining, the whole cell is not marked, so the cell boundaries have been traced (dotted line)
using brightfield z-stacks. The upper panel shows an example of a lyz:da-hif-1a negative neutrophil with low levels of anti-nitrotyrosine. The lower
panels show two examples of lyz:da-hif-1a positive neutrophils in the same embryo, exhibiting a greater level of anti-nitrotyrosine compared to the
negative neutrophils. (C) Corrected fluorescence intensity levels of anti-nitrotyrosine antibody confocal z-stacks of GFP negative or positive
neutrophils in embryos transiently expressing Tg(lyz:da-hif-1ab:IRES-nlsegfp). Embryos were imaged at 2 dpf. For each GFP positive neutrophil
observed, a neighboring GFP negative neutrophil was also imaged. Data shown are mean 6 SEM, n = 20 cells per group accumulated from 13
embryos from 4 independent experiments. P values were calculated using a paired T-test.
doi:10.1371/journal.ppat.1003789.g004
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Figure 5. Hif-1a mediated anti-mycobacterial effect is iNOS dependent. (A) Fluorescent confocal micrographs of DAF-FM DA stained
embryos at 2 dpf in the absence of infection. Neutrophils are identified by lyz:dsRed expression. DAF-FM DA staining between the timepoint of
infection and 1 dpi produced varying levels of background and stained cells of the central nervous system (neurons and notochord) as well as having
leukocyte-associated staining. The line of staining at the top of each image is DAF-FM DA staining in the notochord. Punctae of DAF-FM DA show
upregulation of NO signaling Dominant active hif-1ab (DA1) embryos had more punctae than phenol red (PR) controls. nos2a morpholino (NOS2MO)
reduced the punctae in both the PR and DA1 background. (B) Fluorescent confocal micrographs of DAF-FM DA stained embryos at 2 dpf in the
presence of Mm infection. In phenol red (PR) controls DAF-FM DA punctae are increased. DAF-FM DA staining is not specific for iNOS (it is a pan-NOS
probe), and the nos2a morpholino (NOS2MO) was not able to downregulate all of the DAF-FM DA staining after Mm infection, although punctae
number were reduced. The number of punctae was also reduced in the dominant active hif-1ab (DA1) injected embryos after Mm infection.
Dominant negative hif-1ab (DN1) caused no change in punctae in the presence of Mm infection compared to PR controls. (C) Fluorescent confocal
micrographs of iNOS antibody staining in mpx:GFP embryos. Phenol red (PR) injected controls had very low levels of anti-iNOS antibody staining.
Dominant active hif-1ab (DA1) had increased levels of anti-iNOS antibody, a stain which was mainly neutrophil specific. (D) Bacterial burden at 4 dpi
after injection of DA hif-1ab (DA1) or phenol red control (PR) and treatment with the pan-NOS inhibitor L-NAME. Data shown are mean 6 SEM,
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stages of infection, ultimately decreasing bacterial burden. As

discussed above, macrophages are the major leukocyte involved in

the phagocytosis of Mm in this model [50]. However we found

many instances where neutrophils contain internalized Mm in the

first 24 hours post infection. Our observations indicate that

neutrophils are able to internalize Mm before the presence of

granuloma structures, and that they have elevated nitrosylation

levels during infection. Therefore, a potential mechanism is that

neutrophils are able to phagocytose Mm and increase iNOS after

Hif-1a stabilization leading to enough early bactericidal activity to

n = 62–89 as accumulated from 3 independent experiments. (E) Bacterial burden at 4 dpi after injection of DA hif-1ab (DA1) and treatment with the
iNOS inhibitor L-NIL. Data shown are mean 6 SEM, n = 60–87 as accumulated from 3 independent experiments. (F) Bacterial burden at 4 dpi after co-
injection of DA hif-1ab and the nos2a morpholino, using the standard control (SCMO) morpholino as a negative control. Data shown are mean 6 SEM,
n = 109–116 as accumulated from 4 independent experiments.
doi:10.1371/journal.ppat.1003789.g005

