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Letter to the Editor
Vitamin D binding protein: A DBP2 allele. Additionally, the lower serum DBP concentrations
polymorphic protein with actin-
binding capacity in COVID-19
To the Editor:

With interest, we read the paper of Katz et al. [1], which dem-
onstrated a strong association between vitamin D deficiency and
COVID-19, even after adjusting for sex, malabsorption, dental dis-
eases, race, diabetes mellitus, and obesity. Besides the mentioned
confounders, we would like to illustrate the potential influence of
polymorphic vitamin D binding protein (DBP) with actin-binding
capacity on the reported findings.

DBP or group-specific component (Gc-globulin), a member of
the albuminoid family, was discovered by Hirschfeld in 1959 [2].
The human DBP gene is located on chromosome 4q12-q13 and is
characterized by >120 variants, based on electrophoretic prop-
erties. The three most common variants are DBP1F (rs7041-T/
rs4588-C), DBP1S (rs7041-G/rs4588-C), and DBP2 (rs7041-T/
rs4588-A). The single nucleotide polymorphisms are in complete
linkage disequilibrium, and only six haplotypes are observed
with any significant frequency. The DBP polymorphism presents
distinct racial distribution patterns. A common feature of all
populations is the less predominance of the DBP2 allele, in com-
parison with the DBP1 allele. White populations carry more fre-
quently the DBP1S and the DBP2 allele, whereas black and Asian
populations are more likely to exhibit the DBP1F, with a rare
presence of the DBP2 allele [3]. The major function of DBP is the
transport of vitamin D metabolites in the circulation, with »88%
binding of serum 25-hydroxyvitamin D [25(OH)D] and 85% of
1,25-dihydroxyvitamin D [1,25(OH)2D]. In comparison, albumin,
with its substantially lower binding affinity, binds only »12% to
15% of these metabolites, despite its 10-fold higher serum con-
centration than DBP. Approximately 0.03% of total 25(OH)D and
0.4% of total 1,25(OH)2D are present in a free form in the serum
of normal non-pregnant individuals [4]. Total and free 25(OH)D
concentrations, as well as serum DBP concentrations, are
affected by the DBP phenotypes, with the lowest concentrations
in the DBP2�2 haplotype, which could partly explain why cer-
tain patients are more prone for COVID-19 [5,6]. Investigating
the influence of the DBP phenotypes on severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) infection in 55 countries,
we have demonstrated an association between the DBP1 allele
frequency and a lower prevalence of and mortality due to
COVID-19 [3]. The association between the DBP polymorphism
and SARS-CoV-2 infection could be partly attributed to the
potential protective effects of vitamin D, as DBP1 carriers have
higher plasma vitamin D concentrations than patients with a
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in the DBP2 group could also be a point of attention as lower
DBP levels are associated with septic shock mortality [7]. DBP is
not only the major transport protein of vitamin D metabolites
but exerts several other important functions, including actin
scavenging, binding of fatty acids, chemotaxis, binding of endo-
toxins, influence on T cell response, and influence of vitamin D
binding protein-macrophage activating factor (DBP-MAF). More
specifically, we would like to highlight the actin scavenger func-
tion of DBP in the pathogenesis of COVID-19 [8].

Focusing on the cytoskeleton, in one round of viral life cycle,
coronaviruses promote actin filament polymerization to pro-
vide forces for egress [9]. In catabolic conditions (e.g., sepsis
and acute respiratory distress syndrome), tissue damage leads
to the release of globular actin (G-actin) to the extracellular
environment and the circulation. The accumulation of G-actin
in the bloodstream results in polymerization and formation of
filamentous actin (F-actin), which contribute to pulmonary
microthrombi, pulmonic vessel obstruction, and endothelial
damage [10]. As demonstrated by immunofluorescence micros-
copy, the barrier integrity of primary human pulmonary micro-
vascular endothelial cells is disrupted after exposure to plasma
from severe COVID-19 patients as compared with healthy con-
trols. More specifically, a loss of junctional VE-cadherin and
cortical actin is observed, with the formation of actin stress
fibers and interendothelial gap formation [11]. Actin activates
platelets, which further increases the risk for thrombi forma-
tion and obstruction of the microcirculation (particularly in the
lungs), a phenomenon that is frequently observed in patients
with severe COVID-19 [12]. The extracellular actin scavenger
system is composed of two plasma proteins with complemen-
tary functions: gelsolin that severs F-actin filaments into G-
actin monomers, which are bound subsequently by DBP in a
high affinity (Kd of 10�9 M) 1:1 molar complex for transport
and clearance primarily in the liver. In COVID-19, DBP could act
as a scavenger protein to clear extracellular G-actin released
from necrotic cells, which may be of relevance in severe acute
lung injury [13]. However, it should be mentioned that the for-
mation of DBP-actin complexes is a double-edged sword. In a
mice model, it was demonstrated that elevated concentrations
and/or prolonged exposure to DBP-actin complexes may induce
endothelial cell injury and death, particularly in the lung
microvasculature [14].

In conclusion, the observed association between vitamin D defi-
ciency and the risk for COVID-19 may be influenced by the DBP
polymorphism. The higher risk for and worse prognosis after
SARS-CoV-2 infection in individuals with a DBP2 haplotype may be
attributed to lower serum vitamin D and DBP levels. We suggest
including this parameter in future studies exploring the potential
role of vitamin D in the COVID-19 pandemic.
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