Figure 6. Hif-2a has opposing effects on bacterial burden than Hif-1a. (A) Bacterial pixel counts of dominant active hif-2aa (DA2) bacterial
burden levels in 4 dpi infected embryos compared to phenol red (PR) and dominant active hif-1ab (DA1) injected controls. Data shown are mean 6
SEM, n = 52–79 as accumulated from 3 independent experiments. (B) Example fluorescence micrographs of the data shown in (A). (C) Bacterial pixel
counts of dominant negative hif-2aa (DN2) bacterial burden levels in 4 dpi infected embryos compared to phenol red (PR) and dominant active hif-
1ab (DA1) injected controls. Data shown are mean 6 SEM, n = 74–82 performed as 3 independent experiments. (D) Example fluorescence
micrographs of the data shown in (C). (E) L-plastin (macrophages and neutrophils) and TSA (neutrophils only) wholebody counts at 30 hpf after
injection of dominant active (DA2) and dominant negative (DN2) hif-2aa RNA. No significant difference was observed between groups. Data shown
are mean 6 SEM, n = 77–82 as accumulated from 3 independent experiments. (F) L-plastin and TSA wholebody counts at 120 hpf after injection of
dominant active (DA2) and dominant negative (DN2) hif-2aa RNA. Data shown are mean 6 SEM, n = 87–90 as accumulated from 3 independent
experiments.
doi:10.1371/journal.ppat.1003789.g006
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Figure 7. Dominant negative Hif-2a decreases bacterial burden via an iNOS dependent mechanism. (A) Example fluorescence confocal
z-stacks of the caudal vein region of embryos stained with anti-nitrotyrosine antibody, imaged at 1 dpi (2 dpf), in the absence and presence of Mm
infection. Embryos were injected with dominant negative hif-2aa (DN2), dominant active hif-2aa (DA2), or phenol red (PR). (B) Corrected fluorescence
intensity levels of anti-nitrotyrosine antibody confocal z-stacks in uninfected larvae. Dominant negative hif-2aa (DN2) had significantly increased anti-
nitrotyrosine levels in the absence of Mm bacterial challenge compared to phenol red (PR) injected controls. Data shown are mean 6 SEM, n = 42–92
cells accumulated from 5 embryos. Graph shown is a representative dataset of 3 independent experiments. (C) Corrected fluorescence intensity levels
of anti-nitrotyrosine antibody confocal z-stacks of dominant active hif-2aa (DA2), or phenol red (PR) control injected embryos in the presence or
absence of Mm infection at 1 dpi (2 dpf). Data shown are mean 6 SEM, n = 46–92 cells accumulated from 5 embryos. Graph shown is a representative
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significantly reduce bacterial burden at later timepoints. However,

it is clear that in the zebrafish embryo model, as in other models,

macrophages are the major cell type with internalized Mm at early

timepoints of infection. Therefore, a more likely hypothesis is that

neutrophils with activated iNOS are able to interact with infected

macrophages, either by transfer of live bacteria or transfer of

reactive nitrogen species, leading to increased bactericidal activity.

We therefore hypothesize that neutrophils play an important role

alongside macrophages in early Mm bacterial killing, but the

bactericidal mechanisms of this interaction are yet to be

uncovered.

The role of Hif-2a isoform stabilization in leukocytes during

inflammation and infection has not been widely investigated in any

in vivo model of infection. We set out to identify what effect Hif-2a
modulation had on the outcome of Mm infection. Although

stabilization of Hif-2a has the same increasing effect as Hif-1a
stabilization on expression of the major Hif-a target gene, phd3, we

observed an opposing effect on Mm bacterial burden. We

demonstrate that the decrease in bacterial burden was due to an

increase in neutrophil nitrosylation after downregulation of Hif-

2a. The decrease in bacterial burden after Hif-2a downregulation

could be blocked by early iNOS inhibition and we hypothesize

that this effect is mediated by differential roles of the Hif-a
isoforms on the iNOS genetic pathway. HIF-1a and HIF-2a have

been previously been shown to have opposing effects on iNOS in

mammalian cultured macrophages, where HIF-1a stabilization

transcriptionally upregulated iNOS, while HIF-2a stabilization

decreased NO levels [40]. Our findings confirm that Hif-2a is able

to upregulate the well-characterised Hif-a target phd3 while having

opposing effects on nitrosylation, corroborating previous in vitro

observations [40]. These data demonstrate the in vivo consequence

on bacterial infection of the differential regulation of iNOS by Hif-

a variants. The opposing effects of Hif-a isoforms on bacterial

burden highlight the tight control of NO homeostasis in

leukocytes. The potential of the HIF-a pathway for therapeutic

intervention in other diseases, including cancer and ischemia, is

widely recognized, however differential roles of HIF-a isoforms in

these diseases are only recently coming to light [55,56]. These

regulatory mechanisms, in part mediated by HIF-a, are complex

and further studies are required before the regulation of HIF-a
isoforms and iNOS during infection is fully understood.

In conclusion, our data demonstrate that in vivo modulation of

host Hif-a signaling during early Mm pathogenesis can lead to

decreased burden of mycobacterial infection. Stabilization of Hif-

1a, or reduction of Hif-2a, results in priming of neutrophil NO

bactericidal activity leading to lower mycobacterial burden after

challenge with infection. Our data highlight the delicate balance of

HIF-a and iNOS signaling in leukocyte function during infection

and highlight the important role of neutrophils during early stage

Mm infection. Further understanding of the complex crosstalk

between Hif-a and iNOS pathways during Mtb infection will help

identify novel, host-targeted, therapeutic strategies against TB.

NO priming of neutrophils by targeted Hif-a modulation, may

decrease the level of initial Mtb infection and act to block the

development of acute TB disease caused by re-activation and

dissemination of latent Mtb infection. Host targeted strategies

would be predicted to be beneficial against all types of TB,

including multiple drug resistant strains, and may be less

susceptible to therapy-resistance than antibiotic strategies, thereby

reducing the global burden of TB.

Materials and Methods

Ethics Statement
Zebrafish lines were handled in compliance with the local

animal welfare regulations and maintained according to standard

protocols (zfin.org). The breeding of adult fish was approved by

the local animal welfare committee (DEC) of the University of

Leiden. All protocols adhered to the international guidelines

specified by the EU Animal Protection Directive 2010/63/EU.

Zebrafish and Bacterial Strains
Zebrafish were maintained according to standard proto-

cols [57] and local animal welfare regulations. Strains used were

ABTL (wildtype), Tg(phd3:GFP)i144, Tg(mpx:GFP)i114, Tg(lyz:Ds-

RED2)nz50 and Tg(mpeg1:mCherryF)ump2 [25,32,58].

Infection experiments were performed using M. marinum strain

M (ATCC #BAA-535), containing the pSMT3-mCherry or

pSMT3-Crimson vector [59]. Liquid cultures were prepared from

bacterial plates [59]. Injection inoculum was prepared in 2%

polyvinylpyrrolidone40 (PVP40) solution (CalBiochem) as previ-

ously described [60,61]. 100 colony-forming units (CFU) of

bacteria were injected into the caudal vein at 28 hpf as previously

described [61].

Whole Mount in situ Hybridization of phd3
Whole mount in situ hybridization of phd3 was carried out as

previously described [16,25].

Confocal Microscopy of Tg(phd3:GFP)i144 Larvae
6 dpi and 1 dpi Tg(phd3:GFP)i144 [25] larvae infected with Mm

were embedded in 1% low melting point agarose (Sigma Aldrich)

and transferred to a Leica DMIRBE inverted microscope with a

Leica SP1 confocal scanhead for imaging with 40 or 63 times

lenses.

Pharmacological Stabilization of Hif-a with DMOG
The pan hydroxylase inhibitor, DMOG (dimethyloxaloylgly-

cine, Enzo Life Sciences), was used at a 100 mM concentration as

previously described [16]. DMSO solvent controls were used.

Unless otherwise stated embryos were treated from 4 hours pre

Mm infection to 24 hpi by addition to the embryo water. The

inhibitors were then washed off with fresh embryo water and

grown to 4 dpi for assessment of bacterial load as described below.

RNA Injections of Hif-a Variants
Embryos were injected with dominant Hif-a RNA at the one

cell stage as previously described [16]. hif-a variants used were

dominant active (DA) and dominant negative (DN) hif-1ab (ZFIN:

hif1ab) and hif-2aa (ZFIN: epas1a) (primer sequences in Table S1).

Phenol red (Sigma Aldrich) was used as a vehicle control.

dataset of 3 independent experiments. (D) Bacterial burden at 4 dpi after injection of dominant negative hif-2aa (DN2) or phenol red control (PR) and
treatment with the pan-NOS inhibitor L-NAME. Data shown are mean 6 SEM, n = 67–85 as accumulated from 3 independent experiments. (E)
Bacterial burden at 4 dpi after injection of dominant negative hif-2aa (DN2) and treatment with the iNOS inhibitor L-NIL. Data shown are mean 6

SEM, n = 52–58 as accumulated from 3 independent experiments. (F) Bacterial burden at 4 dpi after co-injection of dominant negative hif-2aa (DN2)
and the nos2a morpholino, using the standard control (SC) morpholino as a negative control. Data shown are mean 6 SEM, n = 103–109 as
accumulated from 4 independent experiments. (G) Schematic of the effect of early Hif-a modulation during early Mm infection.
doi:10.1371/journal.ppat.1003789.g007
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Stereoimaging and Bacterial Pixel Count
Embryos were imaged at 4 dpi on a Leica MZ16FA Fluores-

cence Stereo Microscope. Brightfield and fluorescence images

were generated with a Leica DC500 (DFC420C) camera. Bacterial

loads were analysed using dedicated pixel counting software as

previously described [23].

Leukocyte Staining
Larvae were fixed in 4% paraformaldehyde in PBS overnight at

4uC and leukocytes were immune-labeled using the l-plastin

antibody as previously described [60,62]. Neutrophils were labeled

with TSA (TSAplus kit, Fluorescence Systems, Perkin Elmer Inc)

staining labeled neutrophils in fluorescein green fluorescence as

previously described [63]. Two timepoints were chosen for this

analysis, the timepoint of Mm injection (28–30 hpf) and the

timepoint of bacterial burden assessment (5 dpf). RNA groups

were blinded prior to counting. Neutrophils and leukocytes in

embryos and larvae were counted in the tail region using a Leica

MZ16FA Fluorescence Stereo Microscope.

Morpholino Knockdown of nos2a
The nos2a morpholino (Genetools) was used as previously

reported [34]. A standard control morpholino (Genetools) was

used as a negative control.

Antibody Staining to Detect NO Markers
Larvae were fixed in 4% paraformaldehyde in PBS overnight at

4uC and nitrotyrosine levels were immune-labeled with a rabbit

polyclonal anti-nitrotyrosine antibody (Merck Millipore 06-284) at

a 1:200 dilution of primary antibody, and were detected using an

Alexa Fluor (Invitrogen Life Technologies) secondary antibody.

Larvae were fixed in 4% paraformaldehyde in PBS overnight at

4uC and iNOS was immune-labeled with a rabbit polyclonal

iNOS antibody (BD Biosciences) as previously described [36].

Detection was with goat anti-rabbit HRP-conjugated antibody

(Abcam, 1:500 dilution) and Cy3Plus TSA kit (Perkin-Elmer).

Confocal Microscopy and Quantification of Corrected Cell
Fluorescence of Anti-Nitrotyrosine Levels

Embryos were imaged at 1 dpi, in the presence or absence of

infection, embedded in 1% low melting point agarose (Sigma

Aldrich) and transferred to a Leica DMIRBE inverted microscope

with a Leica SP1 confocal scanhead for imaging with 40 or 63

times lenses. For quantification purposes acquisition settings and

area of imaging (in the caudal vein region) were kept the same

across groups. Corrected total cell fluorescence was calculated for

each immune-stained cell using Image J as previously described

[64]. The GFP of the Tg(mpx:GFP)i114 [58] was used to assess the

leukocyte cell boundaries.

Mosaic Expression of DA hif-1ab in Neutrophils and
Macrophages

The Tol2kit multisite gateway-based transposon system was

used to make transgenic constructs to transiently and mosaic

express DA hif-1a specifically in neutrophils and macrophages

[65]. DA hif-1ab was recombined into the middle entry

pDONR221 using BP Clonase (Invitrogen). An LR Clonase

(Invitrogen) Gateway reaction was performed with p5E-lyz

(neutrophil specific promoter) or p5E-mpeg1 (macrophage specific

promoter, [33]), pDONR221-da-hif-1ab and p3E-IRES-

nlsEGFPpA inserted into pDestTol2pA2. The resulting plasmids,

Tg(lyz:da-hif-1ab,IRES-nlsGFP) and Tg(mpeg1:da-hif-1ab,IRES-

nlsGFP), were microinjected with tol2 transposase RNA into the

one cell stage embryo to express in transient, mosaically. Positive

fish were screened for the transgene using the heart marker eGFP

expression (found in the Gateway vector), and positive cells were

screened by confocal microscopy for the nuclear localized eGFP

signal showing the expression of the transgene.

DAF-FM DA Staining
Embryos were injected with the relevant hif-a construct and

infected with Mm at 1 dpf. At the timepoint of infection DAF-FM

DA was applied to the embryo water as previously described [35].

DAF-FM DA was washed off using embryo water at 1 dpi and

imaged using confocal microscopy.

Pharmacological Inhibition of NOS
The pan-NOS inhibitor L-NAME, (NG-Nitro-L-arginine

methyl ester, Tocris Bioscience), was used at 200 mM as previously

described [34,37]. The iNOS inhibitor L-NIL (N6-(1-iminoethyl)-

L-lysine, dihydrochloride, Tocris Bioscience) was used at a

200 mM concentration [38]. DMSO solvent controls were used

at corresponding concentrations for each treatment. Unless

otherwise stated embryos were treated from 4 hours pre Mm

infection to 24 hpi by addition to the embryo water. The

inhibitors were then washed off with fresh embryo water and

grown to 4 dpi for assessment of bacterial load as described above.

Dominant hif-2aa Cloning
Dominant active zebrafish hif-2aa was generated by successive

rounds of site directed mutagenesis, each mutating a hydroxylation

site into a non-hydroxylatable form as previously described for hif-

1ab [16]. Dominant negative hif-2aa was generated by a truncation

at the equivalent amino acid to the 330th amino acid in the human

sequence, as previously described for hif-1ab [16].

Statistical Analysis
All data were analysed (Prism 5.0, GraphPad Software) using

unpaired, two-tailed t-tests for comparisons between two groups

and one-way ANOVA (with Bonferonni post-test adjustment) for

other data. P values shown are: *P,.05, **P,.01, and ***P,.001.

Supporting Information

Figure S1 Later stage larval infection showed no
detectable levels of Hif-1a signaling. (A) In situ hybridiza-

tion using a phd-3 antisense probe indicated no detectable

expression in granulomas in 6 dpi zebrafish larvae. Lower panels

show larvae treated with DMOG that have upregulated expression

of phd3 indicating that the in situ detection of phd3 is functional

and dependent on activated Hif-a signaling. (B) Micrographs of 4

individual granulomas (encircled with dotted lines) of 6 dpi larvae

taken with DIC light microscopy. Hif-a signaling is labeled in the

larvae by phd3 in situ hybridization, however, no levels of

expression were detectable in granulomas.

(TIF)

Figure S2 DMOG did not affect MM bacterial growth in
vitro. (A) Bacterial pixel count of plated out serial dilutions of Mm

liquid cultures after overnight incubation in DMSO/DMOG. The

bacterial culture was split into two after inoculation and treated with

100 mM DMOG, or DMSO. After treatment and growth overnight,

serial dilutions of the liquid culture were plated out and grown for 4

days before imaging. Data shown are mean 6 SEM, n = 15 as

accumulated from 3 independent experiments. (B) Example

fluorescence photomicrographs from the data shown in (A).

(TIF)
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Figure S3 Leukocyte cell-type specific expression of
stabilized Hif-1a and macrophage labeling with
anti-nitrotyrosine. (A) Confocal photomicrographs of

Tg(lyz:da-hif-1ab:ires-nlsegfp) (lyz:da-hif-1a) injected mpeg1:mCherry

embryos at 2 dpf. IRES-nlsGFP is expressed in cells in the caudal

haematopoetic tissue associated with leukocytes and mpeg1 positive

macrophages, but is not present within the same cell. (B) Confocal

photomicrographs of Tg(mpeg1:da-hif-1ab:ires-nlsegfp) (mpeg:da-hif-1a)

injected Tg(mpeg1:mCherryF)ump2 line (mpeg:mCherry) at 2 dpf.

IRES-nlsGFP is found expressed in the same cells as mpeg:mCherry

indicating macrophage expression. (C) Confocal micrographs

showing anti nitrotyrosine staining in macrophages in the

mpeg:mCherry at 2 dpf. Upper panels show a nitrotyrosine

negative macrophage, which is representative of the majority of

the macrophage population. Middle panels show a nitrotyrosine

positive macrophage in the absence of infection. Lower panels

show a nitrotyrosine positive macrophage in the presence of

infection. In both the absence and presence of infection

nitrotyrosine positive macrophages are a rare event (approximate-

ly ,5% of the population).

(TIF)

Figure S4 Dominant hif-2aa variants exhibit the same
effects on phd3 expression as the equivalent dominant
hif-1ab variants. (A) Photomicrographs of 24 hpf embryos after

injection with dominant active (DA2) and dominant negative

(DN2) hif-2aa constructs or phenol red (PR) as a control, showing

expression of the Hif-a target gene phd3 by in situ hybridization.

(B) Fluorescent photomicrographs of 48 hpf phd3:GFP embryos

injected with dominant active with dominant active (DA2) and

dominant negative (DN2) hif-2aa constructs or phenol red (PR) as

a control. Upper panels show that DA2 increases the expression of

phd3:GFP compared to PR and DN2 (white arrows). Lower

panels show that DN2 can block the increased expression of

phd3:GFP in the yolk (white arrows) after DMOG treatment. (C)

phd3:GFP embryos were injected at the 1 cell stage with dominant

negative hif-2aa RNA (DN2) or phenol red (PR) as a negative

control. 60 embryos of each were screened for phd3:GFP

expression using confocal microscopy and the 3 brightest areas

of phd3:GFP expression were imaged and showed co-localization

Mm infection. In the DN2 group GFP laser levels and confocal

settings were increased until background green fluorescence was

visible showing no specific co-localisation with Mm.

(TIF)

Table S1 hif-2aa primers used for cloning and site-
directed mutagenesis. Primers used to PCR amplify the

zebrafish HIF-2a homologue, hif-2aa (ZFIN: epas1a), and to make

the dominant constructs. Dominant active primers are longer as

site directed mutagenesis was performed to introduce each

mutation individually in separate PCR reactions. PCR products

were transformed into the pCR- II-TOPO vector (Invitrogen) and

sequence verified. Each hif-2aa construct was then inserted into the

pCS2+ vector (Invitrogen) from which RNA was transcribed using

SP6 enzyme and the mMessage-Machine kit (Ambion).

(DOCX)
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